JPS6398544A - Reaction container - Google Patents

Reaction container

Info

Publication number
JPS6398544A
JPS6398544A JP24301686A JP24301686A JPS6398544A JP S6398544 A JPS6398544 A JP S6398544A JP 24301686 A JP24301686 A JP 24301686A JP 24301686 A JP24301686 A JP 24301686A JP S6398544 A JPS6398544 A JP S6398544A
Authority
JP
Japan
Prior art keywords
reaction
reaction cells
large number
light
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24301686A
Other languages
Japanese (ja)
Inventor
Itsuro Sasao
笹尾 逸郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24301686A priority Critical patent/JPS6398544A/en
Publication of JPS6398544A publication Critical patent/JPS6398544A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Measuring Cells (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

PURPOSE:To obtain an inexpensive reaction container suitable for high speed processing, by providing a large number of partition walls between the inner and outer cylinders of a ring-shaped cylindrical body consisting of the inner and outer cylinders. CONSTITUTION:This reaction container is constituted by providing a large number of partition walls between the inner and outer cylinder 3, 4 of a ring- shaped cylindrical body 5 consisting of the cylinders 3, 4 to provide a large number of reaction cells 6 in an annular form. The partition walls 7, bottom parts 8 and the inner and outer cylinders 3, 4 are integrally molded from a transparent resin low in optical strain to form square hole-shaped reaction cells 6 with open upper ends. Therefore, even when the interval between the reaction cells 6 becomes small, since the reaction cells 6 are formed of the inner and outer cylinders, 3, 4 of the ring-shaped cylindrical body 5 and the partition walls 7, mechanical strength is sufficient and a large number of reaction cells can be held at high density.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は、複数の試料を収容した複数の反応セルに順次
測定用光ビームを照射し、その透過率を検出することに
より試料に含まれる各種成分を測定する自動化学分析装
置に於る反応容器に関する。
[Detailed Description of the Invention] [Objective of the Invention] (Industrial Application Field) The present invention involves sequentially irradiating a plurality of reaction cells containing a plurality of samples with a measurement light beam and detecting the transmittance thereof. This invention relates to a reaction vessel in an automatic chemical analyzer that measures various components contained in a sample.

(従来の技術) 自動化学分析装置に於て、試$31を収容した複数の反
応セルを同心円上に配置して回転させながら、測定用光
ビームにより反応セルを円周と直角方向に順次照射し、
その透過光量を測定する場合、従来は第4図に示すよう
に反応セル1を円環状のホルダ2にセットしていた。
(Prior art) In an automatic chemical analyzer, a plurality of reaction cells each containing a sample of $31 are arranged concentrically and rotated, while the reaction cells are sequentially irradiated with a measuring light beam in a direction perpendicular to the circumference. death,
When measuring the amount of transmitted light, conventionally the reaction cell 1 was set in a circular holder 2 as shown in FIG.

(発明が解決しようとする問題点) 以上のような自動化学分析装置の分析処理能力を高速に
する場合には、 ■短時間で反応が進行・終了する様な試薬を用いること ■反応セル数を増し、同時に多量の処理が進行できる様
にして時間当りの処理数を増ずことが考えられる。
(Problems to be Solved by the Invention) In order to increase the analytical processing capacity of the automatic chemical analyzer as described above, it is necessary to: ■ use reagents that allow the reaction to proceed and complete in a short time; ■ the number of reaction cells. It is conceivable to increase the number of processes per hour by increasing the number of processes and allowing a large amount of processing to proceed at the same time.

しかしながら、短時間で反応が進行・終了する様な試薬
を用いることは、試薬の安定性や速度に限界があること
から困難である。
However, it is difficult to use a reagent that allows the reaction to proceed and complete in a short time because there are limits to the stability and speed of the reagent.

一方、第4図に示したような従来の構成によって反応セ
ルの増加を図ると、反応セル間の間隔が小さくなってホ
ルダ2のは域的強度が不足するため、多数の反応セルを
保持できずやはり限界が有り、全ての反応セルの保持を
機械的精度良く保つには装置が効果になるという問題が
ある。
On the other hand, when attempting to increase the number of reaction cells using the conventional configuration shown in Figure 4, the spacing between the reaction cells becomes small and the holder 2 lacks regional strength, making it impossible to hold a large number of reaction cells. There are still limitations, and the problem is that the device is ineffective in maintaining mechanical precision in holding all reaction cells.

又、第4図に示した従来の構成を用いる場合は、各反応
セルでの測光開始点を検出する為のセンサー(図示せず
〉が必要であり、更に、測定時に、迷光や温度による検
出器などの変動を補正する目的で光路遮断し、透過率O
の信号を得る為のシャッターなども必要であるという問
題がある。
Furthermore, when using the conventional configuration shown in Figure 4, a sensor (not shown) is required to detect the photometry starting point in each reaction cell, and furthermore, during measurement, detection due to stray light or temperature is required. The optical path is blocked to correct for fluctuations in the transmittance, etc., and the transmittance is
There is a problem in that a shutter is also required to obtain the signal.

本発明の目的は、以上のような従来の構成に於る問題点
を解決し、反応セルを高密度に保持できる反応容器を提
供すると共に、好ましくは測定時、各反応セルの測定開
始点を他の手段を用いずに測定用光ビームを利用するこ
とにより安価にかつ精度良く測定することができ、更に
迷光・ドリフトなどの補正の為、他の手段を用いずに測
定用光ビームを利用することにより安価にかつ精度良く
測定することのできる反応容器を提供することにおる。
An object of the present invention is to solve the above-mentioned problems with the conventional configuration and provide a reaction container that can hold reaction cells at a high density, and preferably to set the measurement starting point of each reaction cell at the time of measurement. By using a measurement light beam without using any other means, measurements can be made at low cost and with high precision.Furthermore, in order to correct stray light, drift, etc., the measurement light beam can be used without using any other means. The purpose of the present invention is to provide a reaction container that can perform measurements at low cost and with high accuracy.

[発明の構成] (問題点を解決するだめの手段) 上記目的を達成するため本発明は、内筒と外筒とからな
るリング状円筒体のその内筒と外筒との間に多数の隔壁
を設けることににり多数の反応セルを円環状に設けて成
る反応容器を構成した。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the present invention provides a ring-shaped cylindrical body consisting of an inner cylinder and an outer cylinder. By providing partition walls, a reaction vessel was constructed in which a large number of reaction cells were arranged in an annular shape.

(作 用) 本発明の反応容器は上記の構成としたので、次のように
作用する。
(Function) Since the reaction container of the present invention has the above structure, it functions as follows.

即ち、反応セルの増加を図ることにより反応セル間の間
隔が小さくなっても、反応セルはリング状円筒体の内筒
と外筒とによって保持されるので、従来のようなホルダ
に比べて機械的強度が十分でおり、従って、多数の反応
セルを高密度に保持することができる。
In other words, even if the interval between reaction cells is reduced by increasing the number of reaction cells, the reaction cells are held by the inner and outer cylinders of the ring-shaped cylindrical body, making the machine easier to use than with conventional holders. It has sufficient physical strength and can therefore hold a large number of reaction cells at high density.

そして、反応セルのそれぞれ隣接するセル間に遮光部分
を設けた場合には、測定時、各セル間の遮光スリット毎
に測定用光ビームの透過率がOとなるので、そこを各セ
ルの基準位置即ち測定開始点とすることができ、従って
各反応セルの測定開始点を他の手段を用いずに測定用光
ビームを利用することにより安価にかつ精度良く測定す
ることができる。
If a light-shielding portion is provided between adjacent reaction cells, the transmittance of the measuring light beam will be O for each light-shielding slit between each cell during measurement, and this will be used as the reference for each cell. Therefore, the measurement starting point of each reaction cell can be measured inexpensively and accurately by using the measuring light beam without using any other means.

更に、前記多数の反応セルの内の一つに、測定用光ビー
ムを遮断し、光の透過率をOとする遮光部分を設けた場
合には、測定用光ビームは遮られて検出器出力信号には
、外乱光などの迷光や検出器自身の暗電流が信号として
出力されるので、他の手段を用いずに測定用光ビームを
利用することにより安価にかつ精度良く迷光・ドリフト
などの補正を行うことができる。
Furthermore, if one of the many reaction cells is provided with a light-shielding part that blocks the measurement light beam and has a light transmittance of O, the measurement light beam is blocked and the detector output is Since stray light such as disturbance light and the dark current of the detector itself are output as signals, stray light, drift, etc. can be detected inexpensively and accurately by using a measurement light beam without using other means. Corrections can be made.

(実施例) 以下図示の実施例について説明する。(Example) The illustrated embodiment will be described below.

〈実施例1〉 本実施例の反応容器は、第1図に示すように内筒3と外
筒4とからなるリング状円筒体5のその内筒3と外筒4
との間に多数の隔壁を設けることにより多数の反応セル
6を円環状に設けて成る。
<Example 1> As shown in FIG. 1, the reaction container of this example consists of a ring-shaped cylindrical body 5 consisting of an inner cylinder 3 and an outer cylinder 4.
A large number of reaction cells 6 are provided in an annular shape by providing a large number of partition walls between the two.

図示の反応容器は、内筒3.外筒4.上端が開放した四
角孔状の反応セル6を形成する隔壁7及び底部8(第3
図参照)を光学的歪の少ない透明な樹脂で一体成型しで
ある。
The illustrated reaction vessel has an inner cylinder 3. Outer cylinder 4. A partition wall 7 and a bottom part 8 (third
(see figure) are integrally molded from transparent resin with little optical distortion.

このような反応容器によれば、反応セル6の増加を図る
ことにより反応セル間の間隔が小さくなっても、反応セ
ル6はリング状円筒体5の内筒3と外筒4及び隔壁7に
よって形成されているので、従来のようなホルダに比べ
て機械的強度が十分であり、従って、多数の反応セルを
高密度に保持することができる。
According to such a reaction container, even if the interval between the reaction cells becomes smaller by increasing the number of reaction cells 6, the reaction cells 6 are still connected to each other by the inner cylinder 3, outer cylinder 4 and partition wall 7 of the ring-shaped cylinder 5. Because of this structure, it has sufficient mechanical strength compared to conventional holders, and can therefore hold a large number of reaction cells at a high density.

〈実施例2〉 この実施例の反応容器は、第2図(a)に示すように、
反応セル6のそれぞれ隣接するセル間に遮光部分11を
設けである。遮光部分11は、セル位置検出用の遮光ス
リットで構成してあり、スリット11の大きさは光ビー
ム径より若干大きければ良い。
<Example 2> As shown in FIG. 2(a), the reaction vessel of this example was
A light shielding portion 11 is provided between each adjacent reaction cell 6. The light-shielding portion 11 is composed of a light-shielding slit for cell position detection, and the size of the slit 11 only needs to be slightly larger than the light beam diameter.

以上のような反応容器は、その各反応セル6(図中a、
b、C,d、e、’f’、 ・)内に試料・試薬などを
収容して反応させるようになっており、測光は第2図(
a)に示すように、光源9から測定用光ビームBを容器
の円周方向と直角方向に照射し、各反応セル毎に試料を
透過した光を検出器10に導いて透過率を測定するよう
になっている。
The reaction container as described above has its respective reaction cells 6 (a in the figure,
b, C, d, e, 'f', ・) are designed to accommodate samples and reagents for reaction, and photometry is performed as shown in Figure 2 (
As shown in a), a light beam B for measurement is irradiated from a light source 9 in a direction perpendicular to the circumferential direction of the container, and the light transmitted through the sample is guided to a detector 10 for each reaction cell to measure the transmittance. It looks like this.

ここで測定は各試料の光の透過率を測定するのであるか
ら、データとして信頼の有るものとする為には、測定毎
に各反応セルの同じ位置(通常は精度10乃至数10μ
Trt)でサンプリングする必要があるが、本実施例の
反応容器は、反応セル6のそれぞれ隣接するセル間に遮
光スリット11を設けであるので、測定時、各セル6間
の遮光スリット毎に測定用光ビームの透過率がOとなっ
て、そこを各セルの基準位置即ち測定開始点とすること
ができ、従って各反応セルの測定開始点を他の手段を用
いずに測定用光ビームを利用することにより安価にかつ
精度良く測定することができる。
Since the measurement here measures the light transmittance of each sample, in order to have reliable data, it is necessary to perform each measurement at the same position in each reaction cell (usually with an accuracy of 10 to several tens of μm).
However, since the reaction vessel of this example is provided with light-shielding slits 11 between adjacent reaction cells 6, when measuring, it is necessary to sample at each light-shielding slit between each cell 6. The transmittance of the measuring light beam becomes O, which can be used as the reference position of each cell, that is, the measurement starting point. Therefore, the measuring light beam can be set at the measurement starting point of each reaction cell without using other means. By using this, measurements can be made at low cost and with high accuracy.

即ち、第4図に示したような従来の構成を用いた場合に
は、通常は図示しない反応容器回転駆動機構に連結され
たセル位置検出センサーにより各セルでの物理的位置を
検出し、データサンプリングのトリガとしていたが、こ
のような従来の方法であると、専用の高精度センサーが
必要となり、また各セル位置と位置検出センサー取付は
位置の調整が難しく、さらにはセルと位置検出センサー
とは別位置に有る為に機構系のバックラッシュにより正
しくセル位置を検出することが不可能であった。
That is, when the conventional configuration shown in FIG. 4 is used, the physical position of each cell is usually detected by a cell position detection sensor connected to a reaction vessel rotation drive mechanism (not shown), and data is collected. However, with this conventional method, a dedicated high-precision sensor is required, and it is difficult to adjust the position of each cell and position detection sensor. Since the cells are located at different positions, it is impossible to accurately detect the cell position due to mechanical backlash.

これに対し、本実施例によれば、反応セル6のそれぞれ
隣接するセル間に遮光スリット11を設けであるので、
反応容器を回転測光した場合、第2図(b)に示すよう
な検出器出力信号がj9られ、回転に従いセルaから順
次測定されてゆきセル内の試料濃度により透過率の変化
が検出されると共に、各セル間の遮光スリット11毎に
透過率がOとなるので、そこを各セルの基準位置とし、
回転スピードが一定であればその点から所定時間経過後
のデータサンプリング点とすれば常に各セルの同一位置
のデータ収集が可能となる。
On the other hand, according to this embodiment, since the light-shielding slits 11 are provided between adjacent cells of the reaction cells 6,
When the reaction vessel is rotated and photometered, a detector output signal as shown in Fig. 2(b) is generated and sequentially measured from cell a as the reaction vessel rotates, and changes in transmittance are detected depending on the sample concentration within the cell. At the same time, the transmittance is O for each light-shielding slit 11 between each cell, so that is the reference position of each cell,
If the rotational speed is constant, by setting the data sampling point after a predetermined period of time has elapsed from that point, it is possible to always collect data at the same position in each cell.

〈実施例3〉 この実施例は、第3図に示すように前記多数の反応セル
6内の一つに、測定用光ビームB(第2図)を完全に遮
断し、光の透過率をOとする遮光部分12を設けたもの
である。
<Embodiment 3> In this embodiment, as shown in FIG. 3, the measurement light beam B (FIG. 2) is completely blocked in one of the plurality of reaction cells 6 to reduce the light transmittance. A light shielding portion 12 of O is provided.

このような反応容器によれば、測定用光ビームが遮られ
て検出器出力信号には、外乱光なとの迷光や検出器自身
の暗電流が信号として出力されることとなる。これは周
囲温度や装置の設置状況により変化するもので、通常は
吸光度計算の際にベース雑音として補正される目的に用
いられ、これによって精度の良い測定を行うことができ
る。ざらに、この遮光部分12を各セルの基準原点位置
(ホームポジション)としても用いることができる。
According to such a reaction vessel, the measurement light beam is blocked, and the detector output signal includes stray light such as disturbance light and the dark current of the detector itself. This varies depending on the ambient temperature and the installation status of the device, and is normally used to correct base noise when calculating absorbance, thereby allowing highly accurate measurements. In general, this light-shielding portion 12 can also be used as a reference origin position (home position) of each cell.

即ち、第4図に示したような従来の構成を用いた場合、
測定用光ビームBを完全に遮断し、光の透過率をOとす
るには光路中にシャッターを設けて遮光し、また各セル
の基準原点位置を得るには反応容器駆動機構の一部に反
応容器と連動した基準位置検出センサーを設ける必要が
あったが、本実施例によれば、これら従来のような他の
手段を用いずに測定用光ビームを利用することにより安
価にかつ精度良く迷光・ドリフトなどの補正を行うこと
ができる。
That is, when using the conventional configuration as shown in FIG.
In order to completely block the measuring light beam B and make the light transmittance O, a shutter is provided in the optical path to block the light, and in order to obtain the reference origin position of each cell, a shutter is provided as part of the reaction vessel drive mechanism. It was necessary to provide a reference position detection sensor linked to the reaction vessel, but according to this example, this can be done at low cost and with high precision by using a measuring light beam without using these other conventional means. Stray light, drift, etc. can be corrected.

以上本発明の実施例について説明したが、本発明は上記
実施例に限定されるものではなく、本発明の要旨の範囲
内において適宜変形実施可能であることは言うまでもな
い。
Although the embodiments of the present invention have been described above, it goes without saying that the present invention is not limited to the above embodiments, and can be modified as appropriate within the scope of the gist of the present invention.

例えば、反応セルの形状は四角礼状に限らず、円孔状や
、その他の任意の形状を採用し得る。
For example, the shape of the reaction cell is not limited to a rectangular shape, but may be a circular shape or any other arbitrary shape.

又、上記実施例では、反応セルをリング状円筒体と一体
的に形成したが、これに限るものではなく、別体の反応
セルをリング状円筒体の内筒と、外筒との間に嵌め込ん
でもよい。
Further, in the above embodiment, the reaction cell was formed integrally with the ring-shaped cylinder, but the invention is not limited to this, and a separate reaction cell may be formed between the inner cylinder and the outer cylinder of the ring-shaped cylinder. It can also be fitted.

更に第2実施例と第3実施例とを組合せた構成とするこ
とも可能である。
Furthermore, it is also possible to configure a combination of the second embodiment and the third embodiment.

[発明の効果] 以上詳述したように本発明によれば、極めて安価に、高
速処理に適した反応容器の提供が可能であり、又、他の
追加機構なく精度のよい測定及び反応容器のホームポジ
ション検出が可能となる。
[Effects of the Invention] As described in detail above, according to the present invention, it is possible to provide a reaction vessel suitable for high-speed processing at an extremely low cost, and it is also possible to perform accurate measurement and control of the reaction vessel without any other additional mechanism. Home position detection becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る反応容器の第1実施例を示す斜視
図、第2図(a)は同上第2実施例の部分斜視図、第2
図(b)は第2実施例の作用説明図、第3図は第3実施
例の部分斜視図、第4図は従来例の斜視図でおる。 3・・・内筒、      4・・・外筒、5・・・リ
ング状円筒体、 6・・・反応セル。 代理人 弁理士 則  近  憲  佑同      
大   胡   典   夫第1図
FIG. 1 is a perspective view showing a first embodiment of the reaction vessel according to the present invention, FIG. 2(a) is a partial perspective view of the second embodiment of the same, and FIG.
FIG. 3 is a partial perspective view of the third embodiment, and FIG. 4 is a perspective view of the conventional example. 3... Inner cylinder, 4... Outer cylinder, 5... Ring-shaped cylindrical body, 6... Reaction cell. Agent Patent Attorney Yudo Noriyuki Chika
Norio Ogo Figure 1

Claims (3)

【特許請求の範囲】[Claims] (1)内筒と外筒とからなるリング状円筒体のその内筒
と外筒との間に多数の隔壁を設けることにより多数の反
応セルを円環状に設けて成る反応容器。
(1) A reaction vessel comprising a ring-shaped cylindrical body consisting of an inner cylinder and an outer cylinder, and a large number of partition walls provided between the inner cylinder and the outer cylinder to provide a large number of reaction cells in an annular shape.
(2)前記反応セルのそれぞれ隣接するセル間には、遮
光部分を設けた特許請求の範囲第1項記載の反応容器。
(2) The reaction container according to claim 1, wherein a light shielding portion is provided between each adjacent reaction cell.
(3)前記多数の反応セルの内の一つに、測定用光ビー
ムを遮断し、光の透過率を0とする遮光部分を設けた特
許請求の範囲第1項又は第2項記載の反応容器。
(3) The reaction according to claim 1 or 2, wherein one of the plurality of reaction cells is provided with a light-shielding portion that blocks the measuring light beam and makes the light transmittance 0. container.
JP24301686A 1986-10-15 1986-10-15 Reaction container Pending JPS6398544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24301686A JPS6398544A (en) 1986-10-15 1986-10-15 Reaction container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24301686A JPS6398544A (en) 1986-10-15 1986-10-15 Reaction container

Publications (1)

Publication Number Publication Date
JPS6398544A true JPS6398544A (en) 1988-04-30

Family

ID=17097624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24301686A Pending JPS6398544A (en) 1986-10-15 1986-10-15 Reaction container

Country Status (1)

Country Link
JP (1) JPS6398544A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010086943A1 (en) * 2009-01-30 2010-08-05 株式会社 日立ハイテクノロジーズ Analyzer, and control method for rotation of disc
JP2011007642A (en) * 2009-06-26 2011-01-13 Hitachi High-Technologies Corp Nucleic acid analyzer
JP2015175667A (en) * 2014-03-13 2015-10-05 株式会社東芝 Automatic analysis apparatus
WO2016063569A1 (en) * 2014-10-23 2016-04-28 シャープ株式会社 Sample analysis device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010086943A1 (en) * 2009-01-30 2010-08-05 株式会社 日立ハイテクノロジーズ Analyzer, and control method for rotation of disc
JP2010175421A (en) * 2009-01-30 2010-08-12 Hitachi High-Technologies Corp Analyzer and control method for rotation of disc
JP2011007642A (en) * 2009-06-26 2011-01-13 Hitachi High-Technologies Corp Nucleic acid analyzer
JP2015175667A (en) * 2014-03-13 2015-10-05 株式会社東芝 Automatic analysis apparatus
WO2016063569A1 (en) * 2014-10-23 2016-04-28 シャープ株式会社 Sample analysis device
JP2016085078A (en) * 2014-10-23 2016-05-19 シャープ株式会社 Sample analyzer

Similar Documents

Publication Publication Date Title
US4594533A (en) Device for analyzing chemical substance
EP0107410A1 (en) Method of photometric measurement
JPS5912982B2 (en) Measuring device for cuvettes
JPH04274732A (en) Method and apparatus for guiding light
US3263553A (en) Photoelectric immersion probe
US3764214A (en) Photometer apparatus
JPS6222066A (en) Latex agglutination reaction measuring instrument
US4308231A (en) Optical timing and A/D conversion method and apparatus
US4305723A (en) Apparatus and method for absorbance measurement and data generation
US4774056A (en) Apparatus for testing sedimentation rates of liquids
US4798703A (en) Photometric apparatus in automatic chemical analyzer
US3733130A (en) Slotted probe for spectroscopic measurements
US4877583A (en) Fluorescent analyzer
US4309112A (en) Rate measurement analyzer
JPS6398544A (en) Reaction container
US4502786A (en) Method and apparatus for automated determination of hemoglobin species
EP0303707A4 (en) Optical measurement method and apparatus therefor in automatic analyzer.
US4299493A (en) Auto-optical centering device for photometers
FI57665C (en) KUVETTENHET
FI64464C (en) REFERENCES FOR USE OF CHEMICAL ANALYSIS
JPH06258327A (en) Measuring system using rotary reactor
US2942515A (en) Photoelectric colorimeter
JP3234731B2 (en) Method for determining mask diameter in X-ray analysis
JPH023459B2 (en)
JPH0226190B2 (en)