JPS6379763A - Manufacture of silicon nitride reaction sintered body - Google Patents

Manufacture of silicon nitride reaction sintered body

Info

Publication number
JPS6379763A
JPS6379763A JP61222671A JP22267186A JPS6379763A JP S6379763 A JPS6379763 A JP S6379763A JP 61222671 A JP61222671 A JP 61222671A JP 22267186 A JP22267186 A JP 22267186A JP S6379763 A JPS6379763 A JP S6379763A
Authority
JP
Japan
Prior art keywords
nitrogen atmosphere
silicon nitride
sintered body
nitriding
reaction sintered
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61222671A
Other languages
Japanese (ja)
Inventor
誠司 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP61222671A priority Critical patent/JPS6379763A/en
Publication of JPS6379763A publication Critical patent/JPS6379763A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野1 本発明は、例えば′IS温構過構造材料て利用される窒
化珪素(SlsNa)反応焼結体の製造方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field 1] The present invention relates to a method for producing a reactive sintered body of silicon nitride (SlsNa) which is used, for example, as an IS thermal structural material.

[従来の技術1 従来の窒化珪素反応焼結体の製造方法は、金属珪素(S
l)の成形体を窒素雰囲気中で反応焼結させて行うてい
た。この場合反応焼結する際の窒素雰囲気は、大気圧程
度の圧力下に設定されていた。
[Prior art 1] A conventional method for producing a silicon nitride reaction sintered body uses metallic silicon (S
1) The molded body was subjected to reaction sintering in a nitrogen atmosphere. In this case, the nitrogen atmosphere during reaction and sintering was set at about atmospheric pressure.

[発明が解決しようとする問題点] 窒化珪素反応焼結体は、金属珪素の成形体を窒素雰囲気
中で反応焼結することによって窒化して得られる。この
場合強痩等の関係上金属珪素ができるだけ窒化されてい
ることが望ましい。そこでこの窒化を促進させるために
、金属珪素に窒化促進剤を配合したり、窒素雰囲気中に
窒化促進ガスを混合したりしていた。しかしこのように
した場合でも、窒素雰囲気中の圧力は大気圧程度である
ため、焼結工程では長時間を要していた。
[Problems to be Solved by the Invention] A silicon nitride reaction sintered body is obtained by nitriding a metal silicon molded body by reaction sintering in a nitrogen atmosphere. In this case, it is desirable that the metal silicon be nitrided as much as possible for reasons such as strength and thinning. Therefore, in order to promote this nitriding, a nitriding promoter has been added to metal silicon, or a nitriding promoting gas has been mixed in a nitrogen atmosphere. However, even in this case, the pressure in the nitrogen atmosphere is about atmospheric pressure, so the sintering process takes a long time.

本発明は上記問題点を解決するものであり、その目的は
金属珪素の窒化を促進し短時間で反応焼結をおこなうこ
とができる窒化珪素反応焼結体の製造方法を提供するこ
とにある。
The present invention has been made to solve the above-mentioned problems, and its purpose is to provide a method for producing a silicon nitride reaction sintered body, which can accelerate the nitridation of metal silicon and carry out reaction sintering in a short time.

[問題点を解決するための手段] 本発明の窒化珪素反応焼結体の製造方法は、金属珪素の
成形体を窒素雰囲気中で反応焼結する窒化珪素反応焼結
体のa、i方法において、該窒素雰囲気は水素、ヘリウ
ム、アンモニア、硫化水素、アルゴンのうちの少なくと
も1種類からなる窒化促進ガスを含有するとともに10
気圧以上であることを特徴とするものである。
[Means for Solving the Problems] The method for producing a silicon nitride reaction sintered body of the present invention includes methods a and i for producing a silicon nitride reaction sintered body in which a metal silicon molded body is reaction-sintered in a nitrogen atmosphere. , the nitrogen atmosphere contains a nitridation promoting gas consisting of at least one of hydrogen, helium, ammonia, hydrogen sulfide, and argon;
It is characterized by being above atmospheric pressure.

即ち本発明の製造方法では、金属珪素の焼結は窒化促進
ガスを含有し、10気圧以上の^圧力下の窒素雰囲気中
で行われる。この場合窒素雰囲気中の圧力は100〜2
000気圧であることが好ましい。ここでの窒素雰囲気
は、窒素ガスおよび窒化促進ガスを含む非酸化性雰囲気
をいう。また窒素雰囲気中に含有される窒化促進ガスの
濃度は、全窒化促進ガスを100体梢%とした場合に5
〜50体積%の範囲内で混合するとよい。5体積%以下
の場合には、促進ガスとしての促進効果が小さく、50
体積%以上の場合には、窒素濃度が小さくなるため窒化
が大幅に促進されない。また窒素雰囲気中は、1200
〜1500℃の範囲内の温度に加熱される。なお金属珪
素の成形体は、金型成形、冷間静水圧加圧(C,1,P
)等の従来の方法により形成してよい。
That is, in the manufacturing method of the present invention, sintering of metallic silicon is carried out in a nitrogen atmosphere containing a nitriding promoting gas and under a pressure of 10 atmospheres or more. In this case, the pressure in the nitrogen atmosphere is 100-2
000 atmospheres is preferred. The nitrogen atmosphere here refers to a non-oxidizing atmosphere containing nitrogen gas and nitridation promoting gas. In addition, the concentration of the nitriding promoting gas contained in the nitrogen atmosphere is 5% when the total nitriding promoting gas is 100%.
It is preferable to mix within a range of 50% by volume. If the amount is less than 5% by volume, the promoting effect as a promoting gas is small, and 50% by volume or less.
If the amount is more than % by volume, the nitrogen concentration will be small and nitriding will not be promoted significantly. In addition, in a nitrogen atmosphere, 1200
It is heated to a temperature within the range of ~1500<0>C. The molded body of metallic silicon is molded by molding, cold isostatic pressing (C, 1, P
) may be formed by conventional methods such as.

[実施例] 以下本発明に係る窒化珪素反応焼結体の製造方法の具体
的実施例を説明する。
[Example] Specific examples of the method for manufacturing a silicon nitride reaction sintered body according to the present invention will be described below.

本実施例では、まず平均粒径15μmの金属珪素(S 
i )を金型成形し、冷間静水圧加圧(C。
In this example, first, metallic silicon (S) with an average particle size of 15 μm was
i) was molded into a mold and subjected to cold isostatic pressing (C.

■、P)により等友釣に加圧して所定の大きさの成形体
を形成した。そしてこの成形体を20体積%の水素ガス
(H2)を含有し、500気圧に加圧した窒素雰囲気中
で10時間焼結させた。なおこのときの窒素雰囲気中の
温度は1300℃に設定した。本実施例により製造され
た窒化珪素反応焼結体は、窒化率が略100%で良好な
品質のものであり、かつ反応焼結時間を短縮することが
できた。
(2) and (P) were applied uniform pressure to form a molded body of a predetermined size. This compact was then sintered for 10 hours in a nitrogen atmosphere containing 20% by volume of hydrogen gas (H2) and pressurized to 500 atmospheres. Note that the temperature in the nitrogen atmosphere at this time was set at 1300°C. The silicon nitride reaction sintered body produced in this example had a nitriding rate of approximately 100% and was of good quality, and the reaction sintering time could be shortened.

(試111) 上記実施例のvJ造方沫において、窒素雰囲気中での反
応焼結温度を変えて種々の温度で窒化珪素反応焼結体の
テストピース(A)を製造した。また比較例として窒素
雰囲気の圧力を100気圧とした場合のテストピース(
B)、および1気圧とした場合のテストピース(C)も
製造し、それぞれの窒化率を測定して比較した。なおこ
のときの窒素雰囲気中の反応焼結温度は、1200〜1
325℃の範囲で25℃ごとに異なる温度に設定し、各
温度での窒化率を測定した。また窒化率は次式により算
出し、その結果を第1図に示す。
(Trial 111) Test pieces (A) of silicon nitride reaction sintered bodies were manufactured at various temperatures in the vJ manufacturing method of the above example by changing the reaction sintering temperature in a nitrogen atmosphere. As a comparative example, a test piece (
B) and a test piece (C) at 1 atm were also manufactured, and the nitridation rates of each were measured and compared. Note that the reaction sintering temperature in the nitrogen atmosphere at this time was 1200 to 1
Temperatures were set to vary by 25°C within a range of 325°C, and the nitridation rate at each temperature was measured. Further, the nitriding rate was calculated using the following formula, and the results are shown in FIG.

窒化率−実際の重重増加/窒化反応における理論型11
増加X100(%) 第1図から明らかなように、各テストピース(A)、(
B)、(C)の窒化率は反応焼結温度が高温となるに従
って上昇するが、テストピース(A>は、両テストピー
ス(B)、(C)よりも各温度において常に高い窒化率
を示した。また1300℃における窒化率は、テストピ
ース(C)が35%、テストピース(B)が60%であ
ったのに対して、テストピース(A)は略100%であ
った。
Nitriding rate - actual weight increase/theoretical type 11 in nitriding reaction
Increase x 100 (%) As is clear from Figure 1, each test piece (A), (
The nitriding rate of B) and (C) increases as the reaction sintering temperature increases, but test piece (A>) always has a higher nitriding rate than both test pieces (B) and (C) at each temperature. The nitriding rate at 1300° C. was 35% for test piece (C) and 60% for test piece (B), while it was approximately 100% for test piece (A).

以上のことから、窒素雰囲気の圧力が高いほど窒化率も
高く、従って反応焼結時間が短くてよいことがわかる。
From the above, it can be seen that the higher the pressure of the nitrogen atmosphere, the higher the nitriding rate, and therefore the reaction sintering time may be shorter.

(試験2) また窒化促進ガスを含有しない窒素ガスのみからなる窒
素雰囲気において、種々の条件下で反応焼結させた場合
の窒化珪素反応焼結体の窒化率を測定した。この場合に
窒素雰囲気の圧力が1000気圧のものをテストピース
(D)、500気圧のものをテストピース(E)、1気
圧のものをテストピース(F)とした。なお各テストピ
ース(D)、(E)、(F)は、上記試験1と同じ各温
度で10時間焼結して製造したものである。また窒化率
は上記の式により算出し、その結果を第2図に示す。
(Test 2) In addition, the nitridation rate of the silicon nitride reaction sintered body was measured when the reaction sintered body was reacted and sintered under various conditions in a nitrogen atmosphere consisting only of nitrogen gas containing no nitridation promoting gas. In this case, a test piece (D) with a nitrogen atmosphere pressure of 1000 atm, a test piece (E) with a nitrogen atmosphere of 500 atm, and a test piece (F) with a nitrogen atmosphere of 1 atm. The test pieces (D), (E), and (F) were manufactured by sintering at the same temperatures as in Test 1 for 10 hours. Further, the nitriding rate was calculated using the above formula, and the results are shown in FIG.

第2図から明らかなように、各テストビース(D)、(
E)、(F)の窒化率は、上記試験1の場合と同様の傾
向を示し、窒素雰囲気中に窒化促進ガスを含有しない場
合でも高圧力下の方が窒化率が高いことがわかる。また
窒素雰囲気のみでは窒化率が低いことがわかる。
As is clear from Fig. 2, each test bead (D), (
The nitriding rates of E) and (F) show the same tendency as in Test 1, and it can be seen that the nitriding rate is higher under high pressure even when the nitrogen atmosphere does not contain a nitriding promoting gas. It is also seen that the nitridation rate is low in a nitrogen atmosphere only.

(試験3) 本実施例では、上記実施例1と同様にして形成した成形
体を用いて、各種条件に設定した窒素雰囲気中で反応焼
結して製造した窒化珪素反応焼結体の窒化率を測定した
。この場合の窒素雰囲気中の圧力は、1000気圧、5
00気圧、1気圧とした。また窒素雰囲気中に混入する
ガスとして、水素(Hl)、ヘリウム(He)、アンモ
ニア(NH3)を使用し、これらはそれぞれ単独で20
体積%混入した場合、アンモニア(NH3)とヘリウム
(He)とを各10体積%づつ混合して混入した場合、
硫化水素(HxS)とヘリウム(He)とを各10体積
%づつ混合して混入した場合について調べた。なお雰囲
気中の温度は1300℃に設定し、10時間の焼結を行
った。
(Test 3) In this example, the nitridation rate of a silicon nitride reaction sintered body was produced by reaction sintering in a nitrogen atmosphere set to various conditions using a molded body formed in the same manner as in Example 1 above. was measured. In this case, the pressure in the nitrogen atmosphere is 1000 atm, 5
00 atm and 1 atm. In addition, hydrogen (Hl), helium (He), and ammonia (NH3) are used as gases mixed into the nitrogen atmosphere, and each of these alone has a
When mixing 10% by volume of ammonia (NH3) and helium (He),
The case where hydrogen sulfide (HxS) and helium (He) were mixed at 10% by volume each was investigated. Note that the temperature in the atmosphere was set at 1300° C., and sintering was performed for 10 hours.

結果は表に示すように、各窒素雰囲気ガスにおける窒化
珪素反応焼結体の窒化率は、1気圧の場合には60%前
後であり、500気圧の場合には90%以上となり、1
000気圧の場合には100%であった。このように雰
囲気ガスの圧力が高いものほど窒化率は高くなるのがわ
かる。即ち、ガス圧を作用させることにより窒化時間を
短縮できることがわかる。
As the results are shown in the table, the nitridation rate of the silicon nitride reaction sintered body in each nitrogen atmosphere gas is around 60% at 1 atm, and more than 90% at 500 atm.
In the case of 000 atmospheres, it was 100%. It can be seen that the higher the pressure of the atmospheric gas, the higher the nitriding rate. That is, it can be seen that the nitriding time can be shortened by applying gas pressure.

[発明の効果] 本発明の窒化珪素反応焼結体の製造方法では、反応焼結
を行う窒素雰囲気は水素、ヘリウム、アンモニア、硫化
水素、アルゴンのうちの少なくとも1種類からなる窒化
促進ガスを含有するとともに10気圧以上の圧力下に設
定される。このため金属珪素の窒化が促進され、窒化時
間を短縮することができる。
[Effects of the Invention] In the method for producing a silicon nitride reaction sintered body of the present invention, the nitrogen atmosphere in which reaction sintering is performed contains a nitridation promoting gas consisting of at least one of hydrogen, helium, ammonia, hydrogen sulfide, and argon. At the same time, the pressure is set at 10 atmospheres or more. Therefore, nitriding of metal silicon is promoted, and the nitriding time can be shortened.

そして焼結温度を低温に設定して窒化が可能となるため
、α相が多い窒化珪素反応焼結体を形成することができ
る。また未反応の金属珪素が残留しないため、強度に優
れた窒化珪素反応焼結体を得ることができる。
Since nitriding is possible by setting the sintering temperature to a low temperature, a silicon nitride reaction sintered body containing a large amount of α phase can be formed. Moreover, since no unreacted metal silicon remains, a silicon nitride reaction sintered body with excellent strength can be obtained.

さらに気相で窒化促進剤を導入しているため、金属珪素
粒子の全表面で均一に作用して均質に窒化珪素反応焼結
体を製造することができる。
Furthermore, since the nitridation promoter is introduced in the gas phase, it acts uniformly on the entire surface of the metal silicon particles, making it possible to produce a homogeneous silicon nitride reaction sintered body.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は硫化水素含有の窒素雰囲気における各ガス圧力
の窒化率を示す図、第2図は窒素雰囲気における各ガス
圧力の窒化率を示す図である。
FIG. 1 is a diagram showing the nitriding rate at each gas pressure in a nitrogen atmosphere containing hydrogen sulfide, and FIG. 2 is a diagram showing the nitriding rate at each gas pressure in a nitrogen atmosphere.

Claims (3)

【特許請求の範囲】[Claims] (1)金属珪素の成形体を窒素雰囲気中で反応焼結する
窒化珪素反応焼結体の製造方法において、該窒素雰囲気
は水素、ヘリウム、アンモニア、硫化水素、アルゴンの
うちの少なくとも1種類からなる窒化促進ガスを含有す
るとともに10気圧以上であることを特徴とする窒化珪
素反応焼結体の製造方法。
(1) In a method for producing a silicon nitride reaction sintered body in which a molded silicon metal body is reacted and sintered in a nitrogen atmosphere, the nitrogen atmosphere consists of at least one of hydrogen, helium, ammonia, hydrogen sulfide, and argon. A method for producing a silicon nitride reaction sintered body, comprising a nitriding promoting gas and a pressure of 10 atm or more.
(2)窒素雰囲気中の圧力は100〜2000気圧であ
る特許請求の範囲第1項記載の窒化珪素反応焼結体の製
造方法。
(2) The method for producing a silicon nitride reaction sintered body according to claim 1, wherein the pressure in the nitrogen atmosphere is 100 to 2000 atmospheres.
(3)窒化促進ガスの濃度は、全窒素雰囲気ガスを10
0体積%とした場合5〜50体積%である特許請求の範
囲第1項記載の窒化珪素反応焼結体の製造方法。
(3) The concentration of the nitriding promoting gas is 10% of the total nitrogen atmosphere gas.
The method for producing a silicon nitride reaction sintered body according to claim 1, wherein the content is 5 to 50% by volume when 0% by volume.
JP61222671A 1986-09-19 1986-09-19 Manufacture of silicon nitride reaction sintered body Pending JPS6379763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61222671A JPS6379763A (en) 1986-09-19 1986-09-19 Manufacture of silicon nitride reaction sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61222671A JPS6379763A (en) 1986-09-19 1986-09-19 Manufacture of silicon nitride reaction sintered body

Publications (1)

Publication Number Publication Date
JPS6379763A true JPS6379763A (en) 1988-04-09

Family

ID=16786102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61222671A Pending JPS6379763A (en) 1986-09-19 1986-09-19 Manufacture of silicon nitride reaction sintered body

Country Status (1)

Country Link
JP (1) JPS6379763A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733498A (en) * 1994-02-28 1998-03-31 Honda Giken Kogyo Kabushiki Kaisha Method for producing silicon nitride reaction-sintered body
US5928601A (en) * 1994-02-28 1999-07-27 Honda Giken Kogyo Kabushiki Kaisha Method for producing silicon nitride reaction sintered body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5733498A (en) * 1994-02-28 1998-03-31 Honda Giken Kogyo Kabushiki Kaisha Method for producing silicon nitride reaction-sintered body
US5928601A (en) * 1994-02-28 1999-07-27 Honda Giken Kogyo Kabushiki Kaisha Method for producing silicon nitride reaction sintered body

Similar Documents

Publication Publication Date Title
JPH0260633B2 (en)
JPS6138149B2 (en)
US3778231A (en) Method of producing silicon nitride articles
US4781874A (en) Process for making silicon nitride articles
US4389341A (en) Fugitive binder-containing nuclear fuel material and method of production
JPS6379763A (en) Manufacture of silicon nitride reaction sintered body
JPS6152110B2 (en)
JP3214729B2 (en) Method for producing silicon nitride reaction sintered body
JPS61201608A (en) Manufacture of high purity aluminum nitride powder
JPH03208864A (en) Production of mixed powder of boron nitride and aluminum nitride
JPS59152271A (en) Manufacture of high density silicon nitride reaction sintered body
JPS60186473A (en) Silicon nitride sintered body and manufacture
JP2621192B2 (en) Manufacturing method of aluminum nitride sintered body
JPS6027655A (en) Silicon nitride sintered body and manufacture
JP3223205B2 (en) Method for producing silicon nitride reaction sintered body
JPS6385054A (en) Manufacture of silicon nitride reaction sintered body
JPS60200862A (en) Manufacture of sintered body constituting titanium nitride on surface and titanium nitride oxide in inside
JPS61291462A (en) Manufacture of sintered body comprising tianium oxonitride inside and titanium nitride on surface
JPH02157163A (en) Production of composite silicon nitride combined sintered body
JP2610156B2 (en) Method for producing silicon nitride powder
JPS63162513A (en) Production of silicon nitride
JPS6270267A (en) Producton of silicon nitride sintered body
JPS6385052A (en) Manufacture of silicon nitride reaction sintered body
JPS63162515A (en) Production of silicon nitride
JPH0791043B2 (en) Method for manufacturing silicon nitride