JPS6358111A - Tuning fork type piezo-electric angular velocity sensor - Google Patents

Tuning fork type piezo-electric angular velocity sensor

Info

Publication number
JPS6358111A
JPS6358111A JP61202261A JP20226186A JPS6358111A JP S6358111 A JPS6358111 A JP S6358111A JP 61202261 A JP61202261 A JP 61202261A JP 20226186 A JP20226186 A JP 20226186A JP S6358111 A JPS6358111 A JP S6358111A
Authority
JP
Japan
Prior art keywords
angular velocity
axis
tuning fork
frequency
natural frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61202261A
Other languages
Japanese (ja)
Inventor
Junichi Kawamura
河村 淳一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP61202261A priority Critical patent/JPS6358111A/en
Publication of JPS6358111A publication Critical patent/JPS6358111A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gyroscopes (AREA)

Abstract

PURPOSE:To obtain an output signal of a detecting section which develops no undesired Y-axis low frequency vibration during the rotation of a sensor, by adjusting dimensions of parts of a tuning fork so as to set the Y-axis natural frequency higher than the X-axis drive frequency. CONSTITUTION:Piezo-electric plates 8 and 8' are driving are lined on the sides of detecting sections 2 and 2' of a tuning fork type vibrator 1. Then, when an AC voltage is applied between drive electrodes 8a and 8a' and 8b and 8b' separately, the detecting sections 2 and 2' to develop bending vibration in the X-axis. When a rotary angular velocity OMEGA is given around the Z-axis together with the X-axis drive at the same frequency as the X-axis natural frequency, the detecting sections 2 and 2' also to generate bending vibration in the Y-axis. On the other hand, the vibrator 1 is so formed that the X-axis natural frequency becomes less than the Y-axis natural frequency. With such an arrangement, in an output waveform after passing through a bandpass filter of a sensor, the difference V-Vc is proportional to the angular velocity OMEGA as obtained between the amplitude Vc with the sensor at rest and the amplitude V when a fixed angular velocity is given. As only the drive frequency is developed in the waveform, the angular velocity signal is demodulated easily with a detector.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は圧電体を用いた角速曵ケンリーに関づるもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to an angular velocity generator using a piezoelectric material.

従来の技術 角速度を測定するジャイロの種類には回転形ど振動形の
ジトイロがある。前者は高性能だが部品点数が多く、高
精度の加工が要求され高価である。
Conventional gyros for measuring angular velocity include rotational and vibrating gyros. The former has high performance, but has a large number of parts, requires high-precision processing, and is expensive.

後者は形状1寸法9重闇等が小さく、構造が簡単で安価
だが要求性能の面ではまだまだ不十分であり、性能の向
上が望まれている。
The latter has a small shape, dimensions, 9 layers, etc., a simple structure, and is inexpensive, but it is still insufficient in terms of required performance, and improvements in performance are desired.

振動形ジャイロは振動物体に角速度をIうえるとコリA
りの力を生じることを応用したものである。
A vibrating gyro produces stiffness A when the angular velocity is increased to I on a vibrating object.
This is an application of the ability to generate force.

この種ジャイロの角速度廿ンリー主要部には各種形式の
振動子が用いられ、その種類や構造については種々のも
のが考案されている。例えば、米国特酌第2,544,
646号明細書のように、2枚の里根状の圧電体が互い
に直角をなすように端部で直交突合わせ接合した形の振
動子を用いるものヤ)、同じく第2,513,340号
明細書のJ、うに音叉形振動子を用いるもの等がある。
Various types of oscillators are used in the main part of this type of gyro to control the angular velocity, and various types and structures have been devised. For example, U.S. Special Consideration No. 2,544,
As in Specification No. 646, a vibrator in which two root-shaped piezoelectric bodies are orthogonally butt-joined at their ends so as to form a right angle to each other is used), and also in Specification No. 2,513,340 There is also one that uses a uni-shaped tuning fork vibrator.

一般に音叉形振動子は連成振動と呼ばれる現象によって
両アームとも比較的安定な共振周波数と振幅を保持しや
すく、振動形の角速度セン4ノーに使用づるには好都合
である。
In general, a tuning fork type vibrator can easily maintain a relatively stable resonance frequency and amplitude in both arms due to a phenomenon called coupled vibration, and is convenient for use in a vibrating angular velocity sensor.

第4図は一般的な音叉形振動子の振動姿態な示寸概略図
で、同図(イ)、(ロ)、<ハ)の3通りの方法で振動
し1qる。
FIG. 4 is a schematic diagram showing the vibration state of a general tuning fork-shaped vibrator.

このような音叉形振動子を角速度センサーに用いる場合
を同図に従って説明する。
The case where such a tuning fork-shaped vibrator is used in an angular velocity sensor will be explained with reference to the same figure.

音叉のアーム部を適当な駆動手段、例えば側面(W而)
に駆動用圧電板を接着しく図示せず)、第4図(、イ)
に示寸如くX軸方向に両アームが互いに反対方向へ屈曲
するように励振させる。このときの駆vノ周波数はアー
ムの幅Wと長さaにJ:っ(決まる固有振動数と同じに
づる。この状態で7軸J、わりに回転角迷電Ωを与える
と、第4図(ロ)に示す如く、アーム部はコリオリの力
Fcを受けてY軸方向にも屈曲振動づる。この振動姿態
はア・−ムの厚さtど長さaによって決まる固有振動数
を右しているが、実際に角速度Ωを15えた場合のYi
1111方向への振動周波数は駆動周波数に等しくなる
。またアームのY軸方向への振幅は与えられた角速度Ω
に比例するから、適当な検知手段、例えばアーム部の前
面(1面)に圧電板を接着するなどして、Y軸方向の屈
曲振動の大きさを検知する。
Drive the arm of the tuning fork with a suitable driving means, such as the side (W)
(not shown), Figure 4 (a)
Both arms are excited so as to bend in opposite directions in the X-axis direction as shown in FIG. At this time, the driving frequency is determined by the width W and length a of the arm J: As shown in (b), the arm section receives the Coriolis force Fc and bends and vibrates in the Y-axis direction.This vibration mode has a natural frequency determined by the thickness t and length a of the arm. However, when the angular velocity Ω is actually increased by 15, Yi
The vibration frequency in the 1111 direction is equal to the drive frequency. Also, the amplitude of the arm in the Y-axis direction is the given angular velocity Ω
Therefore, the magnitude of the bending vibration in the Y-axis direction is detected by using an appropriate detection means, such as bonding a piezoelectric plate to the front surface (one surface) of the arm section.

以上の如さγ1叉形振動子に限らず、振動形色速度セン
サー検知部からの出力信号波形は駆動周波数を搬送波と
し、角速度の変化を信号波とした被変調波の形で現われ
る。
As described above, the output signal waveform from the vibrating color speed sensor detection unit, not limited to the γ1-pronged vibrator, appears in the form of a modulated wave with the drive frequency as the carrier wave and the change in angular velocity as the signal wave.

従って、出力インピーダンスの大きい圧電体を検知手段
に用いたセンサーの出力信号から角速度を知るための電
気回路としては、検知部からの出力信号をまず電荷増幅
してから帯域通過フィルターで雑音や高調波成分を除去
し、検波回路で復調してから低周波増幅するのが一般的
である。最終的には角速度の変化に対して直線関係を有
する出力特性が得られる。
Therefore, in order to determine the angular velocity from the output signal of a sensor that uses a piezoelectric material with a large output impedance as a detection means, an electric circuit is required to first amplify the output signal from the detection section and then pass it through a bandpass filter to eliminate noise and harmonics. Generally, the components are removed, demodulated by a detection circuit, and then low-frequency amplification is performed. Ultimately, an output characteristic having a linear relationship with changes in angular velocity is obtained.

発明が解決しようとする問題点 従来の音叉形振動子センサーに使用する音叉のアームの
幅Wと厚さtは同一」払とする場合が多かった。またw
>tやw<tの音叉も用いられるが、アームの長さaや
ベースの長さbを含め、いかなる寸法が角速度センサー
に適しているか不明であったため、最適寸法の音叉形振
動子とは言えなかった。これら従来の音叉形振動子を用
いに角速度センナ−の出力信号波形を第3図に示づ゛。
Problems to be Solved by the Invention In many cases, the width W and thickness t of a tuning fork arm used in a conventional tuning fork type vibrator sensor are the same. Again lol
>t and w<t tuning forks are also used, but it was unclear what dimensions, including arm length a and base length b, would be suitable for an angular velocity sensor, so what is the optimum size tuning fork vibrator? I could not say it. FIG. 3 shows the output signal waveform of an angular velocity sensor using these conventional tuning fork vibrators.

この波形は前述の帯域フィルター通過後の波形である。This waveform is the waveform after passing through the aforementioned bandpass filter.

図中の△の範囲はセンサー静止時であり、振幅VI G
が出力される。Bの範囲は一定の角速度で回転した時の
出力を示し、lm5(1kH2)の搬送波に6m5(1
67H2)の低周波成分が重畳した波形の出力が得られ
、帯域通過フィルターだけでは低周波成分は除去できな
かった。
The range of △ in the figure is when the sensor is stationary, and the amplitude VI G
is output. The range B shows the output when rotating at a constant angular velocity, and the carrier wave of lm5 (1kHz) has a carrier wave of 6m5 (1kHz).
67H2) was obtained, and the low frequency components could not be removed using a bandpass filter alone.

この波形を検波および低周波増幅しても正確な角速度は
91測できなかった。このような波形になる原因は、セ
ンサー静止状態においては第4図(イ)の如くX軸方向
にのみ撮動し、駆動周波数と同じ周波数で振幅V′Cの
雑音成分が現われるが、回転時には第4図(ロ)に示す
振動が生じるだ(プでなく、同図〈ハ)に示す如く、ア
ームの厚さ1ど6叉の全長lによって決まる固有振動数
で大きなtt振を生じ、その結果、これに相当する6m
sの低周波成分が出力されるためである。
Even if this waveform was detected and amplified at low frequency, accurate angular velocity could not be measured. The reason for this kind of waveform is that when the sensor is stationary, the image is captured only in the X-axis direction as shown in Figure 4 (a), and a noise component of amplitude V'C appears at the same frequency as the drive frequency, but when the sensor is rotating, The vibration shown in Fig. 4 (B) is generated (not P), but as shown in Fig. 4 (C), a large tt vibration occurs with a natural frequency determined by the total length l of the arm thickness 1 and 6 prongs. As a result, the equivalent 6m
This is because the low frequency component of s is output.

問題点を解決するための手段 本発明はセンリー回転時にY軸方向の不要な低周波振動
が現れ0い検知部出力信号を得るため、音叉の各部首法
を調整して、第4図(ハ)に示づY軸方向の固有振動数
をX軸方向の駆動周波数より高くなるように設定するこ
とを特徴とするものである。
Means for Solving the Problems The present invention adjusts each radical method of the tuning fork in order to obtain an output signal of the detection section that is free from unnecessary low-frequency vibrations in the Y-axis direction when the sensor rotates. ) is characterized in that the natural frequency in the Y-axis direction is set higher than the driving frequency in the X-axis direction.

この場合、搬送波より高い周波数の雑音成分が被変調波
に視れるが、帯域通過フィルターによって除去しやすく
、また簡単な復調回路によって角速度の信号波が容易に
検波できる。
In this case, a noise component with a higher frequency than the carrier wave is visible in the modulated wave, but it can be easily removed by a band-pass filter, and the angular velocity signal wave can be easily detected by a simple demodulation circuit.

実  施  例 本発明の角速度センサーの一実施例を第1図に示す。1
は2本の検知部(アーム部)2.2’とベース部3とか
らなる音叉形振動子で、該振動子はチタン酸ジルコン酸
鉛やチタン酸バリウムなどの圧電板2 a、 2 bを
接着剤で張合わけた層状のバイモルフ構造となっている
。すなわち、矢印Pの方向に分極処理された圧電板2a
のアーム部の表裏両表面には銀、金などの検知部電極4
,4′と中央部電極5.5′が設けられており、同じく
矢印P′に分極処理された圧電板2bも同様に5,5′
を中央部電極として検知部電極6,6′が股りられてい
−6= る1、中央部電極5 、5′は図rnjでは1層で示し
であるが、1細にμFF電板2aの電極層、接着剤層。
Embodiment An embodiment of the angular velocity sensor of the present invention is shown in FIG. 1
is a tuning fork-shaped vibrator consisting of two detection parts (arm parts) 2.2' and a base part 3, and the vibrator has piezoelectric plates 2a and 2b made of lead zirconate titanate, barium titanate, etc. It has a bimorph structure with layers separated by adhesive. That is, the piezoelectric plate 2a is polarized in the direction of arrow P.
There are detection electrodes 4 made of silver, gold, etc. on both the front and back surfaces of the arm.
, 4' and a center electrode 5.5' are provided, and the piezoelectric plate 2b, which is also polarized in the direction of arrow P', is also provided with 5, 5'.
The detection part electrodes 6, 6' are straddled with the central part electrodes 5 and 5' being shown as one layer in Fig. Electrode layer, adhesive layer.

1[電tf< 2 bの電極層から成る3層構造であり
、接η剤層は数μR1程度の薄い層なので両電極層は電
気的に聯通し−(いる1、ベース部3は接着、締イ」(
プ。
It has a three-layer structure consisting of an electrode layer with an electric potential of tf < 2 b, and the contact layer is a thin layer of about a few μR1, so both electrode layers are electrically interconnected. "Shimei" (
P.

ぞの曲の方法で支持部7に固定れている。It is fixed to the support part 7 using the same method.

8.8′は両表面に銀または金等の駆動電極8a。8. 8' is a drive electrode 8a made of silver or gold on both surfaces.

E’+ b、8’a、3’bを設置Jた駆動用圧電板で
、音叉形振動子1の両側面に接着剤で張付りられ、駆動
部を形成している。
E'+b, 8'a, and 3'b are piezoelectric plates for driving, which are attached to both sides of the tuning fork-shaped vibrator 1 with adhesive to form a driving part.

駆動電極8a、8’aとBb、B′bとの間に交流電圧
を印加りるど駆動用圧電板8および8′はZ軸方向に仲
81;づるから、検知部2.2′はX軸方向に屈曲振動
リ−ることになる。X軸方向の固有振動数と同じ周波数
で励振駆動しながら、Z軸まわりの回転角速度Ωを与え
ると、検知部2,2′はコリオリカを受4J(Y軸方向
にも111(曲振動する。すなわち、音叉のy)−ム部
先端の軌跡は楕円軌道を描くが、この肋、検知部電極4
と6の間、または4′と6′の間には珪雷坦象によって
電萄が発生する。その極性は検知部電極4が正電油Iの
どき6′−b正電伺となり、検知部電極4′と6は負電
夕■と<【る。従って、検知部電極4と6′および4′
と6をイれぞれ外部導線(図示しない)で並列に接続し
、検知信号を取り出1゜ 本発明角速度センサー用の音叉形振動子は、X軸方向の
固有振動数を、音叉の全長17J<Y軸方向に屈曲覆る
ときの固有振動数よりも小ざく覆ることを特徴どする。
When an AC voltage is applied between the drive electrodes 8a, 8'a and Bb, B'b, the drive piezoelectric plates 8 and 8' are aligned in the Z-axis direction, so the detection unit 2.2' This results in bending vibration in the X-axis direction. When a rotational angular velocity Ω around the Z-axis is applied while driving with excitation at the same frequency as the natural frequency in the X-axis direction, the detection parts 2 and 2' receive Coriolis and vibrate 4J (also 111 in the Y-axis direction). In other words, the trajectory of the tip of the y)-mu part of the tuning fork draws an elliptical orbit, but this rib, the detection part electrode 4
Between and 6 or between 4' and 6', an electric shock is generated due to a thunderstorm. The polarity is such that the detection part electrode 4 has a positive voltage I and 6'-b, and the detection part electrodes 4' and 6 have a negative polarity. Therefore, the detection part electrodes 4, 6' and 4'
and 6 are connected in parallel with external conductors (not shown) to extract the detection signal.1゜The tuning fork type vibrator for the angular velocity sensor of the present invention has a natural frequency in the 17J<It is characterized by a smaller covering than the natural frequency when bending and covering in the Y-axis direction.

その−例を第5図に従って説明する。同図はアームの長
さと固有振動数の関係を割算によって求めた結果である
。同図の破線くイ)はアームの幅をw= 2mmとした
場合のX+11方向の固有振動数[f−△xw/a’l
(Δは常数、jス下同じ)を示し、直線(ロ)はアーム
のyワざをt−4mmどした場合にアームがY軸方向に
lllI曲づるとさの固有振動数[f =AX  t、
/a 2 コをホ1J。
An example thereof will be explained with reference to FIG. The figure shows the relationship between arm length and natural frequency obtained by division. The broken line (a) in the same figure is the natural frequency [f-△xw/a'l] in the X+11 direction when the width of the arm is w = 2 mm.
(Δ is a constant, the same as below j), and the straight line (b) is the natural frequency of the arm bending in the Y-axis direction when the arm's y-movement is t-4 mm [f = AX t,
/a 2 ko wo ho 1J.

曲線(バー1)および(バー2)はアームの厚さがt=
4mmであって、ベースの長さをそれぞれ1)−8mm
および16mmとしだどきの固有振動数[f−・Δ×t
、/(a十b)2]を示す。
The curves (bar 1) and (bar 2) have arm thickness t=
4mm, and the base length is 1)-8mm respectively.
and the natural frequency of Shidadoki [f-・Δ×t
, /(a0b)2].

本発明のr4叉形振動了を構成するためには、破線(イ
)=二重線(バー1〉または(バー2)となるようにア
ームの長さaを選択する必要があるが、第5i図に示づ
如く、ベースが長いほどY軸方向の固4111iQ t
h故が低くなるから、アームの長ざaもかなり人きく 
シ’、l−4Jれば4fら4.Zいことが分る。そこで
ベースのfA aをb−8111mとした場合には、ア
ームの長さaを斜線で示す範囲内に選択すれば良い。
In order to configure the r4 fork-shaped oscillation of the present invention, it is necessary to select the arm length a so that the broken line (a) = double line (bar 1> or (bar 2)). As shown in Figure 5i, the longer the base, the harder it is in the Y-axis direction.
Since the height is lower, the length of the arm is also quite appealing.
If shi', l-4J, 4f et al. 4. I know it's Z. Therefore, when the base fA a is set to b-8111m, the arm length a may be selected within the range shown by diagonal lines.

本発明の実施例ではアームの幅W−2.厚さ 1=4、
長さ a=−41,ベースの長ざb=8  (mm)の
音叉形振初子を(Q成した。第5図の一点鎖線で示づJ
、うに各振動姿態(第4図)の固有振動数は、それぞ゛
れ!1001−l /’、 7201−l Z、 H1
00H7になるものと想定され、実際に固有振動数を測
定したところ、これどよく 致し/C、。
In the embodiment of the present invention, the arm width W-2. Thickness 1=4,
A tuning fork-shaped oscillator with length a = -41 and base length b = 8 (mm) was constructed (Q).
, the natural frequencies of each vibration mode (Figure 4) are different! 1001-l /', 7201-l Z, H1
It was assumed that the frequency would be 00H7, and when we actually measured the natural frequency, it turned out to be /C.

II iil、: XI法の高叉形振動了力冒ろ成る角
速瓜センリーの帯域フィルター通過後の出力波形を第2
図に承・jl、1)1′1述のq)3図と同じように、
図中のAの範囲il+、レンリー静止時であり、振幅V
cが出力され、定角速度を与えた[3の範囲では振幅■
の出力(5弓が1qられた。振幅V−Vcの大ささは、
与えられた角速度に対して正確な比例関係を右するもの
であった。また、出力信号波形は2 ms (500H
Z )のX軸方向の固有振動数、すなわち駆動周波数の
みが現われるから、次段の検波器によって角速度信号が
容易に復調され、良好な角速度セン→ノーが1qられた
II III,: The output waveform after passing through the bandpass filter of the angular velocity sensor consisting of the high-pronged oscillation force of the XI method is expressed as the second
As shown in Figure 1, 1) 1'1, q) Same as Figure 3,
The range il+ of A in the figure is when Renly is at rest, and the amplitude V
c is output, giving a constant angular velocity [in the range of 3, the amplitude ■
The output (5 bows were made 1q. The magnitude of the amplitude V-Vc is
It shows an exact proportional relationship for a given angular velocity. In addition, the output signal waveform is 2 ms (500H
Since only the natural frequency in the X-axis direction of Z), that is, the driving frequency, appears, the angular velocity signal is easily demodulated by the next-stage detector, and a good angular velocity sen→no is obtained.

発明の効果 本発明の音叉形振動子を用いた角速度センリーでは、コ
リオリカの検知方向であるY軸方向の屈曲振動の固有振
動数をX軸方向の固tT振動数、づなわら駆動周波数よ
りも高くすることによって、低周波成分のイ1い出力信
号波形が4EJられるから容易に検波でき、低周波増幅
によって極めて精度の良い角速度信号が得られる。また
、音叉形振動子自体、極めて安定な周波数によって両ア
ームとも一定振幅で駆動できるため、音叉形以外の従来
の振動形角速度センサーに比べて非回転時の出力が小さ
く、従って、角速II信号とのSN比は大幅に改善され
た。さらに、角速度や外部振動の影胃を受()ても、検
知部の出力信号波形にはほとんど現われないため、極め
て高精瓜な角速度センサーを提供できる。
Effects of the Invention In the angular velocity sensor using the tuning fork vibrator of the present invention, the natural frequency of the bending vibration in the Y-axis direction, which is the detection direction of Coriolis, is higher than the fixed tT frequency in the X-axis direction and the tsunawara drive frequency. By doing so, the output signal waveform with a low frequency component is 4EJ'd, so it can be detected easily, and an extremely accurate angular velocity signal can be obtained by low frequency amplification. In addition, since the tuning fork vibrator itself can drive both arms with a constant amplitude using an extremely stable frequency, the output when not rotating is small compared to conventional vibrating angular velocity sensors other than the tuning fork type, and therefore the angular velocity II signal The signal-to-noise ratio was significantly improved. Furthermore, even if the sensor is affected by angular velocity or external vibration, it hardly appears in the output signal waveform of the detection section, making it possible to provide an extremely high-precision angular velocity sensor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の音叉形振動子を用いた角速度上ン1ノ
ーの実施例を示す斜視図、第2図は本発明の音叉形色速
度センV−の検知部出力信号波形図、第3図は従来の音
叉形色速度センサーの検知部出力信号波形図、第4図は
音叉形振動子の振動姿態を示す概略図、第5図は音叉形
振動子のアームの長さと固有振動数の関係を示す図であ
る。 1・・・・・・音叉形振動子 2.2′・・・・・・検知部 昂1B アー 図面の浄書(内容に変更なし) :′X 7 固 2*5 ヤ ち 圓 館4−1凹 (1)           (ロ)        
  (ハ)雪す Y] ■ 勿夕12 下−1へ(う千ざ0−(hn゛γlり 可「糸lx: ?13ilE t4H(方式〉1、事イ
′1の表示 昭和61(「 特 δ′1 願 第202261月2、
発明の名称 音叉膨圧電体角速度ピン番J− 〒601
FIG. 1 is a perspective view showing an embodiment of the angular velocity upper and lower using the tuning fork type vibrator of the present invention, and FIG. Figure 3 is a waveform diagram of the detection unit output signal of a conventional tuning fork type color speed sensor, Figure 4 is a schematic diagram showing the vibration mode of the tuning fork type vibrator, and Figure 5 is the arm length and natural frequency of the tuning fork type vibrator. FIG. 1...Tuning fork-shaped vibrator 2.2'...Detection section 1B Engraving of the drawing (no change in content):'X 7 Hard 2*5 Ya Chi Enkan 4-1 Concave (1) (b)
(c) Yukisu Y] ■ Mutsuyu 12 Down-1 δ'1 Application No. 20226 January 2,
Name of invention Tuning fork expansion piezoelectric material angular velocity pin number J- 〒601

Claims (1)

【特許請求の範囲】[Claims] 2枚の圧電板を接合してなるバイモルフ形状の音叉形振
動子の2本のアーム部分を検知部となし、バイモルフの
屈曲方向であるY軸方向に対して垂直なX軸方向に前記
アーム部が屈曲振動するように、四辺形断面を有するア
ーム部の側面に圧電体を固着して駆動部とした音叉形振
動子において、該アーム部分のX軸方向の屈曲振動の固
有振動数で駆動するとともに、該振動数より高周波側に
Y軸方向の固有振動数を設定することを特徴とする音叉
形圧電体角速度センサー。
Two arm parts of a bimorph-shaped tuning fork vibrator made by joining two piezoelectric plates are used as detection parts, and the arm parts are moved in the X-axis direction perpendicular to the Y-axis direction, which is the bending direction of the bimorph. In a tuning fork-shaped vibrator, which is made by fixing a piezoelectric material to the side surface of an arm portion having a quadrilateral cross section and using it as a driving portion, the tuning fork vibrator is driven at the natural frequency of the bending vibration in the X-axis direction of the arm portion so that the arm portion undergoes bending vibration. In addition, a tuning fork type piezoelectric angular velocity sensor characterized in that a natural frequency in the Y-axis direction is set on a higher frequency side than the above frequency.
JP61202261A 1986-08-27 1986-08-27 Tuning fork type piezo-electric angular velocity sensor Pending JPS6358111A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61202261A JPS6358111A (en) 1986-08-27 1986-08-27 Tuning fork type piezo-electric angular velocity sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61202261A JPS6358111A (en) 1986-08-27 1986-08-27 Tuning fork type piezo-electric angular velocity sensor

Publications (1)

Publication Number Publication Date
JPS6358111A true JPS6358111A (en) 1988-03-12

Family

ID=16454612

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61202261A Pending JPS6358111A (en) 1986-08-27 1986-08-27 Tuning fork type piezo-electric angular velocity sensor

Country Status (1)

Country Link
JP (1) JPS6358111A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0503807A2 (en) * 1991-03-12 1992-09-16 New Sd, Inc. Single ended tuning fork inertial sensor and method
WO1997009585A1 (en) * 1995-09-08 1997-03-13 Matsushita Electric Industrial Co., Ltd. Angular velocity sensor
JP2010505102A (en) * 2006-09-29 2010-02-18 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング Device for measuring yaw rate using vibration sensor

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0503807A2 (en) * 1991-03-12 1992-09-16 New Sd, Inc. Single ended tuning fork inertial sensor and method
JPH05256723A (en) * 1991-03-12 1993-10-05 New Sd Inc Inertia detector for one end-closed type tuning fork
US5343749A (en) * 1991-03-12 1994-09-06 New Sd, Inc. Single ended tuning fork inertial sensor and method
US5522249A (en) * 1991-03-12 1996-06-04 New Sd Inc. Single ended tuning fork inertial sensor and method
WO1997009585A1 (en) * 1995-09-08 1997-03-13 Matsushita Electric Industrial Co., Ltd. Angular velocity sensor
US5854427A (en) * 1995-09-08 1998-12-29 Matsushita Electric Industrical Co., Ltd. Angular velocity sensor
JP2010505102A (en) * 2006-09-29 2010-02-18 コンチネンタル オートモーティヴ ゲゼルシャフト ミット ベシュレンクテル ハフツング Device for measuring yaw rate using vibration sensor

Similar Documents

Publication Publication Date Title
WO1998007005A1 (en) Angular velocity detector
EP0744593B1 (en) Vibrating gyroscope
JPH10160476A (en) Rate gyroscope with mechanical resonant body
JP3751745B2 (en) Vibrator, vibratory gyroscope and measuring method of rotational angular velocity
JP4356881B2 (en) Vibrating gyroscope
JPH02218914A (en) Vibrating gyroscope
JPS61294311A (en) Oscillation gyro
JPS6358111A (en) Tuning fork type piezo-electric angular velocity sensor
JP2996157B2 (en) Vibrating gyro
JP3351325B2 (en) Resonator
JPH08247770A (en) Vibration gyroscope
JP2001074466A (en) Vibrator for piezoelectric vibrating gyro
JP3640004B2 (en) Piezoelectric vibration gyro using energy confinement vibration mode
JPH09113279A (en) Vibrational gyro
JP3531295B2 (en) Vibrator and piezoelectric vibration angular velocity meter using the same
JPH08338729A (en) Self-excitation circuit and piezoelectric vibration angular velocity meter using it
JP3028999B2 (en) Vibrating gyro
JP3830056B2 (en) Piezoelectric vibration gyro
JP2557286B2 (en) Piezoelectric vibration gyro
JP3122925B2 (en) Piezoelectric vibrator for piezoelectric vibrating gyroscope
JPH0821735A (en) Drive detector circuit of piezoelectric vibrator
JP2002048552A (en) Piezoelectric element, vibrating gyroscope, and its manufacturing method
JP3640003B2 (en) Piezoelectric vibration gyro using energy confinement vibration mode
JP3685224B2 (en) Piezoelectric vibration gyro using energy confinement vibration mode
JP2536151B2 (en) Vibrating gyro