JPS6370543A - Processing for organic conductive layer - Google Patents

Processing for organic conductive layer

Info

Publication number
JPS6370543A
JPS6370543A JP61213974A JP21397486A JPS6370543A JP S6370543 A JPS6370543 A JP S6370543A JP 61213974 A JP61213974 A JP 61213974A JP 21397486 A JP21397486 A JP 21397486A JP S6370543 A JPS6370543 A JP S6370543A
Authority
JP
Japan
Prior art keywords
conductive layer
organic
film
organic conductive
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61213974A
Other languages
Japanese (ja)
Inventor
Kunihiro Sakai
酒井 邦裕
Takeshi Eguchi
健 江口
Harunori Kawada
河田 春紀
Yoshinori Tomita
佳紀 富田
Hiroshi Matsuda
宏 松田
Toshiaki Kimura
木村 稔章
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61213974A priority Critical patent/JPS6370543A/en
Priority to US07/099,345 priority patent/US4929524A/en
Priority to EP87308072A priority patent/EP0260152B1/en
Priority to DE3789585T priority patent/DE3789585T2/en
Publication of JPS6370543A publication Critical patent/JPS6370543A/en
Pending legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To obtain a processing method, by which a highly accurate and fine pattern can be easily formed without damaging the characteristics of an organic conductive layer, by a method wherein impurities which make conductivity lower or dissipate are implanted or diffused in desired places of the conductive layer of an electrical element having the organic conductive layer. CONSTITUTION:Impurities 9 which make a conductivity lower or dissipate are implanted or diffused in an organic conductive layer on a substrate 2, that is, desired regions 8 of the accumulated film 5 of monomolecular films consisting of an organic chargetransfer complex, through a desired pattern mask 10 and the low or non-conductive regions 8 are formed. As the impurities to be used, non-conductive materials having a good diffusivity are desirable, such as hydrogen, helium, nitrogen, oxygen, fluorine, neon and argon are useful. According to this method, as there is no need to destruct whatever the organic conductive layer on the substrate in the formation of a pattern, the pattern can be easily formed at an arbitrary region without exerting bad effect whatever except the region to be formed with the pattern. As a result, a highprecision and fine processing is possible.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は電気素子の加工方法に関し、更に詳しくは有機
導電層を有する電気素子の所望の部分に、容易に低導電
性あるいは非導電性領域を形成して導電層をパターン化
する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for processing an electric device, and more specifically, to easily fabricate a low conductivity or non-conductivity region in a desired portion of an electric device having an organic conductive layer. The present invention relates to a method of patterning a conductive layer by forming a conductive layer.

(従来の技術) 従来、種々のICや半導体等の電気素子が知られており
、これらの電気素子の機能部分の材料としては、殆どの
場合に無機物が使用されている。
(Prior Art) Conventionally, various electric elements such as ICs and semiconductors are known, and in most cases, inorganic substances are used as materials for the functional parts of these electric elements.

しかしながら、これらの電気素子について益々高右1度
化、高微細化、高集積化が要求される結果、半導体素子
等の機能部分の材料として取扱い容易で種類の多い導電
性有機物の利用が広く検討さねている。
However, as these electrical devices are increasingly required to have a higher degree of 1 degree, higher miniaturization, and higher integration, the use of conductive organic materials that are easy to handle and have a wide variety of types as materials for functional parts of semiconductor devices is being widely considered. I'm nestling.

導電性有機物の1種としては有機電荷移動錯体が知られ
ており、このような有機電荷移動錯体を任意の基板上に
均一な膜として形成する方法としては、ラングミュアら
が提案したラングミュア・プロジェット方法(LB法)
が知られている。
Organic charge transfer complexes are known as a type of conductive organic material, and a method for forming such organic charge transfer complexes as a uniform film on any substrate is the Langmuir-Prodget method proposed by Langmuir et al. Method (LB method)
It has been known.

このLB法によれば、1分子中に疎水性部位と親水性部
位とを’ITする有機電荷移動錯体の単分子膜またはそ
の累積膜を基板上に容易に形成することができる。この
ように形成された有機導電層は、電気的絶縁性の高い疎
水性部位と導電性の高い親水性部位とが平面状に多層に
重なり合っていることから、膜の水平方向では良好な導
電性を示し、且つ膜に垂直な方向では高い絶縁性を有す
るという導電性の異方性という特異な性質を有するもの
である。
According to this LB method, a monomolecular film or a cumulative film thereof of an organic charge transfer complex in which a hydrophobic site and a hydrophilic site are 'IT'ed in one molecule can be easily formed on a substrate. The organic conductive layer formed in this way has good electrical conductivity in the horizontal direction of the film because the hydrophobic regions with high electrical insulation and the hydrophilic regions with high conductivity overlap in a planar manner. It has the unique property of conductive anisotropy, which shows high insulating properties in the direction perpendicular to the film.

(発明が解決しようとしている問題点)上記の如き有機
導電層は層の面方向に対して非常に均一な導電性を有す
るものであり、種々の用途が期待されている。種々の電
気素子、例えば、電気回路等として使用する場合には、
それらの導電層を任意形状のパターンに微細加工するこ
とが必要である。このような微細加工方法としては、例
えば、上記の如き導電層を基板上にパターン状に形成お
よび成長させる方法が考えられているが、前記の如きL
ByAは水相上に展開した均一な単分子膜を基板上に移
す方法で形成されるため、かかるパターン状の膜形成は
未だ実用的な領域には達していない。
(Problems to be Solved by the Invention) The organic conductive layer as described above has extremely uniform conductivity in the plane direction of the layer, and is expected to have various uses. When used as various electric elements, such as electric circuits,
It is necessary to microfabricate these conductive layers into arbitrary-shaped patterns. As such a microfabrication method, for example, a method of forming and growing a conductive layer as described above in a pattern on a substrate has been considered.
ByA is formed by a method in which a uniform monomolecular film developed on an aqueous phase is transferred onto a substrate, so the formation of such a patterned film has not yet reached a practical level.

別の方法としては一旦形成したLB膜を後処理によって
パターン化する方法、例えば、膜の所望領域を除去する
エツチング方法が考えられでいるが、この方法は無機物
の化学的エツチングとは異なり、マスク材、マスク方法
、エツチング剤等の選定が困難であり、エツチング領域
以外の導電層までがエツチング剤により変質する恐れが
大であるという問題がある。特に、電気素子が高密度、
高集積度になればなる程このような微細加工が困難とな
り、そのために有機電荷移動錯体の単分子膜または累積
膜からなる層の優れた特性を生かすことができないとい
う問題がある。
Another method is to pattern the LB film once formed by post-processing, for example, an etching method that removes a desired region of the film, but this method differs from chemical etching of inorganic materials and uses a mask. There is a problem in that it is difficult to select materials, masking methods, etching agents, etc., and there is a great possibility that the conductive layer other than the etched area will be altered by the etching agent. In particular, electric elements are densely packed.
The higher the degree of integration, the more difficult such microfabrication becomes, which poses a problem in that it is not possible to take advantage of the excellent properties of a layer consisting of a monomolecular film or a cumulative film of an organic charge transfer complex.

従って、上記の如き導電性有機物からなる機能部分を有
する電気素子に、これらの層の特性を損なうことなく高
粒度且つ微細なパターンを容易に形成する加工方法が要
望されている。
Therefore, there is a need for a processing method that can easily form fine patterns with high grain size on electrical elements having functional parts made of conductive organic materials as described above, without impairing the characteristics of these layers.

(問題点を解決するための手段) 本発明者は上述の如き従来技術の要望に応えるへ〈鋭怠
研究の結果、導電性有機物かもなる導電層の精密性やそ
れらの特性を何ら損なうことなく容易に微細加工が可能
な方法を見い出した。
(Means for Solving the Problems) In order to meet the demands of the prior art as described above, the present inventors have conducted extensive research without impairing the precision of the conductive layer or its characteristics, which may also be a conductive organic material. We have discovered a method that allows easy microfabrication.

すなわち、本発明は、有機導電層を有する電気素子の導
電層の所望の箇所に導電性を低下または消失させる不純
物を注入あるいは拡散させることを特徴とする有機導電
層の加工方法である。
That is, the present invention is a method for processing an organic conductive layer, which is characterized by implanting or diffusing an impurity that reduces or eliminates conductivity into a desired location of a conductive layer of an electric element having an organic conductive layer.

次に本発明を更に詳細に説明する。Next, the present invention will be explained in more detail.

本発明において微細加工を施す電気素子は、一般的には
任意の基板上に導tE性の有機層を存する電気素子であ
り、特に本発明方法が効果的である′1゛「気素子は、
任意の基板上に有機電荷移動錯体の単分子1反またはそ
の累積膜を形成して得られる電気素子である。
The electrical device to be microfabricated in the present invention is generally an electrical device having a tE-conducting organic layer on an arbitrary substrate.
It is an electric element obtained by forming a single molecule of an organic charge transfer complex or a cumulative film thereof on an arbitrary substrate.

本発明で有機導電層の形成に使用する電荷移動錯体とは
、1分子内に親水性部位、疎水性部位および導電性部位
を有する化合物である。
The charge transfer complex used to form the organic conductive layer in the present invention is a compound having a hydrophilic site, a hydrophobic site, and a conductive site within one molecule.

このような条件を有する従来公知の電荷移動錯体はいず
れも本発明において使用できるが、本発明において好適
な化合物は、親水性部位が第4級アンモニウム基であり
、疎水性部位がアルキル基、アリール基、アルキルアリ
ール基等の疎水性炭化水素基であり、導電性部位がテト
ラシアノキノジメタン構造である電荷移動錯体である。
Any of the conventionally known charge transfer complexes having such conditions can be used in the present invention, but a compound suitable for the present invention has a hydrophilic moiety having a quaternary ammonium group and a hydrophobic moiety having an alkyl group or an aryl group. It is a charge transfer complex in which the electroconductive part is a hydrophobic hydrocarbon group such as a group or an alkylaryl group, and the conductive part is a tetracyanoquinodimethane structure.

上記電荷移動錯体として好ましい化合物は下記一般式(
I)で表わされる。
A preferable compound as the charge transfer complex is the following general formula (
I).

[A]  [TCNQ]n Xm  (I)例えば、下
記の化合物が挙げられる。
[A] [TCNQ]n Xm (I) Examples include the following compounds.

上記におけるRは、疎水性部位であり、アルキル基、ア
リール基またはアルキルアリール基であり、好ましいも
のは炭素数5〜30のアルキル基である。R1は、低級
アルキル基であり、nおよびqは0、lまたは2、mは
0または1であり、Xは臭素イオン等のハロゲンイオン
や過塩素酸イオンの如きアニオン基である。Yは酸素ま
たは硫黄である。
R in the above is a hydrophobic moiety, and is an alkyl group, an aryl group, or an alkylaryl group, and preferably an alkyl group having 5 to 30 carbon atoms. R1 is a lower alkyl group, n and q are 0, 1 or 2, m is 0 or 1, and X is an anion group such as a halogen ion such as a bromine ion or a perchlorate ion. Y is oxygen or sulfur.

以上の如き化合物は更に、アルキル基中に二重結合や三
重結合等の重合性基を有してもよく、また複素環上に1
個以上のアルキル基、アルケニル基、シアノ基、アルコ
キシ基、ハロゲン等の置換基を有し得るものである。
The above compounds may further have a polymerizable group such as a double bond or triple bond in the alkyl group, and may have a polymerizable group such as a double bond or triple bond on the heterocycle.
It may have one or more substituents such as an alkyl group, an alkenyl group, a cyano group, an alkoxy group, or a halogen.

またTCNQは下記式で表わされる化合物である。Moreover, TCNQ is a compound represented by the following formula.

上記式中のa −dの位置にはアルキル基、アルケニル
基、ハロゲン原子等の任意の置換基を有し得るものであ
る。
The a to d positions in the above formula may have arbitrary substituents such as an alkyl group, an alkenyl group, and a halogen atom.

本発明者は、以上の如き例示される化合物を包含する電
荷移動錯体について鋭意研究のところ、これらの電荷移
動錯体は公知の方法によって任、0の基板上に単分子膜
またはその累J+ffHAとして形成することが容易で
あり、且つこのような単分子膜またはその累積膜は、膜
の垂直方向に対しては高い絶縁性を有し且つ膜の水平方
向に対しては高い導電性をイrし、非常に優れた導電性
の異方性を示すことを知見した。
The present inventor has conducted intensive research on charge transfer complexes including the compounds exemplified above, and has found that these charge transfer complexes can be formed as a monomolecular film or a composite thereof on any substrate by a known method. In addition, such a monomolecular film or a cumulative film thereof has high insulating properties in the vertical direction of the film and high conductivity in the horizontal direction of the film. It was discovered that the material exhibits excellent anisotropy of conductivity.

本発明において、前記の電荷移動錯体を使用して、任意
の基板の表面に導電層を形成する好ましい方法は、前記
のLB法である。
In the present invention, a preferred method for forming a conductive layer on the surface of any substrate using the charge transfer complex is the LB method described above.

LB法は、例えば、前記の電荷移動錯体の如く分子内に
親水性部位と疎水性部位とを有する構造の分子において
、両者のバランス(両親媒性のバランス)が適度に保た
れている時、分子は水面上で親水性基を下に向けて単分
子の層になることを利用して単分子膜またはその累積膜
を作成する方法である。
In the LB method, for example, in a molecule having a structure having a hydrophilic site and a hydrophobic site in the molecule, such as the above-mentioned charge transfer complex, when the balance between the two (balance of amphiphilicity) is maintained appropriately, This is a method to create a monomolecular film or a cumulative film thereof by utilizing the fact that molecules form a monomolecular layer on the water surface with their hydrophilic groups facing downward.

水面上の単分子層は二次元系の特徴を有し、分子がまば
らに散開しているときは、一分子当り面&7Aと表面圧
πとの間に二次元理想気体の式、πA=にT が成り立ち、“気体膜”となる。ここに、Kはボルツマ
ン定数、Tは絶対温度である。Aを十分小さくすれば分
子間相互作用が強まり、−次元固体の“凝縮膜(または
固体膜)”になる。凝縮膜はガラスや樹脂の如き種々の
材質や形状を有する任意の物体の表面へ一層ずつ移すこ
とができる。この方法を用いて、前記の電荷移動錯体か
ら単分子膜またはその累積膜を形成し、これを電気素子
用の導電層として使用することができる。
A monomolecular layer on the water surface has the characteristics of a two-dimensional system, and when the molecules are sparsely dispersed, the two-dimensional ideal gas equation, πA=, is expressed between the surface &7A per molecule and the surface pressure π. T holds true and becomes a “gas film”. Here, K is Boltzmann's constant and T is absolute temperature. If A is made sufficiently small, the intermolecular interaction becomes stronger, resulting in a -dimensional solid "condensed film (or solid film)". The condensed film can be transferred layer by layer onto the surface of arbitrary objects having various materials and shapes, such as glass and resin. Using this method, a monolayer or a cumulative film thereof can be formed from the charge transfer complex and used as a conductive layer for an electrical device.

具体的な製法としては、例えば、以下に示す方法を挙げ
ることができる。
As a specific manufacturing method, for example, the method shown below can be mentioned.

所望の電荷移動錯体をクロロホルム、ベンゼン、アセト
ニトリル等の溶剤に溶解させる。次に添付図面の第1図
に示す如き適当な装置を用いて、電荷移動錯体の溶液な
水相1上に展開させて電荷移動錯体を膜状に形成させる
The desired charge transfer complex is dissolved in a solvent such as chloroform, benzene, acetonitrile, etc. Next, using a suitable apparatus as shown in FIG. 1 of the accompanying drawings, the charge transfer complex is spread on the aqueous phase 1, which is a solution of the charge transfer complex, to form a charge transfer complex in the form of a film.

次にこの展開層が水相上を自由に拡散して広がりすぎな
いように仕切板(または浮子)3を設け、展開面積を制
限して膜物質の集合状態を制御し、その集合状態に比例
した表面圧πを得る。この仕切板3を動かし、展開面積
を縮小して膜物質の集合状態を制御し、表面圧を徐々に
上昇させ、膜の製造に適する表面圧πを設定することが
できる。この表面圧を維持しながら、静かに清浄な基板
2を垂直に上昇または下降させることにより電荷移動錯
体の単分子膜が基板2上に移し取られる。このような単
分子膜は第2a図または第2b図に模式的に示す如く分
子が秩序正しく配列した膜である。
Next, a partition plate (or float) 3 is provided to prevent this spread layer from spreading freely on the water phase and spreading too much, and by limiting the spread area, the state of aggregation of the membrane material is controlled, and it is proportional to the state of aggregation. Obtain the surface pressure π. By moving the partition plate 3, the developed area can be reduced to control the aggregation state of the membrane material, and the surface pressure can be gradually increased to set the surface pressure π suitable for membrane production. While maintaining this surface pressure, the monomolecular film of the charge transfer complex is transferred onto the substrate 2 by gently raising or lowering the clean substrate 2 vertically. Such a monomolecular film is a film in which molecules are arranged in an orderly manner as schematically shown in FIG. 2a or 2b.

電荷移動錯体の単分子膜は以上で製造されるが、前記の
操作を繰り返すことにより所望の累h1数の累積膜が形
成される。電荷移動錯体の単分子膜を基板上に移すには
、上述した垂直浸漬法の他、水平付着法、回転円筒法等
の方法でも可能である。
A monomolecular film of the charge transfer complex is manufactured as described above, and by repeating the above operations, a cumulative film having a desired cumulative number h1 is formed. To transfer the monomolecular film of the charge transfer complex onto the substrate, other than the above-mentioned vertical dipping method, methods such as horizontal deposition method and rotating cylinder method can also be used.

水平付着法は、基板を水面に水平に接触させて単分子膜
を移しとる方法であり、回転円筒法は円筒形の基板を水
面上を回転させて単分子膜を基板表面に移しとる方法で
ある。
The horizontal deposition method is a method in which a monomolecular film is transferred by bringing the substrate into horizontal contact with the water surface, and the rotating cylinder method is a method in which a cylindrical substrate is rotated above the water surface to transfer the monomolecular film onto the substrate surface. be.

前述した垂直浸漬法では、表面が親水性である基板を水
面を横切る方向に水中から引き上げると電荷移動錯体の
親水性基が基板側に向いた電荷移動錯体の単分子膜が基
板上に形成される(第2b図)。前述のように基板を上
下させると、各行程ごとに一枚ずつ単分子膜が積み重な
フて累M膜が形成される。製膜分子の向きが引上行程と
浸漬行程で逆になるので、この方法によると単分子膜の
各層間は電荷移動錯体の疎水基と疎水基が向かいあうY
型膜が形成される(第3a図)。これに対し、水平付着
法は、電荷移動錯体の疎水性基が基板側に向いた単分子
膜が基板上に形成される(第2a図)。この方法では、
単分子膜を累積しても製膜分子の向きの交代はなく全て
の層において、疎水性基が基板側に向いたX型膜が形成
される(第3b図)。反対に全ての層において親水性基
が基板側に向いた累積膜はZ型膜と呼ばわる(第3c図
)。
In the vertical immersion method described above, when a substrate with a hydrophilic surface is lifted out of water in a direction across the water surface, a monomolecular film of the charge transfer complex is formed on the substrate with the hydrophilic groups of the charge transfer complex facing the substrate. (Figure 2b). When the substrate is moved up and down as described above, a stacked M film is formed by stacking one monomolecular film at each step. Since the direction of the film-forming molecules is reversed during the pulling process and the dipping process, according to this method, between each layer of the monolayer, the hydrophobic groups of the charge transfer complex face each other.
A mold film is formed (FIG. 3a). In contrast, in the horizontal deposition method, a monomolecular film with the hydrophobic groups of the charge transfer complex facing the substrate is formed on the substrate (FIG. 2a). in this way,
Even when monomolecular films are accumulated, there is no change in the direction of the film-forming molecules, and an X-shaped film is formed in which the hydrophobic groups face the substrate in all layers (FIG. 3b). On the other hand, a cumulative film in which the hydrophilic groups in all layers face the substrate side is called a Z-type film (Figure 3c).

単分子膜を基板上に移す方法は、上記方法に限定される
わけではなく、大面積基板を用いる時には、ロールから
水相中に基板を押し出していく方法なども採り得る。ま
た、前述した親水性基および疎水性基の基板への向きは
原則であり、基板の表面処理等によって変えることもで
きる。
The method of transferring the monomolecular film onto the substrate is not limited to the above method, and when using a large-area substrate, a method of extruding the substrate from a roll into an aqueous phase may also be adopted. Further, the directions of the hydrophilic groups and hydrophobic groups described above toward the substrate are in principle, and can be changed by surface treatment of the substrate, etc.

以上の如くして前記電荷移動錯体の単分子膜またはその
累積膜からなる導電層が基板上に形成される。
As described above, a conductive layer consisting of a monomolecular film of the charge transfer complex or a cumulative film thereof is formed on the substrate.

本発明において、上記の如き電荷移動錯体の単分子膜ま
たはその累積膜からなる有機導電層を形成するための基
板は、金属、ガラス、セラミックス、プラスチック材料
等いずれの材料でもよく、更に耐熱性の著しく低い生体
材料も使用できる。
In the present invention, the substrate for forming an organic conductive layer consisting of a monomolecular film of a charge transfer complex or a cumulative film thereof as described above may be made of any material such as metal, glass, ceramics, or plastic material. Significantly lower biomaterials can also be used.

金属の如き導電性材料も使用できるのは、上述の通り、
単分子膜または累積膜が膜に垂直な方向では十分な絶縁
性を有していることによる。
As mentioned above, conductive materials such as metals can also be used.
This is because the monomolecular film or the cumulative film has sufficient insulating properties in the direction perpendicular to the film.

上記の如き基板は、任意の形状でよく、平板状であるの
が好ましいが、平板に何ら限定されない。すなわち本発
明においては、基板の表面がいかなる形状であってもそ
の形状通りに膜を形成し得る利点を有するからである。
The above-mentioned substrate may have any shape, preferably a flat plate, but is not limited to a flat plate at all. That is, the present invention has the advantage that a film can be formed in accordance with any shape of the surface of the substrate.

以上の如くして基板上に形成された有機導電層を微細加
工する好ましい方法は、第4図示の如く、基板2上の有
機導電層すなわち打機電荷移動錯体の単分子膜の累積膜
5の所望の領域8中に導電性を低下あるいは消失させる
不純物9を所望のパターンマスク10を通して注入また
は拡散させて低あるいは非導電性領域8を形成する方法
である。使用する不純物としては、拡散性の良好な非導
電性材料が好ましく、例えば、水素、ヘリウム、窒素、
酸素、フッ素、ネオン、アルゴン等が有用であり、特に
アルゴン、ネオン、酸素、フッ素が好ましい。これらの
不純物を有機導電層中に注入あるいは拡散させる方法と
しては、稚々の方法があるが、好適な方法としてイオン
注入方法がある。
A preferred method for microfabrication of the organic conductive layer formed on the substrate as described above is as shown in FIG. This is a method of forming a low or non-conductive region 8 by implanting or diffusing an impurity 9 into the desired region 8 through a desired pattern mask 10 to reduce or eliminate the conductivity. The impurity used is preferably a non-conductive material with good diffusivity, such as hydrogen, helium, nitrogen,
Oxygen, fluorine, neon, argon and the like are useful, with argon, neon, oxygen and fluorine being particularly preferred. Although there are various methods for injecting or diffusing these impurities into the organic conductive layer, an ion implantation method is a suitable method.

イオン注入方法は、目的とする元素を真空中でイオン化
して、イオンを必要なエネルギーまで静電的に加速して
、ターゲット(目的物)に打ち込む方法であるが、熱拡
散方法等では注入することができない不純物をも注入す
ることができ、また微細加工にも適しているという特徴
を有する。
The ion implantation method involves ionizing the target element in a vacuum, electrostatically accelerating the ions to the required energy, and then implanting them into the target (target object). It also has the characteristics of being able to implant impurities that cannot be implanted, and being suitable for microfabrication.

更にかかる方法は、半導体製造技術として充分確立され
ており、信頼性も高く装置の取扱いも容易で生産性も高
い。またプロセス自体も室温で行うことができ有機材料
に極めて好適な方法の1つと云える。
Furthermore, this method is well established as a semiconductor manufacturing technology, and has high reliability, easy handling of the device, and high productivity. Furthermore, the process itself can be carried out at room temperature, and can be said to be one of the methods extremely suitable for organic materials.

注入イオンとしては、例えば、先に挙げた不純物例は全
て通用可能であり、中でもアルゴン等の不活性ガスはそ
の取扱いも容易で且つ効果も大きい。また逆に酸素やフ
ッ素の活性種も膜構成分子と直接反応し導電性を大きく
低下しつる点から優位性が高い。
As the implanted ions, for example, all of the impurity examples mentioned above can be used, and among them, inert gas such as argon is easy to handle and has a large effect. On the other hand, active species such as oxygen and fluorine are also highly advantageous because they directly react with membrane constituent molecules, greatly reducing conductivity and causing a drop.

以上、例示の方法は代表的な方法であり、上記と同様な
効果を奏する方法はいずれも本発明において利用できる
ものである。
The methods described above are typical methods, and any method that provides the same effects as those described above can be used in the present invention.

また、本発明においては、使用した電荷移動錯体が重合
性基を有する場合には、上記の如く膜を形成後、微細加
工を施す前あるいは施した後にこれらの膜を重合硬化さ
せ、膜強度を著しく向上させることもできる。
In addition, in the present invention, when the charge transfer complex used has a polymerizable group, after forming the film as described above, and before or after microfabrication, these films are polymerized and hardened to increase the film strength. It can also be significantly improved.

(作用・効果) 以上の如き本発明によれば、有機導電層を微細加工する
にあたり、特に高い温度の加熱工程を要しないため、使
用する基板は、有機物、無機物、生体等何等限定されず
、任意の基板を使用することができる。
(Operations/Effects) According to the present invention as described above, since a heating process at a particularly high temperature is not required for microfabrication of an organic conductive layer, the substrate used is not limited to organic materials, inorganic materials, living organisms, etc. Any substrate can be used.

また、本発明方法によれば、パターンの形成にあたり、
基板上の有機導電層を何ら破壊する必要がないので、パ
ターンを形成すべき領域以外に何ら悪影響を与えること
なく、任意の領域に容易にパターンを形成することがで
きるので、高微細加工が可能であり、優れた電気的特性
を有する電気素子が再現性良く容易に提供することが可
能となった。
Further, according to the method of the present invention, when forming a pattern,
Since there is no need to destroy the organic conductive layer on the substrate, patterns can be easily formed in any area without any adverse effects on areas other than the area where the pattern is to be formed, allowing for highly fine processing. Therefore, it has become possible to easily provide electric elements with excellent electrical characteristics with good reproducibility.

以上の点から、本発明によれば、本発明方法による電気
素子は従来の高密度電気素子としては勿論、生体を利用
するバイオエレクトロニクスの素子としても大いに期待
できるものである。
From the above points, according to the present invention, the electric device produced by the method of the present invention can be highly expected not only as a conventional high-density electric device but also as a bioelectronic device that utilizes living organisms.

次に実施例を挙げて本発明を更に具体的に説明する。Next, the present invention will be explained in more detail with reference to Examples.

実施例1 上記の電荷移動錯体をベンゼン−アセトニトリル(容量
比1:1)混合溶媒に1 mg/ m J!の濃度で溶
解した後、にH(:OsでpH6,8に調整されたCd
Cl2 vA度4X10−’mol/ffi、水Qt 
7℃の水相上に展開した。
Example 1 The above charge transfer complex was added to a mixed solvent of benzene-acetonitrile (volume ratio 1:1) at 1 mg/mJ! After dissolving at a concentration of Cd, the pH was adjusted to 6,8 with H(:Os).
Cl2 vA degree 4X10-'mol/ffi, water Qt
Developed on aqueous phase at 7°C.

溶媒のアセトニトリルとベンゼンとを蒸発除去した後、
表面圧を20dyne/cmまで高め単分子膜を形成し
た。表面圧を一定に保ちながら、予め1010X30の
矩形に切り出したイントリンシック(i型)シリコンウ
ェハを基板とし、水面を横切る方向に速度15a+m1
0+in、で静かに基板を201111程浸漬した後、
続いて速度10wIII/win、で静かに引き上げ2
層の単分子膜を累積した。以上の累積操作を再度繰返し
単分子膜の″A禎膜を基板上に作成した。
After removing the solvents acetonitrile and benzene by evaporation,
The surface pressure was increased to 20 dyne/cm to form a monomolecular film. While keeping the surface pressure constant, an intrinsic (i-type) silicon wafer cut out in advance into a 1010x30 rectangle was used as a substrate, and the speed was 15a+m1 in the direction across the water surface.
After gently immersing the board at 0+in for about 201111 minutes,
Next, gently pull up at speed 10wIII/win 2
A monolayer of layers was accumulated. The above cumulative operation was repeated again to form a monomolecular film "A" on the substrate.

更に公知の方法により導電塗料(銀ペースト)を用いて
第4図に示す様なストライプ状の1対の外部接続電極1
1を形成した。このとき電極の巾20101、長さ10
1!lfl!、電極間隔2Il111とした。次に、こ
の状!息で該素子の電流電圧特性を測定しシート抵抗ρ
Sを求めたところ、240にΩ/口であった。更にニッ
ケルパーマロイ製のマスク10を用いて膜の所望の領域
8にlXl0”/cm’のアルゴン9をイオン注入した
。このとき加速電圧は150KeVとし、また、基板温
fflは室温とした。
Furthermore, a pair of external connection electrodes 1 in a stripe shape as shown in FIG.
1 was formed. At this time, the width of the electrode is 20101, the length is 10
1! lfl! , the electrode spacing was 2Il111. Next, this situation! Measure the current-voltage characteristics of the element with breath and calculate the sheet resistance ρ
When S was determined, it was 240Ω/mouth. Further, using a mask 10 made of nickel permalloy, argon 9 was ion-implanted at a concentration of 1X10''/cm' into a desired region 8 of the film. At this time, the acceleration voltage was set to 150 KeV, and the substrate temperature ffl was set to room temperature.

尚、マスク10のスリット12同士の間隔は5mmとし
たため、アルゴンイオンを打込んだ領域8の面積は電極
にはさまれた面積全体の%であった。
Incidentally, since the interval between the slits 12 of the mask 10 was 5 mm, the area of the region 8 into which argon ions were implanted was % of the total area sandwiched between the electrodes.

更にもう一度電流電圧特性測定からρSを求めたところ
490にΩ/口であった。これは先に求めた値のほぼ2
倍であり、イオン注入により所望の領域(ここでは電極
間の導電路の局)の導電性を消去できたことを示してい
る。
Furthermore, when ρS was determined by measuring the current-voltage characteristics once again, it was found to be 490Ω/mouth. This is approximately 2 of the value found earlier.
This shows that the conductivity of the desired region (here, the location of the conductive path between the electrodes) could be eliminated by ion implantation.

実施例2 実施例1と全く同じ方法で基板上にビス・テトラシアノ
キノジメタンドコシルビリジニウムの単分子累積膜を作
成し、その上にストライブ状の電極を形成した。このと
き電流電圧特性からρSは240にΩ/口であった。
Example 2 A monomolecular cumulative film of bis-tetracyanoquinodimethandocylviridinium was prepared on a substrate in exactly the same manner as in Example 1, and a striped electrode was formed thereon. At this time, ρS was 240Ω/mouth based on the current-voltage characteristics.

次に電極間の導電路の部分を覆う様に5iNtl膜をグ
ロー放電法により10nmの厚みに形成した。更に、こ
の膜に対し上方から加速電圧200KeVのアルゴンイ
オンを5X1016/crn”の量で照射を室温で行っ
た。照射領域は電極間の導電路領域の%であり、実施例
1と同じマスクを用いた。以上の様にして得た試料のρ
Sを再び求めたところ460にΩ/口であ7た。
Next, a 5iNtl film was formed to a thickness of 10 nm by a glow discharge method so as to cover the conductive path between the electrodes. Furthermore, this film was irradiated from above with argon ions at an acceleration voltage of 200 KeV in an amount of 5 x 1016/crn'' at room temperature.The irradiation area was % of the conductive path area between the electrodes, and the same mask as in Example 1 was used. The ρ of the sample obtained as above was used.
When I calculated S again, I found it to be 460Ω/mouth.

一方、該試料に対する2次イオン質量分析による解析か
らアルゴンイオン領照領域ではイオンビームミキシング
が生じて5iNH1pQの構成原子(Si、N、tl)
が単分子累積膜中に拡散していることがわかった。ρS
の増加はこれらの不純物の拡散によるものであり、その
増加の度合(約2倍)はイオン照射領域の割合に逆比例
したものであるといえる。
On the other hand, analysis of the sample by secondary ion mass spectrometry shows that ion beam mixing occurs in the argon ion irradiation region, and the constituent atoms of 5iNH1pQ (Si, N, tl)
was found to be diffused into the monomolecular cumulative film. ρS
The increase is due to the diffusion of these impurities, and it can be said that the degree of increase (approximately twice) is inversely proportional to the ratio of the ion irradiation area.

実施例3 実施例1で示した方法で20X30nmのi型シリコン
ウェハ上に4層のビステトラシアノキノジメタンドコシ
ルビリジニウムの四分子累積膜を形成した。更に試料の
中央付近の方形の領域(5層5m+s)を残し、他の領
域に150にeVの加速電圧でアルゴンイオンをlXl
016/crn’の照射量で注入した。
Example 3 A four-layer cumulative film of bis-tetracyanoquinodimethandocylviridinium was formed on a 20×30 nm i-type silicon wafer by the method described in Example 1. Furthermore, leaving a rectangular area (5 layers 5m+s) near the center of the sample, argon ions were added to the other area at an accelerating voltage of 150 eV.
The injection was performed at a dose of 016/crn'.

更に第5図に示す様に方形の未注入領域13の角隅に直
径2〜3m+aφの電極13〜16を銀ペーストを用い
て公知の方法で形成した0次に2つの電極13および1
4間に直流電圧Vを印加し、このとき残りの2電8i1
5および16間に流れる電流Iを求め、この値からva
n der Pauw230 にΩ/口という値を得た
Further, as shown in FIG. 5, two electrodes 13 and 1 having a diameter of 2 to 3 m+aφ are formed at the corners of the rectangular unimplanted region 13 using a known method using silver paste.
Apply DC voltage V between 4, and at this time, the remaining 2 electric currents 8i1
Find the current I flowing between 5 and 16, and from this value va
A value of Ω/mouth was obtained for n der Pauw230.

以上の様にして、 ylll der Pau冑法によ
りρSやホール定数を求める方法は非常に簡便なもので
シリコンを始めとする無機半導体では良く用いられてい
るものである。
As described above, the method of determining ρS and the Hall constant by the Yll der Pau method is very simple and is often used in inorganic semiconductors such as silicon.

本実施例は、測定試料用に形状を加工する方法として不
純物注入を適用したことで、有機薄膜で該測定法を容易
に実現したものである。
In this example, impurity implantation is applied as a method for processing the shape of a measurement sample, thereby easily realizing the measurement method using an organic thin film.

実施例4〜8 下記第1表に示す様に、数種の電荷移動錯体に関し、実
施例1と同様にして、基板上に単分子膜を累積し、更に
不純物をイオン注入する前後での膜のシート抵抗を測定
した。それらの結果も下記第1表中に示す(注入@後の
シート抵抗の比率を示した)。また、このとき基板、注
入不純物種も実施例1とは異なるものを用いたので、併
せて第1表中に示す。イオン注入時の加速電圧は100
にeVとし、注入量はいずれも10 ”/ c rn”
とした。
Examples 4 to 8 As shown in Table 1 below, a monomolecular film was accumulated on a substrate in the same manner as in Example 1 regarding several types of charge transfer complexes, and the film was formed before and after ion implantation of impurities. The sheet resistance was measured. The results are also shown in Table 1 below (indicating the ratio of sheet resistance after implantation). Further, since the substrate and implanted impurity species were different from those in Example 1, they are also shown in Table 1. The acceleration voltage during ion implantation is 100
eV, and the implantation dose was 10"/crn" in both cases.
And so.

γ)  1  コー X施例A 並行移勉葡襲    (2) 注フ(不jL物   0゜ 哉−一一一一へ   ポリカーボネート2二]」貝心)
ル  2.0 X施例j 進且捗力別罫    (2) 江」(杢][物   F″− 五一−−−墓   PETフィルム 之:」」尼餡へル  1.9 XA例j 皿丑庄防匝胚    (3) 注フ(不」L物   H” 基−−−−玉   Siウェハ l二Σ工且凶批  1,4 災施到1 皿丑庄立盟#   (3) e    Ar” 歴−一−−丘   Siウェハ 之二Σ抵韮Ω几  1,8 叉五例旦 皿ユ■防苅卦   (4) 1込、lL肋   Ar“ 仄−一−−糎   Siウェハ ヱニ五抵皿辺此  2・ O
γ) 1 Cor.
Le 2.0 Ushisho Bosho Embryo (3) Annotation (Fu” L thing H” Base---Jade Si wafer l2Σengineering and evil criticism 1,4 Disaster delivery 1 Plate Ushisho Rimei # (3) e Ar” history -1--Hill Si wafer No. 2 Σ resistance Ω 几 1, 8 叉5例田板yu■ 蒅卦 (4) 1 incl., lL rib Ar" 2. O

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の電気素子の導電層を形成する方法を図
解的に示す図である。第2図は単分子膜の模式図であり
、第3図は累積膜の模式図である。第4〜5図は、本発
明の電気素子の加工方法を図解的に示す。 1;水相 2;基板 3:浮子 4;fit分子膜 5:累積膜 6;親水性部位(導電性部位) 7:疎水性部位 8:注入領域 9;不純物 10:マスク 11:電極 12ニスリツト 13〜16;電極 出 願 人  キャノン株式会社 第1図 第2&図 第2b図 第Ja図 第3b図 第4図 第5図 1に
FIG. 1 is a diagram schematically showing a method of forming a conductive layer of an electric element of the present invention. FIG. 2 is a schematic diagram of a monomolecular film, and FIG. 3 is a schematic diagram of a cumulative film. 4 and 5 schematically show the method of processing an electric element of the present invention. 1; Water phase 2; Substrate 3: Float 4; Fit molecular film 5: Cumulative film 6; Hydrophilic site (conductive site) 7: Hydrophobic site 8: Injection region 9; Impurity 10: Mask 11: Electrode 12 Nislit 13 ~16; Electrode applicant: Canon Co., Ltd. Figure 1 Figure 2 & Figure 2b Figure Ja Figure 3b Figure 4 Figure 5 Figure 1

Claims (6)

【特許請求の範囲】[Claims] (1)有機導電層を有する電気素子の導電層の所望の箇
所に導電性を低下あるいは消失させる不純物を注入ある
いは拡散させることを特徴とする有機導電層の加工方法
(1) A method for processing an organic conductive layer, which comprises injecting or diffusing an impurity that reduces or eliminates conductivity into a desired location of a conductive layer of an electric element having an organic conductive layer.
(2)有機導電層が、異方性導電層である特許請求の範
囲第(1)項に記載の有機導電層の加工方法。
(2) The method for processing an organic conductive layer according to claim (1), wherein the organic conductive layer is an anisotropic conductive layer.
(3)有機導電層が1分子中に疎水性部位、親水性部位
および導電性部位を有する有機電荷移動錯体の単分子膜
あるいはその累積膜である特許請求の範囲第(1)項に
記載の有機導電層の加工方法。
(3) The organic conductive layer according to claim (1), wherein the organic conductive layer is a monomolecular film of an organic charge transfer complex having a hydrophobic site, a hydrophilic site, and a conductive site in one molecule or a cumulative film thereof. Processing method of organic conductive layer.
(4)有機電荷移動錯体が第4級アンモニウム化合物と
テトラシアノキノジメタンとの錯体である特許請求の範
囲第(1)項に記載の有機導電層の加工方法。
(4) The method for processing an organic conductive layer according to claim (1), wherein the organic charge transfer complex is a complex of a quaternary ammonium compound and tetracyanoquinodimethane.
(5)不純物がアルゴン、ネオン、酸素またはフッ素で
ある特許請求の範囲第(1)項に記載の有機導電層の加
工方法。
(5) The method for processing an organic conductive layer according to claim (1), wherein the impurity is argon, neon, oxygen, or fluorine.
(6)不純物の注入あるいは拡散方法が、イオン注入方
法である特許請求の範囲第(1)項に記載の有機導電層
の加工方法。
(6) The method for processing an organic conductive layer according to claim (1), wherein the impurity implantation or diffusion method is an ion implantation method.
JP61213974A 1986-09-12 1986-09-12 Processing for organic conductive layer Pending JPS6370543A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61213974A JPS6370543A (en) 1986-09-12 1986-09-12 Processing for organic conductive layer
US07/099,345 US4929524A (en) 1986-09-12 1987-09-10 Organic photo conductive medium
EP87308072A EP0260152B1 (en) 1986-09-12 1987-09-11 Organic conductive medium
DE3789585T DE3789585T2 (en) 1986-09-12 1987-09-11 Leading organic structure.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61213974A JPS6370543A (en) 1986-09-12 1986-09-12 Processing for organic conductive layer

Publications (1)

Publication Number Publication Date
JPS6370543A true JPS6370543A (en) 1988-03-30

Family

ID=16648147

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61213974A Pending JPS6370543A (en) 1986-09-12 1986-09-12 Processing for organic conductive layer

Country Status (1)

Country Link
JP (1) JPS6370543A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261781A (en) * 1987-03-24 1988-10-28 コミツサリア タ レネルジー アトミーク Method of forming conducting band and conducting circuit and electronic component
JP2006337782A (en) * 2005-06-03 2006-12-14 Pentax Corp Finder device for single lens reflex camera

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63261781A (en) * 1987-03-24 1988-10-28 コミツサリア タ レネルジー アトミーク Method of forming conducting band and conducting circuit and electronic component
JP2006337782A (en) * 2005-06-03 2006-12-14 Pentax Corp Finder device for single lens reflex camera

Similar Documents

Publication Publication Date Title
DE68913220T2 (en) Switch device and method for its manufacture.
US7351313B2 (en) Production device and production method for conductive nano-wire
Mann Electrical properties of thin polymer films. Part I. Thickness 500–2500 Å
Geddes et al. The electrical properties of metal‐sandwiched Langmuir–Blodgett multilayers and monolayers of a redox‐active organic molecular compound
CN106061894A (en) Floating evaporative assembly of aligned carbon nanotubes
EP0260152B1 (en) Organic conductive medium
Rechmann et al. Surface functionalization of oxide-covered zinc and iron with phosphonated phenylethynyl phenothiazine
DE69333226T2 (en) ELECTRONIC CIRCUIT IN THE NANO AREA AND METHOD FOR THE PRODUCTION THEREOF
US4835083A (en) Method for patterning electroconductive film and patterned electroconductive film
Moon et al. High‐Speed Operation of Electrochemical Logic Circuits Depending on 3D Construction of Transistor Architectures
JPS6370543A (en) Processing for organic conductive layer
WO2018048742A1 (en) Method for lithographic patterning of sensitive materials
Hwang et al. Multilevel non-volatile data storage utilizing common current hysteresis of networked single walled carbon nanotubes
JPS62222669A (en) Organic thin-film element
Troitsky et al. Langmuir–Blodgett assemblies with patterned conductive polyaniline layers
Shutt et al. Poly (diacetylene) salts as thin-film dielectrics in metal-Langmuir film-semiconductor devices
Jang et al. Electrical characteristics of benzenedithiol versus methylbenzenthiol self-assembled monolayers in multilayer graphene-electrode molecular junctions
RU2106041C1 (en) Tunnel device manufacturing process
JPH0638415B2 (en) Organic conductive medium and manufacturing method thereof
JPH02215173A (en) Switching element and manufacture thereof
Tans et al. Electronic transport in monolayers of phthalocyanine polymers
JPS62279866A (en) Organic wiring body
Troitsky et al. Macroscopic conductance in Langmuir–Blodgett bilayers of charge-transfer salts
JPS62269775A (en) Organic electrically conductive medium and its formation
Nilsson Hole transport layers in organic solar cells: A study of work functions in nanofilms