JPS6357312B2 - - Google Patents

Info

Publication number
JPS6357312B2
JPS6357312B2 JP13386281A JP13386281A JPS6357312B2 JP S6357312 B2 JPS6357312 B2 JP S6357312B2 JP 13386281 A JP13386281 A JP 13386281A JP 13386281 A JP13386281 A JP 13386281A JP S6357312 B2 JPS6357312 B2 JP S6357312B2
Authority
JP
Japan
Prior art keywords
parison
bottle
temperature
stretching
neck
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP13386281A
Other languages
Japanese (ja)
Other versions
JPS57113033A (en
Inventor
Akio Tsuboi
Yoshihisa Hama
Shigeharu Sugihara
Tadashi Okudaira
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP56133862A priority Critical patent/JPS57113033A/en
Publication of JPS57113033A publication Critical patent/JPS57113033A/en
Publication of JPS6357312B2 publication Critical patent/JPS6357312B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C49/00Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor
    • B29C49/0005Blow-moulding, i.e. blowing a preform or parison to a desired shape within a mould; Apparatus therefor characterised by the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D1/00Containers having bodies formed in one piece, e.g. by casting metallic material, by moulding plastics, by blowing vitreous material, by throwing ceramic material, by moulding pulped fibrous material, by deep-drawing operations performed on sheet material
    • B65D1/02Bottles or similar containers with necks or like restricted apertures, designed for pouring contents
    • B65D1/0223Bottles or similar containers with necks or like restricted apertures, designed for pouring contents characterised by shape
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明はエチレンテレフタレートを主たる繰返
し単位とする熱可塑性ポリエステルから成形され
た二軸配向したびんに関するものであり、更に詳
しくは優れた機械的性質、ガス遮断性、耐薬品性
などを有し、内容物に対する優れた保護性能をも
つと同時に、高温内容物の充填時の変形、収縮な
どの少ない熱安定性の優れた二軸配向したびんに
関する。従来からポリエチレンテレフタレートを
主体とする熱可塑性ポリエステルはその素材の優
れた機械的性質、ガス遮断性、耐薬品性、保香
性、透明性、衛生性などに着目されて、各種の容
器、フイルム、シートなどに加工され、包装材料
として広範に利用されている。びんや缶などに代
表される中空容器への利用も、ブロー成形技術、
ことに二軸延伸ブロー成形技術の向上により最近
特に目覚ましいものがある。 ポリエチレンテレフタレートを用いた二軸延伸
ブロー成形においては一般に非晶質からなる膨張
可能な上端部開口で有底の円筒形を有する幾何学
的形態(以下パリソンと呼ぶ)を射出成形または
押出成形等により形成し、次いでパリソンを配向
可能な温度範囲、たとえばガラス転移温度(Tg)
以上、融点(Tn)以下の温度範囲に加熱し、所
望の容器の体積構造を有するブロー金型内でスピ
ンドルに連結された押出ロツドによる軸方向の延
伸と圧縮気体の吹込みによる円周方向の延伸が行
われている。この延伸過程で結晶性重合体の分子
鎖は軸方向と円周方向に伸長され、それに伴う配
向結晶化物の発生によりびんの物理的性質たとえ
ば引張強度、衝撃強度等の機械的特性や耐気体透
過性等が著しく改善される。しかしながら、通常
の延伸成形法によつて得られた二軸配向びんにお
いては、延伸過程で発生する歪のために種々の問
題が生じてくる。たとえば成形後のポリエステル
びんを夏季のような高温多湿雰囲気下に保管する
場合にびんが徐々に収縮を生じて内容積が変動し
たり、あるいはポリエステルのガラス転移温度近
傍たとえば60℃以上の高温内容物を充填する場合
に、充填中または充填後に収縮が生じて内容物の
正確な充填ができなかつたり、びんが変形を生
じ、びん本来の形状すら保持することができない
という致命的欠点を有しており、びんとしての商
品価値を大きく低下させることから、用途範囲も
著しく制約されているのが現状である。 一般に、一次元的構造の糸や二次元的構造のフ
イルムのようなポリエチレンテレフタレート成形
品においては、耐熱性向上のため延伸成形後に熱
固定といわれる加熱処理が行われている。これは
延伸時に発生した微結晶を熱に対してより安定な
結晶構造へ変化させ、その配列状態に固定させる
と共に延伸時の残留歪を緩和させるのが目的であ
り、この処理を施した成形品の耐熱性は著しく向
上する。これと同じような考えから延伸配向した
びんに対しても耐熱性を向上させるために熱固定
を行う方法が特公昭49−3073号公報や特開昭52−
126376号公報等に開示されている。 しかし、通常の吹込み成形方法によつて成形さ
れた延伸配向びんはどのような形状のびんに成形
したとしてもびん全体を均一な延伸倍率に仕上げ
ることは不可能であつて、全く延伸されない口栓
部分、低延伸倍率の首部から肩部の部分および底
部分、高延伸倍率の胴部分からなる一体の成形品
であり、このようなびんは特公昭49−3073号公報
に記載の140〜220℃の熱固定では熱収縮は減少す
る傾向を示すものの充分な効果を得ることができ
ないばかりか、低延伸部は熱結晶化による白化を
起こしやすく、びんの美観を損なうという致命的
欠点を生じる。また、特開昭52−126376号公報記
載の方法は各部分の延伸倍率に応じ、温度分布を
与えることができるような金型を用いて熱固定、
すなわち低延伸部分は低温で、高延伸部分は高温
で熱固定することにより白化現象を防止しようと
したものであるが、ことに未延伸部から延伸部に
かけて延伸倍率が連続的に変化する延伸配向した
びんに対し、延伸倍率に応じた温度勾配をつける
ことは装置的にも不可能に近く、またたとえ、あ
る程度の温度分布を与えることができたとしても
金型の加熱および冷却に要するサイクルタイムに
長時間を必要とし、生産性を著しく低下させるば
かりでなく、熱エネルギーを多量に消費し、かつ
充分な耐熱性を与えるだけの密度上昇を得ようと
すれば白化するし、逆に白化を避けようとすれば
充分な耐熱性を与えるだけの密度上昇が得られな
いこと等から、いずれにしても満足すべき二軸配
向したびんは得られず、実用上工業化困難な方法
である。 本発明者等はこのような実状に鑑み、種々条件
下で得られる二軸配向したびんの熱収縮挙動を解
析すると共に、特に熱固定処理を施すことなく延
伸成形のみの工程によりすぐれた耐熱性を有する
二軸配向したびんを提供するべく鋭意研究の結
果、本発明に到達した。すなわち、本発明はエチ
レンテレフタレートを主たる繰返し単位とする少
なくとも0.60以上の固有粘度を有する熱可塑性ポ
リエステルからなり、かつ首部および底中央部に
未延伸部分を、肩部、胴部および底部コーナ部に
延伸部分をおよび首部から肩部の一部、底部中心
からコーナーにいたる一部に未延伸部から延伸部
にかけて延伸比が連続して変化する部分を有する
二軸配向したびんであつて、未延伸部から延伸部
にかけて延伸比が連続して変化する部分におい
て、密度ρ0(g/cm3)を有する未延伸部の延伸開始
点から最初に密度ρ(g/cm3)を越える延伸部の位
置までの距離d(cm)と密度上昇(ρ−ρ0)との
比が下記〔〕式で示され、かつdを越える延伸
部分の密度が少なくともρより大なることを特徴
とする二軸配向したびん。 d/ρ−ρ0<80 〔〕 (ただし、ρ≧ρ0+0.026) 本発明の二軸配向したびんは特公昭49−3073号
公報および特開昭52−126376号公報に開示されて
いるような熱固定処理を特に施こさなくともすぐ
れた機械的性質、ガス遮断性、耐薬品性などを有
し、内容物に対する優れた保護性能を持つと同時
に、高温内容物の充填時の変形、収縮などの少な
い熱安定性の優れたびんである。したがつて、高
温充填、加熱滅菌等の熱に対しても耐用できる特
徴を有する。もちろん熱固定が不要なことからも
白化現象等の問題がなく優れた透明性を有するこ
とも大きな特徴である。 本発明の二軸配向したびんの構造的および形状
的特徴を更に詳しく説明すると、二軸配向したび
んはたとえば第1図に示す如く、熱的に安定な構
造からなる延伸部分aが大部分で、熱的に不安定
な延伸部分すなわち未延伸部から延伸部にかけて
延伸比が連続的に変化する部分bは極めて少な
く、その他未延伸部分cからなる特徴を有する。 ポリエステルからなる実質的に非晶質の上端部
開口の有底パリソンを用い、延伸吹込成形して得
られた本発明の円筒形の細口びんを例にとつて説
明すると、びんの胴部全体、びんの肩部および底
コーナー部は上記aなる部分であり、びんの首部
および底中央部は上記cなる部分であり、またび
んの首部から肩部にかけての僅かな部分と底部の
中心からコーナーに至る僅かな部分にbなる部分
が存在するだけである。 ここで云う熱的に安定な構造からなる延伸部分
aとは延伸時に分子鎖の配向よりも結晶化の方が
促進された部分であり、歪の緩和を抑止するだけ
の架橋点(微結晶)が存在するために耐熱性が良
好な部分である。ポリエチレンテレフタレートを
例にとると、この部分の密度ρは未延伸部分の密
度ρ0=1.340〜1.342g/cm3より少なくとも0.026以
上大きく、すなわち1.366〜1.368g/cm3以上、好
ましくは1.368以上であつて、びん側壁より軸方
向および周方向に1mm巾のたんざく状に切り出し
た試片を厚み方向(edgeおよびend view)より
X線を入射し、(100)結晶面の配向角の測定から
求めた配向度が主配向方向で80〜90の間にある。
また、熱的に不安定な延伸部分bとは分子構造上
次の2つの部分をいう。1つは延伸に伴う微結晶
の発生は認められず、僅かに分子鎖が配向してい
る低延伸部分であり、その部分は熱が加わると伸
長したゴムが弛緩するように収縮する。もう1つ
は延伸時に結晶化よりも分子鎖の配向の方が促進
された部分であり、歪の緩和を抑止するだけの架
橋点(微結晶)が存在しないため耐熱性が劣る。
この部分は未延伸部分より0.026未満の密度上昇
すなわち1.366〜1.368g/cm3以下であつて、上記
方法により求めた配向度が主配向方向において90
以上である。更にまた、未延伸部分cは実質的に
無配向の部分であり、80℃近傍の温度下での短期
処理では軟化はするものの、白化などの構造変化
は起こらず、また軟化も未延伸部分の肉厚を増す
ことにより解決できることから、この部分が存在
することは80℃近傍での耐熱性には何ら問題はな
い。 したがつて、本発明でいう優れた耐熱性を有す
る二軸配向したびんは、びんの大部分が上記aな
る部分からなり、bなる部分就中低延伸部分が極
めて少ない構造からできているものであり、更に
上記bなる部分がびんの容積上影響の最も少ない
個所、すなわち首の上部および底部中央付近の極
めて狭い部分に限定して固定されているのが大き
な特徴である。その場合びんの底部は第1図に示
すように底部中央が凹状に湾曲した自立型底部で
あることがb部分の固定が容易なことからより望
ましい。一方、通常の成形方法によつて成形され
た二軸配向したびんはd/ρ−ρ0が100を越え、
上記bなる部分が多いことからたとえ胴部分の密
度が本発明のρ0+0.026以上を満足したとしても
熱収縮、熱変形の少ない耐熱性に優れたびんとは
なり得ない。なお、d/ρ−ρ0は特に好ましくは
80以下である。 本発明で云うエチレンテレフタレートを主たる
繰返し単位とする熱可塑性ポリエステルとは通常
酸成分の80モル%以上、好ましくは90モル%以上
がテレフタル酸であり、グリコール成分の80モル
%、好ましくは90モル%以上がエチレングリコー
ルであるポリエステルを意味し、残部の他の酸成
分としてイソフタル酸、ジフエニルエーテル4,
4′―ジカルボン酸、ナフタレン1,4―または
2,6―ジカルボン酸、アジピン酸、セバシン
酸、デカン1,10―ジカルボン酸、ヘキサヒドロ
テレフタル酸、また他のグリコール成分としてプ
ロピレングリコール、1,4―ブタンジオール、
ネオペンチルグリコール、ジエチレングリコー
ル、シクロヘキサンジメタノール、2,2―ビス
(4―ヒドロキシフエニル)プロパン、2,2―
ビス(4―ヒドロキシエトキシフエニル)プロパ
ン、またはオキシ酸としてP―オキシ安息香酸、
P―ヒドロエトキシ安息香酸等を含有するポリエ
ステルを意味する。 また、ポリエチレングリコール、ポリプロピレ
ングリコール、ポリテトラメチレングリコール等
のポリアルキレングリコールも分子量が3000程度
以下なら共重合成分として使用することができる
が、多量の共重合は耐熱性を低下させることから
通常グリコール成分の2〜3モル%以下に止める
のが好ましい。 なお、本発明におけるポリエステルは必要に応
じて着色剤、紫外線吸収剤、帯電防止剤、熱酸化
劣化防止剤、抗菌剤、滑剤などの添加剤を適宜の
割合で含有することができる。 本発明の熱可塑性ポリエステルは0.55以上の固
有粘度を有することが必要であり、好ましくは
0.6以上、更に好ましくは0.7〜1.4の固有粘度を有
する。固有粘度とはフエノール/テトラクロロエ
タン混合溶媒(6/4重量比)にポリエステルを
溶解した溶液を30℃において測定した極限粘度で
ある。固有粘度が0.55未満ではパリソン成形時に
透明な非晶質成形品を得ることが困難であるほか
機械的強度も不充分となる。固有粘度がびんの熱
収縮に及ぼす影響については今迄知られていない
が、固有粘度が高いポリエステルは固有粘度の低
いものよりもパリソンの延伸適温が高温側にシフ
トし、低粘度ポリエステルからなるパリソンが延
伸時にスーパードロウ現象により配向しないよう
な温度条件でさえも二軸配向したびんを成形する
ことができるし、また固有粘度の高いポリエステ
ルほど耐熱性の高いびんを得ることができる。 本発明の二軸配向したびんは通常公知の方法に
よつて得られた実質的に無配向かつ非晶質な上端
部開口の有底パリソンから特定条件による延伸ブ
ロー成形によつて製造することができる。すなわ
ち、まず実質的に無配向かつ非晶質な上端部開口
の有底パリソンがポリエステルから射出成形法、
または押出成形されたパイプを裁断し、一端を加
熱加圧して封緘する方法等により成形される。次
いで公知の方法は該パリソンを加熱装置内で延伸
温度たとえばガラス転移温度(Tg)以上、融点
(Tm)以下の温度範囲に加熱し、所望の体積構
造を有するブロー金型内で延伸ロツドと圧流気体
により延伸ブロー成形する方法によつてびんが製
造される。一方、本発明の二軸配向したびんの最
も好ましい製造方法はたとえばこのような公知の
方法による製造において、該パリソンを延伸温度
に加熱する際、目的とするびんの形状のうち首部
または首部から肩部、および底部に相当するパリ
ソン部分の温度をびんの胴部に相当するパリソン
部分の温度よりも1〜20℃高くなるような温度分
布を与えた後、予めパリソン構造とブロー割金型
構造との関係がパリソン嵌合部にパリソンを嵌装
し、該割金型を閉鎖したとき、延伸ブローを行う
前にびんの首部相当部分の少くとも3mm以上のパ
リソン部分が該割金型の該当部と密着するように
設計されたブロー割金型を用いて、該温度分布を
与えたパリソンを延伸ロツドおよび圧流気体によ
り二軸延伸ブロー成形することにより製造され
る。以上はいわゆるコールドパリソンを用いるブ
ロー成形法であるが、ホツトパリソンを用いるブ
ロー成形法においては延伸温度に冷却する過程で
パリソンに上記のような温度分布を与えてもよ
い。 本製造方法の特徴は延伸比の小さいびんの肩部
や底部の延伸効果を向上するためには未延伸部と
延伸部との間に明確な延伸開始点を作ることが最
良であるという本発明者等の知見に基づき更に鋭
意研究の結果、それを可能にする実際的な製造法
を見いだしたところにある。 一次元的構造物である糸条の延伸においてはピ
ンやロール接触点での局所加熱によつて容易に温
度勾配がつけられ、延伸点が固定されることは知
られている。しかし、三次元的構造物であるパリ
ソンの場合、技術的に極めて困難であり、延伸前
のパリソンに延伸点を固定するという知見は今迄
どこにもない。実際にパリソンを加熱する場合に
は伝熱面積が大きいため、加熱時に付与できる温
度勾配だけでは急激な温度変化点が得られず、し
たがつてこのような加熱パリソンを通常の延伸ブ
ロー成形機により成形しても延伸点の明確な固定
は困難である。 しかしながら、本発明のようにびんの首部およ
び底部に相当するパリソン部分が1〜20℃、好ま
しくは1〜15℃胴部に相当するパリソン部分より
も高く加熱されたパリソンは急激な温度勾配の変
化点がなくても、ブロー金型が閉鎖されたときび
んの首部相当部分の少くとも3mm以上、好ましく
は5mm以上のパリソン部分を水冷されたブロー金
型の首部と接触させることにより、接触面と非接
触面との境界に著しい温度勾配を与えることがで
き、かつその非接触部側の境界面近傍がなお胴部
より高温にあることから首部の延伸点を明確に固
定することができるのである。 また、パリソン底部においてもブロー金型閉鎖
後、延伸ロツドがパリソン底部に接触して軸方向
への延伸が行われるため延伸ロツドの先端とパリ
ソン底部の接触部が急冷され、やはり接触部分と
非接触部分との境界面に著しい温度勾配が生じ、
首部と同じように延伸点を固定することができ
る。 一方従来法のように均一温度に加熱されたパリ
ソンをこの方法で延伸ブロー成形すると、ブロー
金型閉鎖時に接触する首部および延伸時の延伸ロ
ツドの接触する底部が温度降下をきたし、また非
接触部側の境界近傍も他の非接触部よりも低温に
なり、延伸開始点を接触境界面にもつてくること
は全く不可能になる。 こうしたことからブロー金型閉鎖時に金型と接
触する首部分および延伸時に延伸ロツドの接触す
る底部に相当するパリソン部分を予め非接触部分
よりも高温に加熱しておくことが必要なのであ
る。このようにして二軸延伸ブロー成形されたび
んは延伸比の小さい首部から肩部にかけての部分
および底部中央から湾曲部にかけての部分におい
ても胴部と同じような延伸効果を有するびんが得
られる。したがつて、すぐれた耐熱性が得られる
と共に延伸比の小さい部分の機械的強度、ガス遮
断性等も向上する利点を有する。 本発明における射出成形または押出成形により
形成された実質的に非晶質な上端部開口の有底パ
リソンを延伸温度にするための加熱はブロツクヒ
ーターや赤外線ヒーター等の通常の発熱体を有す
る加熱オーブン中で行われる。また、加熱により
パリソン温度分布を与える方法としては種々の方
法が用いられる。たとえば、加熱オーブン中を回
転しながら移動するスビンドルにパリソンを装填
し、オーブン中を自転させながらパリソンを移動
させる。その時に温度勾配をつけるべきパリソン
部分に該当するオーブンの加熱部にのみ通常の発
熱体以外に補助ヒーターを設けて該当部のみが他
の部分よりも高温に加熱できるようにするとか、
あるいは反対に相対的に低い温度分布をもたせる
パリソン胴部に該当するオーブン部に熱遮蔽板や
熱反射板を設けて加熱を調節する方法等や局部的
に高周波加熱、誘電加熱する方法等種々の方法が
あるが、パリソンに温度分布を与える方法に関し
ては何等制約をうけるものではない。またパリソ
ンの温度分布は軸方向に対して与えるのであつ
て、円周方向に対しては同一円周上の温度が均一
であることが望ましく、そのためには加熱オーブ
ン中でのパリソンはスピンドル等の駆動装置によ
り自転させながら加熱するのが望ましい。 パリソンの延伸温度(加熱後直ちに延伸ブロー
成形するときは加熱温度にほゞ等しい。)は通常
使用するポリエステルのTg以上、Tm以下の温
度範囲であるが、延伸適温は延伸速度、使用する
ポリエステルの固有粘度等によつても異なり通常
80〜170℃が好ましい。しかし、より優れた耐熱
性を有するびんを得るためには画一的な延伸温度
を適用するのでなく、使用するポリエステルの固
有粘度(V)に応じて下記〔〕式を満足する延
伸温度(T)℃を適用するのが更に好ましい。 60V+85≧T≧60V+45…… 〔〕 すなわち、延伸適温はポリエステルの固有粘度
が高くなれば高温側へシフトし、延伸時に配向結
晶化が可能な温度範囲内においてできるだけ高温
側で延伸ブロー成形するのが好ましい。したがつ
て、本発明においてはびんの首部から肩部および
底部に対応するパリソン部分はこの延伸温度
(T)よりも更に1〜20℃、好ましくは1〜15℃
高温にして延伸ブロー成形するのである。 次に本発明で用いるパリソン構造と延伸ブロー
割金型との関係について言及する。 この両者の関係を実施例により図示したのが第
2図である。第2図はパリソン嵌合部にパリソン
を嵌装した割金型を閉じた時の状態を示す説明図
である。更に第3図は第2図におけるパリソンお
よび割金型の開口部、首部および肩部にかけての
拡大図である。 図に見られるように、本発明の特徴はパリソン
鍔部から下の首部分の少くとも3mm以上が延伸ブ
ロー前に閉鎖した金型と既に完全密着するところ
にある。 これに対し、第4図および第5図には本発明に
該当しないすなわち従来法のパリソン構造と割金
型構造の関係の一例を示す。第4図および第5図
では首部と閉じた割金型とが接触していない。 二軸延伸ブロー成形機の機種にはパリソンの加
熱およびブロー金型中での延伸ブロー工程におい
て、パリソンを把持する方向に二つの方向があ
る。すなわち、一つはパリソン嵌合部が上を向い
ているもので、この場合パリソンは開口部を下に
向けて嵌装される。いわゆる倒立型である。他の
一つはパリソン嵌合部が下向きで、パリソン開口
部を上に向けて嵌装するいわゆる懸垂型の嵌装で
ある。 本発明の構成要件であるブロー割金型を閉じた
とき、延伸ブローを開始する前に既にびん首部に
相当するパリソン部分の少くとも3mm以上がブロ
ー割金型と密着するという条件を満たすためには
上記のパリソン把持方向によつて、密着させる部
分のパリソンまたは/およびブロー割金型の設定
を適切に選ぶこともまた重要がある。たとえば懸
垂型の把持方向の場合、ブロー割金型と密着する
ように割金型首部の直径に合わせてパリソンの外
径を設計しても、延伸適温まで加熱されたパリソ
ンは軟化しているため大型パリソンほどパリソン
自重によつて僅かではあるが下方に垂れる傾向が
あり、そのため加熱パリソンをブロー割金型内に
嵌装して金型を閉鎖したとき接触する筈の部分が
接触しなくなるのが通常である。このようなこと
から懸垂型嵌装の場合は予め接触させる首部のパ
リソンの外径をブロー割金型の該当部分よりも大
き目に設計する等の工夫をするのが好ましい。 他方、倒立型嵌装の場合は、パリソン加熱段階
で自重によりどちらかと云えば太くなる傾向にあ
るので接触するパリソン首部の外径と該当するブ
ロー割金型首部との径は同一であつてもよい。 更に延伸ブロー成形法について説明すると、加
熱または冷却により上記温度をもちかつ延伸温度
に調温されたパリソンは延伸ブロー成形機のパリ
ソン嵌装部に嵌装し、ブロー割金型を閉鎖する。
パリソン首部の少くとも3mm以上の金型との接触
部はその時点で急冷される。その後直ちにパリソ
ン嵌装部に連結された延伸ロツドの押出しにより
パリソンは軸方向に好ましくは2倍以上延伸さ
れ、続いてあるいはほとんど同時に好ましくは5
Kg/cm2以上、就中10Kg/cm2以上の圧流気体により円
周方向に好ましくは8倍(パリソンに対する円周
比)以上延伸される。また延伸は面積倍率でパリ
ソンに対し通常2.5倍以上、好ましくは3倍以上
である。この方法において延伸ロツドがパリソン
底部に到達した直後のパリソンの温度分布は、パ
リソンの加熱または冷却による調温段階での温度
分布と異なり、金型と接触した首部の直ぐ近傍の
非接触部および延伸ロツドと接触した底部の極く
近傍の非接触部の温度が最も高く、金型および延
伸ロツドと接触する部分の温度が急冷されるた
め、接触部と非接触部との境界面に大きな温度勾
配が生じ、この境界面を中心にネツキング現象に
近い状態で延伸され、同時に圧流気体のブローに
より円周方向にも延伸される。つまりこの時の急
激な温度勾配を有する境界面が延伸固定点にな
る。 びん首部に相当するパリソン部分と金型との接
触は単に首部に急激な温度勾配を付与するだけで
なく、接触部分のパリソンを機械的に把持するこ
とにより延伸点をより明確に固定する効果も有し
ている。この際びんの底部は第1図に示すように
底部中央が凹状である方が延伸点の固定が容易な
ことから好ましい。 このようにして得られた二軸配向びんは、金型
および延伸ロツドと接触していた部分の直ぐ近傍
から肉厚が急に薄くなり延伸部と未延伸部との境
界が鮮明に生じている。また、未延伸部から高延
伸部への移行が急勾配のため、熱収縮に対して最
も不安定な低延伸部がほとんど生じることなく特
許請求の範囲第1項記載の条件を充足する二軸配
向びんが再現性よく高生産性でもつて得られるの
である。 以上は首部と割金型を接触させる特に好ましい
延伸ブロー成形について述べたが、従来法の第4
図および第5図に示したパリソン構造と割金型構
造であつても温度勾配を与えたびんの首部に相当
するパリソン部分に予めアルミ等からなるリング
を嵌着して延伸ブロー成形することによつて目的
を達成することができる。要は首部と底部に延伸
点の明確な固定をし、ネツキング現象に近い状態
に延伸されればよい。 以下、本発明を実施例により詳しく説明する。
なお、実施例および比較例に挙げた二軸配向した
びんの特性値の評価法、測定方法は次の通りであ
る。 (i) 番号付け びんについたブロー金型のパーテイングライ
ンに沿つてびんを軸方向に切開する。切開した
びんの鍔部直下から第1図に示すようにびんの
形状に沿つて1cm間隔に1,2,3,……と番
号を付けてゆく。実施例で製造したびんでは0
〜8までが首部〜肩部、9〜23までが胴部、
23〜27が底部であり、28は底部中心であ
る。 (ii) 肉 厚 各位置における厚みをマイクロメーターによ
り測定する。 (iii) 密 度 びんの各位置番号における密度の測定は、び
んの各位置から切り取つた一辺が1〜5mmの試
験片について、硝酸カルシウム―水系密度勾配
管を用いて行つた。測定温度は30℃である。 (iv) 配向度 びんの側壁より軸方向および周方向に巾1mm
のたんざく状試片を切り出し、その厚み方向か
らX線を入射(edgeおよびend view)して、
各方向における(100)結晶面の配向角の測定
から配向度を算出した。 (v) 熱収縮率 びんに80℃の熱水を口切一杯充填して5分間
放置する。5分後熱水を排除し、20℃の水を充
填して処理後の内容積(V)を測定し、処理前
の内容積(V0)と比較することにより容積収
縮率Vs(%)を次式で算出する。 Vs(%)=V0−V/V0×100 (vi) 引張特性 びんの最大直径の円筒部分からJIS K―6301
に規定したダンベル3号形試験片を打ち抜き、
東洋測器社製「テンシロン」を用いて引張速度
10mm/minで降伏時および破断時の張力を測定
し、原試料の単位断面積当りの応力に換算す
る。 (vii) 落下試験 びんに1の水を充填し、口栓をした後底を
下に向けて1.2mの高さからコンクリート床面
上に繰り返し落下し、破壊に至るまでの落下回
数を調べる。 実施例 1 固有粘度が0.62のポリエチレンテレフタレート
のペレツトを130℃、0.1mmHgの減圧下、16時間
の条件で水分率0.01%以下に乾燥した後、日本製
鋼社製N―95射出成形機を用いてシリンダー温度
がホツパー側から250℃―270℃―280℃にし、射
出圧力をゲージ圧で40Kg/cm2、金型温度20℃、射
出および冷却のサイクルタイムが15秒および25秒
の成形条件で上端部開口の有底パリソンを成形し
た。パリソンは第2図中に示される形状のもので
あり、開口部Aから首部下端Cまでは外径が30
mm、内径26mmであり、その間に鍔部Bが突起して
いる。Cから底部の曲面開始点Eにかけてパリソ
ン外径はゆるやかに細くなり、Eの外径は24mmで
ある。パリソンの全長は140mmで、Aから鍔部B
の下端までの長さは23mm、鍔部下端BからCまで
の首部の長さは10mmである。 このパリソンを自転用駆動装置のついた上向き
のパリソン嵌合部に、パリソン開口端を下向けに
して嵌装し、加熱分布が自由に調節できる10面の
遠赤外線ヒーターおよび熱反射板を有するオーブ
ン中で回転させながら加熱し、パリソン温度分布
が首部のC点で115℃、胴部のD点で100℃、底部
のF点で115℃になつた時点で加熱オーブンより
出し、延伸ブロー成形機に直ちに移送した。 延伸ブロー成形機の割金型を閉鎖したとき、該
パリソン首部のBC面は完全に割金型と密着する
状態にあらかじめ設定されてあり、金型閉鎖後延
伸ロツドおよび続いての圧流気体による延伸を行
つた。 ブロー金型のキヤビテイ構造はビールびん形状
のもので第2図に示すように全長265mm、胴部の
外径が80mm、内容積1000mlである。 また二軸延伸ブローの成形条件は延伸ロツド油
圧30Kg/cm、圧縮気体圧20Kg/cm2およびブロー金型
温度20℃である。 このようにして得たびんは首部のブロー金型と
最初から接触していた部分と非接触部との境界お
よび底部の延伸ロツドの接触部と非接触部との境
界近傍に延伸固定点とみられる急激な肉厚変位点
が外見からも認められた。 また、未延伸部の密度ρ0は1.342であり、未延
伸部のρ0を有する位置からρ0+0.026すなわち
1.368の密度ρを有する延伸部の位置までの距離
は、首部未延伸部からの該当距離が1.5cm、底部
未延伸部からの該当距離が1.2cmであり、したが
つて 首部近傍 d/ρ−ρ0=58 底部近傍 d/ρ−ρ0=46 であつた。 この二軸配向びんに80℃の熱水を充填し、5分
間放置後体積収縮率を測定したところ1.35%であ
つた。 実施例 2〜4 固有粘度が0.80、1.00および1.21の各ポリエチ
レンテレフタレート(PET)を使用し、表1に
示す射出成形条件で実施例1と同様の上端部開口
の有底パリソンを成形した後、パリソン加熱オー
ブンで表2に示す温度分布をパリソンに付与し
た。その後実施例1と同様にして二軸延伸ブロー
成形を行つた。得られたびんの特性値は表2に示
す通りであり、高粘度のPETほど高温度で延伸
でき、収縮率の小さいびんが得られた。また、
各々のびんには未延伸部と延伸部との境界近傍の
延伸開始点とみられる位置に急激な肉厚変位点が
認められた。これは表3に示す実施例3で得たび
んの各部位における肉厚、密度および配向度の測
定結果によつても確認することができる。 なお機械的性質については表4に示した。 比較例 1〜4 固有粘度が各々0.62、0.80、1.00および1.21の
ポリエチレンテレフタレートから表1に示す射出
成形条件で有底パリソンを成形し、次いで各パリ
ソンを加熱オーブン中で表2に示すパリソン温度
に加熱して実施例1と同様に二軸延伸ブロー成形
を行つた。得られたびんの特性は表2に示した。 比較例1〜4は各々実施例1〜4に対応するも
のであり、延伸ブロー前のパリソン温度が均一な
場合の例を示している。パリソン温度分布が均一
な場合はパリソン首部を金型表面と少くとも3mm
以上密着させるという本発明の一要件を満たして
いても、肩部に小変形が生じ、底部も収縮が認め
られた。またこれらのびんは表―3からも明らか
なように未延伸部から延伸部にかけて肉厚はなだ
らかに変化しており、本発明のびんのような肉厚
の急激な変位点は認められなかつた。
The present invention relates to a biaxially oriented bottle molded from a thermoplastic polyester containing ethylene terephthalate as the main repeating unit, and more specifically, it has excellent mechanical properties, gas barrier properties, chemical resistance, etc. The present invention relates to a biaxially oriented bottle that has excellent protection against objects and has excellent thermal stability with less deformation, shrinkage, etc. when filled with high-temperature contents. Thermoplastic polyester, which is mainly composed of polyethylene terephthalate, has been attracting attention for its excellent mechanical properties, gas barrier properties, chemical resistance, fragrance retention, transparency, hygiene, etc., and has been used for various containers, films, It is processed into sheets and is widely used as packaging material. Blow molding technology can also be used for hollow containers such as bottles and cans.
In particular, recent improvements in biaxial stretch blow molding technology have been particularly remarkable. In biaxial stretch blow molding using polyethylene terephthalate, a geometric form (hereinafter referred to as a parison) having a cylindrical shape with an expandable upper end opening and a bottom (hereinafter referred to as a parison) is generally made of amorphous material by injection molding or extrusion molding. temperature range in which the parison can be formed and then oriented, e.g. glass transition temperature (Tg)
The product is heated to a temperature range below the melting point (T n ) and stretched in the axial direction by an extrusion rod connected to a spindle and in the circumferential direction by blowing compressed gas in a blow mold having the desired volumetric structure of the container. is being stretched. During this stretching process, the molecular chains of the crystalline polymer are stretched in both the axial and circumferential directions, and the accompanying generation of oriented crystallized substances improves the physical properties of the bottle, such as mechanical properties such as tensile strength and impact strength, and gas permeation resistance. Sexuality etc. are significantly improved. However, in biaxially oriented bottles obtained by ordinary stretch-molding methods, various problems arise due to distortions generated during the stretching process. For example, when a polyester bottle after molding is stored in a hot and humid atmosphere such as in the summer, the bottle may gradually shrink and its internal volume may fluctuate, or the content may be at a temperature close to the glass transition temperature of polyester, such as 60°C or higher. When filling the bottle, it has the fatal disadvantage that shrinkage occurs during or after filling, making it impossible to fill the contents accurately, and the bottle deforms, making it impossible to maintain its original shape. Currently, the range of applications is severely restricted, as this greatly reduces the commercial value of the bottle. Generally, polyethylene terephthalate molded products such as threads with a one-dimensional structure or films with a two-dimensional structure are subjected to a heat treatment called heat setting after stretching and forming to improve heat resistance. The purpose of this is to change the microcrystals generated during stretching into a crystalline structure that is more stable against heat, fixing it in that alignment state, and alleviating residual strain during stretching. Molded products subjected to this treatment The heat resistance of is significantly improved. Based on a similar idea, a method of heat-fixing stretch-oriented bottles in order to improve their heat resistance has been proposed in Japanese Patent Publication No. 49-3073 and Japanese Patent Application Laid-open No. 52-52.
It is disclosed in Publication No. 126376, etc. However, no matter what shape a stretch-oriented bottle is molded using the normal blow molding method, it is impossible to achieve a uniform stretch ratio over the entire bottle, and the bottle is not stretched at all. It is an integral molded product consisting of a stopper, a neck to shoulder part and bottom part with a low stretching ratio, and a body part with a high stretching ratio. Although thermal fixation at .degree. C. shows a tendency to reduce thermal shrinkage, not only is it not possible to obtain a sufficient effect, but the low-stretched portions are prone to whitening due to thermal crystallization, resulting in a fatal drawback of impairing the aesthetic appearance of the bottle. In addition, the method described in JP-A-52-126376 uses a mold that can provide temperature distribution according to the stretching ratio of each part.
In other words, the attempt was made to prevent the whitening phenomenon by heat-setting the low-stretched areas at a low temperature and the high-stretched areas at a high temperature, but especially in the stretching orientation where the draw ratio changes continuously from the unstretched area to the stretched area. It is nearly impossible to create a temperature gradient that corresponds to the stretching ratio for a plastic bottle, and even if it were possible to create a certain temperature distribution, the cycle time required for heating and cooling the mold would be Not only does it take a long time to process, which significantly reduces productivity, but it also consumes a large amount of thermal energy, and if you try to increase the density enough to provide sufficient heat resistance, it will result in whitening. If an attempt is made to avoid this, the density cannot be increased enough to provide sufficient heat resistance, and in any case, a satisfactory biaxially oriented bottle cannot be obtained, making this method difficult to commercialize in practice. In view of these circumstances, the present inventors analyzed the heat shrinkage behavior of biaxially oriented bottles obtained under various conditions, and found that they had excellent heat resistance through a stretch-forming process without any particular heat-setting treatment. As a result of intensive research to provide a biaxially oriented bottle having the following characteristics, the present invention was achieved. That is, the present invention is made of a thermoplastic polyester having an intrinsic viscosity of at least 0.60 and having ethylene terephthalate as a main repeating unit, and has unstretched portions in the neck and bottom center portions, and stretched portions in the shoulder, body, and bottom corner portions. A biaxially oriented bottle having a portion in which the stretching ratio changes continuously from the unstretched portion to the stretched portion, from the neck to a portion of the shoulder, and from the center of the bottom to the corner, the unstretched portion being a biaxially oriented bottle. In the part where the stretching ratio continuously changes from ρ to the stretched part, the position of the stretched part where the density first exceeds ρ (g/cm 3 ) from the stretching start point of the unstretched part having density ρ 0 (g/cm 3 ). Biaxial orientation characterized in that the ratio of the distance d (cm) to the density increase (ρ - ρ 0 ) is expressed by the following formula [], and the density of the stretched portion exceeding d is at least greater than ρ. Shit bottle. d/ρ−ρ 0 <80 [] (However, ρ≧ρ 0 +0.026) The biaxially oriented bottle of the present invention is disclosed in Japanese Patent Publication No. 49-3073 and Japanese Patent Application Laid-Open No. 52-126376. It has excellent mechanical properties, gas barrier properties, chemical resistance, etc. without the need for special heat-setting treatment, and has excellent protection against contents, while also preventing deformation when filled with high-temperature contents. This bottle has excellent thermal stability with little shrinkage. Therefore, it has the characteristic of being able to withstand heat such as high-temperature filling and heat sterilization. Of course, another major feature is that it does not require heat fixation and has excellent transparency without problems such as whitening. To explain in more detail the structural and shape characteristics of the biaxially oriented bottle of the present invention, the biaxially oriented bottle has mostly a stretched portion a having a thermally stable structure, as shown in FIG. , there are very few thermally unstable stretched portions, ie, portions b where the stretching ratio changes continuously from unstretched portions to stretched portions, and other features include unstretched portions c. Taking as an example a cylindrical narrow-mouth bottle of the present invention obtained by stretch-blow molding using a substantially amorphous polyester bottomed parison with an open top end, the entire body of the bottle, The shoulder and bottom corner of the bottle are part a above, the neck and center of the bottom are part c above, and a small part from the neck to the shoulder and from the center of the bottom to the corner. There is only part b in a small part. The stretched part a, which has a thermally stable structure, is a part where crystallization is promoted more than molecular chain orientation during stretching, and there are crosslinking points (microcrystals) that are sufficient to suppress strain relaxation. This part has good heat resistance due to the presence of Taking polyethylene terephthalate as an example, the density ρ of this part is at least 0.026 or more greater than the density ρ 0 =1.340 to 1.342 g/cm 3 of the unstretched part, that is, 1.366 to 1.368 g/cm 3 or more, preferably 1.368 or more. X-rays were incident on a specimen cut into 1 mm wide strips from the side wall of the bottle in the axial and circumferential directions from the thickness direction (edge and end view), and the orientation angle of the (100) crystal plane was measured. The obtained degree of orientation is between 80 and 90 in the main orientation direction.
Further, the thermally unstable stretched portion b refers to the following two portions in terms of molecular structure. One is a low-stretched area in which no microcrystals are observed due to stretching and the molecular chains are slightly oriented, and when heat is applied to this area, the stretched rubber contracts like relaxing. The other is a region where molecular chain orientation is promoted more than crystallization during stretching, and heat resistance is poor because there are no crosslinking points (microcrystals) sufficient to suppress strain relaxation.
This part has a density increase of less than 0.026 compared to the unstretched part, that is, 1.366 to 1.368 g/cm 3 or less, and the degree of orientation determined by the above method is 90 in the main orientation direction.
That's all. Furthermore, the unstretched part c is a substantially non-oriented part, and although it softens when treated for a short period of time at a temperature around 80°C, no structural changes such as whitening occur, and the softening is similar to that of the unstretched part. This can be solved by increasing the wall thickness, so the existence of this part does not pose any problem in terms of heat resistance at temperatures around 80°C. Therefore, the biaxially oriented bottle having excellent heat resistance as used in the present invention is one that has a structure in which most of the bottle consists of the above-mentioned part a, and there is very little part b, especially the low-stretched part. Another major feature is that the above-mentioned section b is fixed only in the areas that have the least effect on the volume of the bottle, that is, in extremely narrow areas near the top of the neck and the center of the bottom. In this case, it is more preferable that the bottom of the bottle be a self-supporting bottom with a concavely curved bottom at the center as shown in FIG. 1, since this facilitates the fixation of part b. On the other hand, for biaxially oriented bottles molded by normal molding methods, d/ρ−ρ 0 exceeds 100,
Since there is a large amount of the above-mentioned portion b, even if the density of the body portion satisfies the value of ρ 0 +0.026 or more according to the present invention, the bottle cannot be made to have excellent heat resistance with little heat shrinkage and thermal deformation. Note that d/ρ−ρ 0 is particularly preferably
80 or less. The thermoplastic polyester having ethylene terephthalate as a main repeating unit as used in the present invention usually has an acid component of 80 mol% or more, preferably 90 mol% or more of terephthalic acid, and a glycol component of 80 mol%, preferably 90 mol%. The above refers to polyester that is ethylene glycol, and the remaining acid components include isophthalic acid, diphenyl ether 4,
4'-dicarboxylic acid, naphthalene 1,4- or 2,6-dicarboxylic acid, adipic acid, sebacic acid, decane 1,10-dicarboxylic acid, hexahydroterephthalic acid, and as other glycol components propylene glycol, 1,4 -butanediol,
Neopentyl glycol, diethylene glycol, cyclohexanedimethanol, 2,2-bis(4-hydroxyphenyl)propane, 2,2-
bis(4-hydroxyethoxyphenyl)propane, or P-oxybenzoic acid as the oxyacid;
It means a polyester containing P-hydroethoxybenzoic acid or the like. In addition, polyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol can also be used as copolymerization components if their molecular weight is about 3000 or less, but copolymerization in large amounts reduces heat resistance, so they are usually used as glycol components. It is preferable to limit the amount to 2 to 3 mol% or less. The polyester in the present invention may contain additives such as colorants, ultraviolet absorbers, antistatic agents, thermal oxidative deterioration inhibitors, antibacterial agents, and lubricants in appropriate proportions, if necessary. The thermoplastic polyester of the present invention needs to have an intrinsic viscosity of 0.55 or more, preferably
It has an intrinsic viscosity of 0.6 or more, more preferably 0.7 to 1.4. Intrinsic viscosity is the intrinsic viscosity measured at 30°C of a solution of polyester dissolved in a phenol/tetrachloroethane mixed solvent (6/4 weight ratio). If the intrinsic viscosity is less than 0.55, it will be difficult to obtain a transparent amorphous molded product during parison molding, and the mechanical strength will also be insufficient. Although the influence of intrinsic viscosity on the thermal shrinkage of bottles has not been known until now, polyesters with high intrinsic viscosity shift the appropriate drawing temperature for parisons to higher temperatures than polyesters with low intrinsic viscosity, and parisons made of low-viscosity polyesters A biaxially oriented bottle can be formed even under temperature conditions where polyester does not become oriented due to the super draw phenomenon during stretching, and the higher the intrinsic viscosity of the polyester, the higher the heat resistance can be obtained. The biaxially oriented bottle of the present invention can be produced by stretch blow molding under specific conditions from a substantially non-oriented and amorphous bottomed parison with an open top end obtained by a commonly known method. can. That is, first, a substantially non-oriented and amorphous bottomed parison with an open top end is made of polyester by injection molding.
Alternatively, it is formed by cutting an extruded pipe and sealing one end by heating and pressurizing it. Next, the known method is to heat the parison in a heating device to a stretching temperature, for example, in a temperature range above the glass transition temperature (Tg) and below the melting point (Tm), and then press the parison with a stretching rod in a blow mold having a desired volumetric structure. Bottles are manufactured by stretch blow molding using gas. On the other hand, the most preferable manufacturing method for the biaxially oriented bottle of the present invention is, for example, in manufacturing by such a known method, when heating the parison to the stretching temperature, the neck part or neck to shoulder part of the desired bottle shape is After giving a temperature distribution such that the temperature of the parison portion corresponding to the top and bottom of the bottle is 1 to 20°C higher than the temperature of the parison portion corresponding to the body of the bottle, the parison structure and the blow-splitting mold structure are prepared in advance. When the parison is fitted into the parison fitting part and the split mold is closed, at least 3 mm or more of the parison part corresponding to the neck of the bottle will be in the corresponding part of the split mold before stretching blowing. The parison with the temperature distribution is biaxially stretched and blow-molded using a stretching rod and pressurized gas using a blow mold designed to be in close contact with the parison. The above is a blow molding method using a so-called cold parison, but in a blow molding method using a hot parison, the above temperature distribution may be given to the parison during the cooling process to the stretching temperature. The feature of this manufacturing method is that in order to improve the stretching effect of the shoulder and bottom parts of bottles where the stretching ratio is small, it is best to create a clear stretching start point between the unstretched part and the stretched part. As a result of further intensive research based on the knowledge of researchers and others, we have discovered a practical manufacturing method that makes this possible. It is known that when drawing yarn, which is a one-dimensional structure, a temperature gradient is easily created by local heating at the contact points of pins and rolls, and the drawing points are fixed. However, in the case of a parison, which is a three-dimensional structure, it is technically extremely difficult to do so, and there is no knowledge to date of fixing the stretching point on the parison before stretching. When actually heating a parison, since the heat transfer area is large, a sudden temperature change point cannot be obtained only by the temperature gradient that can be applied during heating. Even with molding, it is difficult to clearly fix the stretching points. However, as in the present invention, a parison in which the parison portion corresponding to the neck and bottom of the bottle is heated to a temperature of 1 to 20 degrees Celsius, preferably 1 to 15 degrees Celsius higher than the parison portion corresponding to the body, has a rapid temperature gradient change. Even if there is no dot, when the blow mold is closed, the parison portion corresponding to the neck of the bottle, at least 3 mm or more, preferably 5 mm or more, is brought into contact with the water-cooled neck of the blow mold, thereby forming a contact surface. It is possible to create a significant temperature gradient at the boundary with the non-contact surface, and since the area near the interface on the non-contact side is still at a higher temperature than the body, it is possible to clearly fix the stretching point of the neck. . Also, at the bottom of the parison, after the blow mold is closed, the stretching rod contacts the bottom of the parison and stretches in the axial direction, so the contact area between the tip of the stretching rod and the bottom of the parison is rapidly cooled, and the contact area is also non-contacted. A significant temperature gradient occurs at the interface between the parts,
The stretch point can be fixed in the same way as the neck. On the other hand, when a parison heated to a uniform temperature as in the conventional method is stretch-blow-molded using this method, the neck part that comes into contact when the blow mold is closed and the bottom part that comes into contact with the stretching rod during stretching will experience a temperature drop, and the non-contact areas will drop. The area near the side boundary also becomes lower in temperature than other non-contact areas, making it completely impossible to bring the stretching start point to the contact boundary surface. For this reason, it is necessary to heat the parison part, which corresponds to the neck part that comes into contact with the mold when the blow mold is closed and the bottom part that comes into contact with the stretching rod during stretching, to a higher temperature in advance than the non-contact parts. In this way, the biaxial stretch blow molded bottle has the same stretching effect as the body in the region from the neck to the shoulder where the stretching ratio is small and in the region from the center of the bottom to the curved portion. Therefore, it has the advantage that not only excellent heat resistance is obtained, but also mechanical strength, gas barrier properties, etc. are improved in the portion where the drawing ratio is small. In the present invention, the substantially amorphous bottomed parison with an open top end formed by injection molding or extrusion molding is heated to the drawing temperature using a heating oven equipped with a conventional heating element such as a block heater or an infrared heater. It takes place inside. Furthermore, various methods are used to provide a parison temperature distribution by heating. For example, a parison is loaded into a spindle that moves while rotating in a heating oven, and the parison moves while rotating in the oven. At that time, an auxiliary heater may be installed in addition to the normal heating element only in the heating section of the oven that corresponds to the part of the parison where a temperature gradient should be created, so that only that section can be heated to a higher temperature than other parts.
Alternatively, there are various methods such as adjusting the heating by installing a heat shielding plate or a heat reflecting plate in the oven section corresponding to the body of the parison, which has a relatively low temperature distribution, or using local high-frequency heating or dielectric heating. Although there are methods, there are no restrictions on the method of providing temperature distribution to the parison. Furthermore, the temperature distribution of the parison is given in the axial direction, and it is desirable that the temperature on the same circumference is uniform in the circumferential direction. It is preferable to heat it while rotating it by a drive device. The parison stretching temperature (approximately equal to the heating temperature when stretch blow molding is performed immediately after heating) is within the range of Tg or higher and Tm or lower of the polyester normally used, but the appropriate stretching temperature depends on the stretching speed and the polyester used. It varies depending on the intrinsic viscosity etc. Usually
80-170°C is preferred. However, in order to obtain a bottle with better heat resistance, it is not necessary to apply a uniform stretching temperature, but rather, depending on the intrinsic viscosity (V) of the polyester used, the stretching temperature (T )°C is more preferably applied. 60V+85≧T≧60V+45... [] In other words, the optimum temperature for stretching shifts to the higher temperature side as the intrinsic viscosity of polyester increases, and it is recommended to perform stretch blow molding as high as possible within the temperature range that allows oriented crystallization during stretching. preferable. Therefore, in the present invention, the parison portion corresponding to the neck, shoulder and bottom of the bottle is heated at a temperature of 1 to 20°C, preferably 1 to 15°C, higher than this stretching temperature (T).
It is stretch-blow molded at high temperatures. Next, the relationship between the parison structure and the stretch blow split mold used in the present invention will be described. FIG. 2 illustrates the relationship between the two using an example. FIG. 2 is an explanatory diagram showing the state when the split mold with the parison fitted into the parison fitting portion is closed. Furthermore, FIG. 3 is an enlarged view of the opening, neck, and shoulder of the parison and split mold in FIG. 2. As seen in the figure, the feature of the present invention is that at least 3 mm or more of the neck portion below the parison collar is already in complete contact with the closed mold before stretch blowing. On the other hand, FIGS. 4 and 5 show an example of the relationship between the parison structure and the split mold structure, which does not apply to the present invention, that is, the conventional method. In FIGS. 4 and 5, there is no contact between the neck and the closed split mold. Biaxial stretch blow molding machines have two directions for gripping the parison during the heating of the parison and the stretch blowing process in the blow mold. That is, one type has the parison fitting portion facing upward, and in this case, the parison is fitted with the opening facing downward. This is the so-called inverted type. The other type is a so-called suspension type fitting in which the parison fitting part faces downward and the parison opening faces upward. In order to satisfy the condition that when the blow split mold is closed, which is a component of the present invention, at least 3 mm or more of the parison portion corresponding to the bottle neck is in close contact with the blow split mold before starting stretching blowing. It is also important to appropriately select the settings of the parison and/or the blow splitting mold of the part to be brought into close contact, depending on the above-mentioned gripping direction of the parison. For example, in the case of a suspended type gripping direction, even if the outer diameter of the parison is designed to match the diameter of the neck of the split mold so that it will come into close contact with the blow split mold, the parison will have softened after being heated to the appropriate temperature for stretching. The larger the parison, the more it tends to sag downward due to its own weight, so when the heated parison is inserted into the blow mold and the mold is closed, the parts that should be in contact may no longer make contact. Normal. For this reason, in the case of suspension type fitting, it is preferable to take measures such as designing the outer diameter of the parison at the neck part to be contacted in advance to be larger than the corresponding part of the blow splitting mold. On the other hand, in the case of inverted fitting, the parison tends to become thicker due to its own weight during the heating stage, so even if the outside diameter of the neck of the parison that comes into contact with it and the diameter of the corresponding blow split mold neck are the same, good. Further explaining the stretch blow molding method, the parison, which has the above-mentioned temperature and has been adjusted to the stretching temperature by heating or cooling, is fitted into the parison fitting part of the stretch blow molding machine, and the blow split mold is closed.
The part of the parison neck that is in contact with the mold by at least 3 mm is then rapidly cooled. Immediately thereafter, the parison is stretched in the axial direction by extrusion of a stretching rod connected to the parison fitting, preferably by a factor of at least 2 times, and subsequently or almost simultaneously, preferably by a factor of 5.
It is stretched in the circumferential direction preferably by a factor of 8 or more (circumferential ratio to the parison) using a pressurized gas of Kg/cm 2 or more, especially 10 Kg/cm 2 or more. Further, the area magnification of the stretching is usually 2.5 times or more, preferably 3 times or more, relative to the parison. In this method, the temperature distribution in the parison immediately after the drawing rod reaches the bottom of the parison is different from the temperature distribution in the temperature control stage by heating or cooling the parison, and the temperature distribution in the non-contact area immediately adjacent to the neck in contact with the mold and the drawing The temperature of the non-contact area near the bottom that is in contact with the rod is the highest, and the temperature of the area that comes into contact with the mold and stretching rod is rapidly cooled, so there is a large temperature gradient at the interface between the contact area and the non-contact area. is generated, and the material is stretched around this boundary surface in a state similar to a netting phenomenon, and at the same time, it is also stretched in the circumferential direction by blowing with a pressurized gas. In other words, the boundary surface having a steep temperature gradient at this time becomes the stretching fixing point. The contact between the parison part corresponding to the neck of the bottle and the mold not only creates a rapid temperature gradient in the neck part, but also has the effect of fixing the drawing point more clearly by mechanically gripping the parison at the contact part. have. At this time, it is preferable for the bottom of the bottle to have a concave center at the bottom as shown in FIG. 1, since this makes it easier to fix the stretching point. In the biaxially oriented bottle thus obtained, the wall thickness suddenly becomes thinner immediately near the part that was in contact with the mold and the stretching rod, and the boundary between the stretched part and the unstretched part is clearly formed. . In addition, since the transition from the unstretched part to the highly stretched part is steep, the biaxial structure satisfies the conditions set forth in claim 1 without almost producing a low stretched part, which is most unstable against heat shrinkage. Oriented bottles can be obtained with good reproducibility and high productivity. The above describes particularly preferable stretch blow molding in which the neck and the split mold are brought into contact.
Even with the parison structure and split mold structure shown in Figures and Figure 5, a ring made of aluminum or the like is fitted in advance to the parison portion corresponding to the neck of the bottle, which provides a temperature gradient, and stretch blow molding is performed. By doing so, you can achieve your goals. The point is that the stretching points are clearly fixed at the neck and bottom, and the stretching is done in a state close to the netting phenomenon. Hereinafter, the present invention will be explained in detail with reference to Examples.
The methods for evaluating and measuring the characteristic values of the biaxially oriented bottles listed in the Examples and Comparative Examples are as follows. (i) Numbering Cut the bottle in the axial direction along the parting line of the blow mold attached to the bottle. Starting just below the flange of the cut bottle, number 1, 2, 3, etc. at 1 cm intervals along the shape of the bottle, as shown in Figure 1. 0 for the bottles manufactured in the examples
~8 is the neck to shoulder area, 9~23 is the torso,
23 to 27 are the bottom, and 28 is the center of the bottom. (ii) Wall thickness Measure the thickness at each location using a micrometer. (iii) Density The density at each position number on the bottle was measured using a calcium nitrate-water density gradient tube on test pieces cut from each position on the bottle and measuring 1 to 5 mm on each side. The measurement temperature is 30°C. (iv) Degree of orientation Width 1mm in the axial and circumferential directions from the side wall of the bottle
A tanzak-shaped specimen is cut out, and X-rays are incident on it from the thickness direction (edge and end view).
The degree of orientation was calculated from the measurement of the orientation angle of the (100) crystal plane in each direction. (v) Heat shrinkage rate Fill a bottle to the brim with 80°C hot water and leave it for 5 minutes. After 5 minutes, remove the hot water, fill with 20℃ water, measure the internal volume (V) after treatment, and compare it with the internal volume (V 0 ) before treatment to determine the volumetric shrinkage rate Vs (%). is calculated using the following formula. Vs (%) = V 0 - V / V 0 × 100 (vi) Tensile properties JIS K-6301 from the cylindrical part of the maximum diameter of the bottle
Punch out a dumbbell size 3 test piece specified in
Tensile speed using “Tensilon” manufactured by Toyo Sokki Co., Ltd.
Measure the tension at yield and break at 10 mm/min and convert it to stress per unit cross-sectional area of the original sample. (vii) Drop test Fill a bottle with 1 water, close the cap, and drop the bottle repeatedly from a height of 1.2 m onto a concrete floor with the bottom facing down to determine the number of drops until it breaks. Example 1 Polyethylene terephthalate pellets with an intrinsic viscosity of 0.62 were dried at 130°C and under a reduced pressure of 0.1 mmHg for 16 hours to a moisture content of 0.01% or less, and then molded using an N-95 injection molding machine manufactured by Nippon Steel Corporation. The cylinder temperature is 250℃ - 270℃ - 280℃ from the hopper side, the injection pressure is 40Kg/cm 2 in gauge pressure, the mold temperature is 20℃, and the injection and cooling cycle times are 15 seconds and 25 seconds. A parison with a bottom and an opening was molded. The parison has the shape shown in Figure 2, and the outer diameter from the opening A to the lower end C of the neck is 30 mm.
mm, and the inner diameter is 26 mm, with the flange B protruding between them. The outer diameter of the parison gradually decreases from C to the curved starting point E at the bottom, and the outer diameter of E is 24 mm. The total length of the parison is 140mm, from A to flange B.
The length to the lower end of the collar is 23 mm, and the length of the neck from the lower end of the collar B to C is 10 mm. This parison is fitted into an upward-facing parison fitting part equipped with an autorotation drive device, with the open end of the parison facing downward, and an oven equipped with a far-infrared heater and a heat reflection plate on 10 sides allows for freely adjusting the heating distribution. The parison is heated while rotating in the oven, and when the temperature distribution of the parison reaches 115℃ at point C at the neck, 100℃ at point D at the body, and 115℃ at point F at the bottom, it is removed from the heating oven and placed in a stretch blow molding machine. was immediately transferred to. When the split mold of the stretch blow molding machine is closed, the BC surface of the parison neck is set in advance to be in complete contact with the split mold. I went there. The cavity structure of the blow mold is shaped like a beer bottle, and as shown in Figure 2, the total length is 265 mm, the outer diameter of the body is 80 mm, and the internal volume is 1000 ml. The molding conditions for biaxial stretching blowing are a stretching rod oil pressure of 30 Kg/cm, a compressed gas pressure of 20 Kg/cm 2 and a blow mold temperature of 20°C. The bottle obtained in this way appears to have stretching fixing points near the boundary between the neck part that originally contacted the blow mold and the non-contact part, and the bottom part near the boundary between the contact part and the non-contact part of the stretching rod. A sharp wall thickness displacement point was also observed from the outside. Further, the density ρ 0 of the unstretched part is 1.342, and the density ρ 0 of the unstretched part is ρ 0 +0.026, that is, from the position having ρ 0 of the unstretched part.
The distance to the position of the stretched part having a density ρ of 1.368 is 1.5 cm from the neck unstretched part and 1.2 cm from the bottom unstretched part, so near the neck d/ρ− ρ 0 =58 near the bottom d/ρ−ρ 0 =46. This biaxially oriented bottle was filled with hot water at 80°C, and after being left for 5 minutes, the volumetric shrinkage rate was measured and found to be 1.35%. Examples 2 to 4 Using polyethylene terephthalate (PET) with intrinsic viscosities of 0.80, 1.00, and 1.21, a bottomed parison with an opening at the top end similar to that of Example 1 was molded under the injection molding conditions shown in Table 1. The temperature distribution shown in Table 2 was imparted to the parison in a parison heating oven. Thereafter, biaxial stretch blow molding was performed in the same manner as in Example 1. The characteristic values of the obtained bottles are as shown in Table 2, and the higher the viscosity of PET, the higher the temperature it can be stretched, and the smaller the shrinkage rate of the bottle. Also,
In each bottle, a sharp wall thickness change point was observed at a position considered to be the stretching start point near the boundary between the unstretched part and the stretched part. This can also be confirmed by the measurement results of wall thickness, density, and degree of orientation at each part of the bottle obtained in Example 3 shown in Table 3. The mechanical properties are shown in Table 4. Comparative Examples 1 to 4 Bottomed parisons were molded from polyethylene terephthalate having intrinsic viscosities of 0.62, 0.80, 1.00, and 1.21 under the injection molding conditions shown in Table 1, and then each parison was heated in a heating oven to the parison temperature shown in Table 2. Biaxial stretch blow molding was performed in the same manner as in Example 1 by heating. The characteristics of the obtained bottle are shown in Table 2. Comparative Examples 1 to 4 correspond to Examples 1 to 4, respectively, and show examples in which the temperature of the parison before stretch blowing is uniform. If the parison temperature distribution is uniform, the parison neck should be at least 3 mm from the mold surface.
Even though one of the requirements of the present invention of close contact was satisfied, small deformation occurred in the shoulder portion, and shrinkage was observed in the bottom portion as well. In addition, as is clear from Table 3, the wall thickness of these bottles changed gradually from the unstretched part to the stretched part, and no abrupt change point in the wall thickness was observed as in the bottles of the present invention. .

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 実施例5および比較例5〜8 固有粘度1.0のポリエチレンテレフタレートを
表1の条件で射出成形し、実施例1と同じ形状の
パリソンを5本得た。これらのパリソンは、この
まゝでは第2図および第3図で示される金型閉鎖
状態ではパリソンの首部BCの10mmは金型と接触
するように設定されている。これら5本のパリソ
ンのうち1本は鍔部Bより下5mmを残し、また別
の1本は鍔部より下3mmを残し、更に他の1本は
鍔下より1mmを残し、外径30mmの部分が29mmにな
るように旋盤を使用して外周方向に切削した。ま
た残りの2本は首部BC全体の外周を切削し外径
30mmを29mmとした。そしてこれらのパリソンは
各々実施例5および比較例5〜8のパリソンとし
た。 次にこれらのパリソンは表5で示す温度分布を
もつように加熱する以外は実施例1と同じ延伸条
件で二軸延伸ブロー成形を行つた。かくして得た
二軸配向びんの特性値を表5に示し、併せて実施
例3の特性値も再掲した。 この結果から明らかなように、びん特性として
特許請求の範囲第1項をはずれるびんは収縮率が
大きく、また製造条件において単にパリソン加熱
時に温度分布を設けても、ブロー金型閉鎖時に金
型とパリソン首部の接触が少くとも3mmを越えな
いと肩部の小変形と収縮を防止することがむつか
しいことが分る。
[Table] Example 5 and Comparative Examples 5 to 8 Polyethylene terephthalate having an intrinsic viscosity of 1.0 was injection molded under the conditions shown in Table 1 to obtain five parisons having the same shape as in Example 1. As is, these parisons are set so that 10 mm of the neck part BC of the parisons is in contact with the mold in the mold closed state shown in FIGS. 2 and 3. Of these five parisons, one parison leaves 5mm below the flange B, another one leaves 3mm below the flange, and the other parison leaves 1mm below the flange, and has an outer diameter of 30mm. The part was cut in the outer circumferential direction using a lathe so that it was 29 mm. In addition, the remaining two are made by cutting the entire outer circumference of the neck BC and making the outer diameter
30mm was changed to 29mm. These parisons were used as the parisons of Example 5 and Comparative Examples 5 to 8, respectively. Next, these parisons were subjected to biaxial stretch blow molding under the same stretching conditions as in Example 1, except that they were heated to have the temperature distribution shown in Table 5. The characteristic values of the biaxially oriented bottle thus obtained are shown in Table 5, and the characteristic values of Example 3 are also listed again. As is clear from this result, bottles whose bottle characteristics fall outside the scope of claim 1 have a large shrinkage rate, and even if the manufacturing conditions simply provide a temperature distribution during parison heating, the mold does not change when the blow mold is closed. It can be seen that it is difficult to prevent small deformation and contraction of the shoulders unless the contact between the necks of the parison exceeds at least 3 mm.

【表】 実施例 7 酸成分としてイソフタル酸を10モル%含有する
共重合ポリエチレンテレフタレート/イソフタレ
ートからなる固有粘度0.85のペレツトを常法によ
り乾燥後、日本製鋼社製射出成形機を用いてシリ
ンダー温度をホツパー側から240℃―260℃―270
℃にし、射出圧力がゲージ圧で50Kg/cm2、金型温
度20℃、射出および冷却のサイクルタイムが15秒
および25秒の成形条件で実施例1と同形状のパリ
ソンを成形した。 このパリソンを加熱オーブン中で加熱し、表6
に示す温度分布をもたせたあと実施例1と同じ延
伸ブロー条件で二軸配向びんを成形した。得られ
たびんの特性値は表6に示した。 比較例 8〜10 実施例7と同様にして、射出成形により共重合
ポリエチレンテレフタレート/イソフタレートの
パリソンを3本成形した。比較例8としてそのう
ちの1本を使用し、さらに比較例9および10とし
て残り2本のパリソンはパリソン首部の外径を比
較例6と同様にして外周方向に切削し30mmから29
mmにした。次いでこの3本のパリソンを表6に示
したパリソン温度に加熱した後、実施例1と同じ
延伸ブロー条件で二軸延伸ブローを行つた。得ら
れたびんの特性値は表6に示した。 共重合ポリエステルにおいても本発明の要件を
満たさないびんは収縮率が大きく、延伸ブロー時
のパリソン温度分布のないもの、パリソン首部の
金型との接触部のないものは変形を伴い、特に両
要件を満たさない比較例は著しく変形した。
[Table] Example 7 After drying pellets with an intrinsic viscosity of 0.85 made of copolymerized polyethylene terephthalate/isophthalate containing 10 mol% of isophthalic acid as an acid component by a conventional method, the cylinder temperature was adjusted using an injection molding machine manufactured by Nippon Steel Corporation. 240℃-260℃-270 from the hopper side
A parison having the same shape as in Example 1 was molded under the following molding conditions: the injection pressure was 50 Kg/cm 2 gauge pressure, the mold temperature was 20° C., and the injection and cooling cycle times were 15 seconds and 25 seconds. This parison was heated in a heated oven and Table 6
After providing the temperature distribution shown in , a biaxially oriented bottle was molded under the same stretch blowing conditions as in Example 1. The characteristic values of the obtained bottles are shown in Table 6. Comparative Examples 8 to 10 In the same manner as in Example 7, three parisons of copolymerized polyethylene terephthalate/isophthalate were molded by injection molding. One of them was used as Comparative Example 8, and the remaining two parisons as Comparative Examples 9 and 10 were cut from 30 mm to 29 mm by cutting the outer diameter of the parison neck in the same way as Comparative Example 6.
It was set to mm. Next, these three parisons were heated to the parison temperature shown in Table 6, and then subjected to biaxial stretch blowing under the same stretch blowing conditions as in Example 1. The characteristic values of the obtained bottles are shown in Table 6. Even with copolymerized polyester, bottles that do not meet the requirements of the present invention have a large shrinkage rate, and bottles that do not have a parison temperature distribution during stretch blowing and those that do not have a parison neck contact area with the mold are accompanied by deformation, especially those that do not meet both requirements. Comparative examples that did not meet the requirements were significantly deformed.

【表】【table】 【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による実施例で製造されたびん
のブロー金型のパーテイングラインに沿つて軸方
向に切開した縦断面概略図であり、a,b,cは
本発明で定義された延伸区分に対応する概略の位
置、および1,2,3,……,28はびんの鍔部
直下から1cm間隔で番号付けし、物性値の測定を
行つた部位の番号である。また第2図は本発明で
用いるパリソン構造と延伸ブロー割金型との関係
を例示した概略図であり、パリソン嵌合部にパリ
ソンを嵌装し割金型を閉じたときの状態を示す説
明図である。更に第3図は第2図におけるパリソ
ンおよび割金型の開口部、首部および肩部にかけ
ての拡大図である。更にまた第4図は第2図に対
応する従来法のパリソン構造と延伸ブロー割金型
との関係を示した概略図であり、第5図は第4図
におけるパリソンおよび割金型の開口部、首部お
よび肩部にかけての拡大図である。 a:熱的に安定な延伸部分、b:熱的に不安定
な延伸部分(延伸比が連続して変化する部分)、
c:未延伸部分、29:パリソン、30:固定
台、31,32:割金型、33:延伸ロツド、3
4:パリソン嵌合部、A:パリソン開口部、B:
鍔部、C:首部、D:胴部中央、E:底部曲面開
始部、F:底部中央。
FIG. 1 is a schematic vertical cross-sectional view cut along the parting line of a blow mold for a bottle manufactured in an embodiment according to the present invention, and a, b, and c are drawings defined in the present invention. The approximate positions corresponding to the divisions and 1, 2, 3, . . . , 28 are numbered at 1 cm intervals from just below the flange of the bottle, and are the numbers of the parts where the physical property values were measured. Furthermore, FIG. 2 is a schematic diagram illustrating the relationship between the parison structure and the stretch-blow split mold used in the present invention, and is an explanation showing the state when the parison is fitted into the parison fitting part and the split mold is closed. It is a diagram. Furthermore, FIG. 3 is an enlarged view of the opening, neck, and shoulder of the parison and split mold in FIG. 2. Furthermore, FIG. 4 is a schematic diagram showing the relationship between the conventional parison structure and the stretch-blow split mold corresponding to FIG. 2, and FIG. 5 shows the openings of the parison and split mold in FIG. , is an enlarged view of the neck and shoulders. a: thermally stable stretched portion, b: thermally unstable stretched portion (portion where the stretching ratio changes continuously),
c: unstretched portion, 29: parison, 30: fixed base, 31, 32: split mold, 33: stretched rod, 3
4: Parison fitting part, A: Parison opening, B:
Flange, C: Neck, D: Center of body, E: Start of bottom curved surface, F: Center of bottom.

Claims (1)

【特許請求の範囲】 1 エチレンテレフタレートを主たる繰返し単位
とする少なくとも0.60以上の固有粘度を有する熱
可塑性ポリエステルからなり、かつ首部および底
中央部に未延伸部分を、肩部、胴部および底部コ
ーナ部に延伸部分をおよび首部から肩部の一部、
底部中心からコーナーにいたる一部に未延伸部か
ら延伸部にかけて延伸比が連続して変化する部分
を有する二軸配向したびんであつて、未延伸部か
ら延伸部にかけて延伸比が連続して変化する部分
において、密度ρ0(g/cm3)を有する未延伸部の延
伸開始点から最初に密度ρ(g/cm3)を越える延伸
部の位置までの距離d(cm)と密度上昇(ρ−ρ0
との比が下記〔〕式で示され、かつdを越える
延伸部分の密度が少なくともρより大なることを
特徴とする二軸配向したびん。 d/ρ−ρ0<80 〔〕 (ただし、ρ≧ρ0+0.026)
[Scope of Claims] 1. Made of thermoplastic polyester containing ethylene terephthalate as a main repeating unit and having an intrinsic viscosity of at least 0.60, with an unstretched portion at the center of the neck and bottom, and an unstretched portion at the shoulder, body, and bottom corner portions. and a part of the shoulder from the neck,
A biaxially oriented bottle that has a part from the center of the bottom to the corner where the stretch ratio changes continuously from the unstretched part to the stretched part, and the stretch ratio changes continuously from the unstretched part to the stretched part. In the part to be stretched, the distance d (cm) from the stretching start point of the unstretched part with density ρ 0 (g/cm 3 ) to the position of the stretched part that first exceeds density ρ (g/cm 3 ) and the density increase ( ρ−ρ 0 )
A biaxially oriented bottle characterized in that the ratio of . d/ρ−ρ 0 <80 [] (However, ρ≧ρ 0 +0.026)
JP56133862A 1981-08-25 1981-08-25 Biaxially oriented bottle Granted JPS57113033A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56133862A JPS57113033A (en) 1981-08-25 1981-08-25 Biaxially oriented bottle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56133862A JPS57113033A (en) 1981-08-25 1981-08-25 Biaxially oriented bottle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP52139352A Division JPS5850177B2 (en) 1977-11-18 1977-11-18 Method for manufacturing biaxially oriented bottles

Publications (2)

Publication Number Publication Date
JPS57113033A JPS57113033A (en) 1982-07-14
JPS6357312B2 true JPS6357312B2 (en) 1988-11-10

Family

ID=15114782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56133862A Granted JPS57113033A (en) 1981-08-25 1981-08-25 Biaxially oriented bottle

Country Status (1)

Country Link
JP (1) JPS57113033A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6239443A (en) * 1985-08-14 1987-02-20 株式会社吉野工業所 Oriented molded bottle body
US5066528A (en) * 1990-03-05 1991-11-19 Continental Pet Technologies, Inc. Refillable polyester container and preform for forming the same
JP2541401B2 (en) * 1991-06-21 1996-10-09 東洋製罐株式会社 Highly stretch blow molded container and its manufacturing method
JPH0739130B2 (en) * 1991-06-21 1995-05-01 東洋製罐株式会社 High stretch blow molded container and method of manufacturing the same
JPH0739129B2 (en) * 1991-06-21 1995-05-01 東洋製罐株式会社 High stretch blow molded container and method of manufacturing the same
US5750224A (en) * 1991-07-01 1998-05-12 Plm Ab Plastic container
JP4851614B1 (en) * 2010-10-15 2012-01-11 守 森 toothbrush

Also Published As

Publication number Publication date
JPS57113033A (en) 1982-07-14

Similar Documents

Publication Publication Date Title
EP0494098B2 (en) Method of blow moulding container
US4522779A (en) Method for production of poly(ethylene terephthalate) articles
US5989661A (en) Pressurized refill container resistant to sprue cracking
US6012597A (en) Polyester bottle with a handle and method of manufacturing the same
US5780130A (en) Container and method of making container from polyethylene naphthalate and copolymers thereof
US5281387A (en) Method of forming a container having a low crystallinity
EP0669255B1 (en) Heat and pressure resistant container
JPS6359513A (en) Manufacture of hollow polyester molded body
US4603066A (en) Poly(ethylene terephthalate) articles
KR101308299B1 (en) Polyester bottle with resistance to heat and pressure and process for producing the same
JPS584611B2 (en) plastic containers
JP3922727B2 (en) Improved multi-layer container and preform
JPS6357312B2 (en)
JPS6356104B2 (en)
JPS5935333B2 (en) Method for manufacturing polyester containers
JPS5850177B2 (en) Method for manufacturing biaxially oriented bottles
JPS59103832A (en) Polyester vessel
JP2005001164A (en) Method for manufacturing bottle made of polyester resin
US11040476B2 (en) Stretch-blow formed polyester container and method of producing the same
JP4721138B2 (en) Flat container made of polyester resin
JP3449182B2 (en) Manufacturing method of heat-resistant stretched resin container
JPH0531792A (en) Manufacture of heat resistant container
JPH0615643A (en) Manufacture of premolded body
JP3606671B2 (en)   Polyester preform and biaxially stretched bottle and method for producing polyester biaxially stretched bottle
JP3835428B2 (en) Heat-resistant stretched resin container