JPS6340673A - Horizontal pulse arc welding method - Google Patents
Horizontal pulse arc welding methodInfo
- Publication number
- JPS6340673A JPS6340673A JP18403186A JP18403186A JPS6340673A JP S6340673 A JPS6340673 A JP S6340673A JP 18403186 A JP18403186 A JP 18403186A JP 18403186 A JP18403186 A JP 18403186A JP S6340673 A JPS6340673 A JP S6340673A
- Authority
- JP
- Japan
- Prior art keywords
- welded
- welding
- welding method
- pulse
- bead
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000003466 welding Methods 0.000 title claims abstract description 77
- 238000000034 method Methods 0.000 title claims description 30
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 28
- 239000000463 material Substances 0.000 claims abstract description 20
- 239000007789 gas Substances 0.000 claims abstract description 19
- 229910052786 argon Inorganic materials 0.000 claims abstract description 14
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 38
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 24
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- 239000011324 bead Substances 0.000 abstract description 29
- 229910052751 metal Inorganic materials 0.000 abstract description 8
- 239000002184 metal Substances 0.000 abstract description 8
- 150000002739 metals Chemical class 0.000 abstract description 2
- 230000035515 penetration Effects 0.000 abstract 3
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 239000007921 spray Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 4
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 235000006754 Taraxacum officinale Nutrition 0.000 description 1
- 240000001949 Taraxacum officinale Species 0.000 description 1
- 235000005187 Taraxacum officinale ssp. officinale Nutrition 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/38—Selection of media, e.g. special atmospheres for surrounding the working area
- B23K35/383—Selection of media, e.g. special atmospheres for surrounding the working area mainly containing noble gases or nitrogen
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Arc Welding In General (AREA)
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
【発明の詳細な説明】
〔技術分野〕
本発明は、半割りの被溶接材を上下方向から突合せて両
側面の被溶接線を水平方向から裏波溶接するアーク溶接
方法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention relates to an arc welding method in which halves of materials to be welded are abutted from above and below, and welding lines on both sides are welded horizontally.
第2図および第3図は、従来から実施され、また本発明
の溶接方法を実施するための被溶接材と溶接用トーチと
の配置を示す正面斜視図3よび側面図であって、1およ
び2は、それぞれf−削りの被溶接材、例えば自動車車
軸のアクスルハウジングであって、上下方向から突合せ
て両側面の被溶接線L1とL2またはL3とL4とを、
水平方向から溶接用トーチ゛r1とT2または“r3と
r4と)こよってアーク溶接方法により裏波溶接をして
いる。2 and 3 are a front perspective view 3 and a side view showing the arrangement of a welding material and a welding torch for carrying out a conventional welding method of the present invention, 2 is a material to be welded by f-cutting, for example, an axle housing of an automobile axle, and the welding lines L1 and L2 or L3 and L4 on both sides are butted from above and below,
From the horizontal direction, welding torches r1 and T2 or r3 and r4 are used to perform back wave welding using the arc welding method.
第2図および第3図に示す被溶接材をアーク溶接する従
来の第1の溶接方法は、炭酸ガスアーク溶接方法(以下
、C02溶接という。)であったが。The first conventional welding method for arc welding the materials to be welded shown in FIGS. 2 and 3 is a carbon dioxide arc welding method (hereinafter referred to as C02 welding).
この方法では、連続して均一な裏波ビードを形成するこ
とができる最適の溶接条件の範囲が非常しこ狭いため番
こ、良好な裏波ビードを連続して得ることができなかっ
た。その理由はつぎのとおりである。第4図は第3図の
点線Aで示す部分の拡大図であるが、同図に示すギャッ
プGを被溶接線L1の全長にわたって、また1個の被溶
接材の被溶接線L1乃至L4の各全長≦こわたって、さ
ら1こは多数の被溶接材の被溶接線の各全長(こわたっ
て略−定Sこなるようにプレス打抜きおよび配置するこ
とは実用上極めて困難である。そのため(こ、従来のC
O□溶接方法では、ギャップGが大になっている部分で
は、第4図(B)に示すように、裏側でビードが垂れ落
ち、ギャップGが小になっている部分ては、第4図(C
)1こ示すように、裏波ビードが形成されず、いずれの
場合も接合強変が不足するために不良製品となっていた
。なお、第4図(A)は、ギャップGが適正であって、
良好な裏波ビードが得られた図である。つぎに、溶接中
の熱歪1こよるギャップGの変動、目ネいを小さくする
ため;こは、第1図(こ示す方向1こ、4本の溶接用ト
ーチで同時1こ溶接することが望ましいのであるが、C
02溶接では掻験上、磁気吹きによるアークの不安定が
生じ、安定した溶接結果が得られないことがあった。In this method, the range of optimal welding conditions that can continuously form uniform Uranami beads is very narrow, so it is not possible to continuously obtain good Uranami beads. The reason is as follows. FIG. 4 is an enlarged view of the part indicated by the dotted line A in FIG. It is extremely difficult in practice to press punch and arrange so that each total length ≦ and each total length (approximately - constant S) of the lines to be welded of a large number of materials to be welded. , conventional C
In the O□ welding method, in areas where the gap G is large, the bead hangs down on the back side, as shown in Figure 4 (B), and in areas where the gap G is small, as shown in Figure 4 (B). (C
)1 As shown, no Uranami bead was formed, and in both cases, the bond strength was insufficient, resulting in defective products. In addition, FIG. 4(A) shows that the gap G is appropriate,
It is a figure showing that a good Uranami bead was obtained. Next, in order to reduce the variation in the gap G due to one thermal strain during welding, welding in one direction at the same time with four welding torches is shown in Figure 1. is desirable, but C
In 02 welding, the arc became unstable due to magnetic blowing, and stable welding results were sometimes not obtained.
このように従来のC02溶接方法においては、最適の溶
接条件の範囲が狭いため番こ不良率が大となり、手[α
しくこ多大な労力を要していた。In this way, in the conventional C02 welding method, the range of optimal welding conditions is narrow, resulting in a high number of defects, and manual [α
It required a lot of effort.
そこで、従来の第2の溶接方法として、20%の炭酸ガ
ス(1’lF、COtという。)含むアルゴンガスを使
用したMAGパルス溶接方法も実用fヒされるよう1こ
なった。このMAGパルス溶接方法は。Therefore, as a second conventional welding method, a MAG pulse welding method using argon gas containing 20% carbon dioxide gas (1'lF, referred to as COt) has also been put into practical use. This MAG pulse welding method.
ギャップGの裕度がCO!溶接よりも大であるので安定
した裏波ビードが得られるが、X線試験の結果、溶接部
に多数のブローボールが発生し、JISZ3104
のX線試験の2級ないし4級しか得られない欠点があっ
た。The tolerance of gap G is CO! Since it is larger than welding, a stable Uranami bead can be obtained, but as a result of X-ray testing, a large number of blow balls were generated in the weld, and JIS Z3104
The drawback was that only grades 2 to 4 could be obtained in the X-ray test.
第2図$こ示す被溶接材をアーク溶接する従来の第1の
方法ではCO!溶接方法は、ギャップGの裕度が小さく
垂れ落ちが生じたり、裏波ビードが得られなかったりす
る欠点があり、また従来の第2の方法であるMAGパル
ス溶接方法は、ブローホールが発生しやすいという問題
点があったので、本発明は、第1図および第2図に示す
被溶接材を、ギャップGの裕度が大きくて垂れ客ちが生
じることな(裏波ビードが安定して形成され、しかも従
来のMAG溶接方法のようなブローホールが発生しない
溶接方法を提供することにある。In the first conventional method of arc welding the materials to be welded shown in Figure 2, CO! The welding method has the disadvantage that the tolerance of the gap G is small, causing sag and the inability to obtain an underwave bead.Also, the MAG pulse welding method, which is the second conventional method, causes blowholes. Therefore, the present invention has been developed to solve the problem that the materials to be welded shown in FIG. 1 and FIG. It is an object of the present invention to provide a welding method in which blowholes are formed and do not generate blowholes as in the conventional MAG welding method.
本発明は、第2図に示す従来から用いられている半割り
の被溶接材1.2を上下方向から突合せて両側面の液溶
接線L1乃至L4を水平方向から裏波溶接する方法にお
いて、アルゴンガス30乃至60%のC02を?足台し
たシールドガスを使用し。The present invention provides a conventional method of welding the liquid welding lines L1 to L4 on both sides from the horizontal direction by abutting halves of the welded materials 1.2 from above and below, as shown in FIG. Argon gas 30 to 60% CO2? Use a shield gas with a footrest.
両側面の被溶接線L1およびL2.またはL3およびL
1、またはLl乃至Llを同時に各々同方向に消耗性電
極溶接用トーチT1およびT2.またはTa2よびr4
.または’r 1乃至T4を移動させ、パルス71!
S(により溶接する水平パルスアーク溶接方法である。Weld lines L1 and L2 on both sides. or L3 and L
1, or Ll to Ll simultaneously in the same direction, respectively, with consumable electrode welding torches T1 and T2. or Ta2 and r4
.. Or move 'r 1 to T4 and pulse 71!
This is a horizontal pulse arc welding method in which welding is carried out by
以下1本発明の溶接方法の溶接条件限定の理由について
説明する。The reason for limiting the welding conditions of the welding method of the present invention will be explained below.
第5図は、アルゴンガス中のCO2の混合比率(横軸)
とスプレー移行が行われる溶接電流(縦軸)との関係を
示す線図であって、上部の曲線SPよりも上方の鎖酸で
はスプレー移行になり、下部の曲線DPよりもF方のi
in域ではドロップ移行となり1両曲線の間の明域は混
在する範囲を示し、また点IOCのアルゴンガス中のC
O2の混合比率が30%付近に達すると、溶接電流値を
高くしても。Figure 5 shows the mixing ratio of CO2 in argon gas (horizontal axis)
This is a diagram showing the relationship between the welding current (vertical axis) and the welding current (vertical axis) at which spray transfer occurs, where spray transfer occurs in chain acids above the upper curve SP, and i in the F direction than the lower curve DP.
In the in region, there is a drop transition, and the bright region between the two curves indicates a mixed range, and the C in the argon gas at point IOC
When the O2 mixing ratio reaches around 30%, even if the welding current value is increased.
スプレー移行させることが不可能1こなるということが
知られている。It is known that spray transfer is impossible.
そこで、従来から、スパッターの発生を少なくし、安定
したアーク溶接をするためには、スプレーS域の範囲が
使用されており、通・な5乃至20%のCO2を含むア
ルゴンガスが使用されている。Therefore, in order to reduce the generation of spatter and perform stable arc welding, the spray S range has traditionally been used, and argon gas containing 5 to 20% CO2 has been used. There is.
他方、CO2の混合比率が少なくなる程、ブローホール
が発生しやすくなることが知られており、結局、従来、
20%のCO2を混合したアルゴンガスがNk適である
とされている。On the other hand, it is known that the lower the mixing ratio of CO2, the more blowholes are likely to occur.
Argon gas mixed with 20% CO2 is said to be suitable for Nk.
第6図は、第2図≦こ示す被溶接材をアルゴンガス中の
CO2の混合比率(横軸)をかえてMAGパルス溶接を
した結果、溶接線250#内に発生したブローホール数
(縦軸)を示す図である。同図fこ示す溶接条件はつぎ
のとおりである。Figure 6 shows the number of blowholes (vertical FIG. The welding conditions shown in FIG.
材質および板厚 軟′M5m厚突合せ出 力 電 流
パルス眠流 420Aベース電流 60
A
平均値 280A
パルス周波数 250Hz
出力電圧 平均値 25V溶接速度
65cb同図において、曲線B
Hが示すように、CO2混合比率が40%をこえるとブ
ローホールが発生しなくなっており、逆に、40%以丁
ではブローホールが発生し、CO2混合比率の低下とと
もにブローホール数が増加する。C02の混合比率が3
0%のときはブローホール数が10個/ 250 t*
であって、JIS Z 3104のX線試験方法の
1級に該当し、許容範囲内である。つぎに、C02のr
足台比率が40%をこえるとブローホールは発生しなく
なるが、溶滴か大粒となり不規四番こ移行するために曵
好な裏波ビードがilられなくなる。そのために、従来
ではC02の混合比率が30%をこえる混合ガスは実用
的には使用されていなかった。Material and plate thickness Soft M5m thickness Butt output Current Pulse sleep current 420A Base current 60
A Average value 280A Pulse frequency 250Hz Output voltage Average value 25V Welding speed
65cb In the same figure, curve B
As shown by H, blowholes no longer occur when the CO2 mixing ratio exceeds 40%, and conversely, blowholes occur when the CO2 mixing ratio is less than 40%, and the number of blowholes increases as the CO2 mixing ratio decreases. . The mixing ratio of C02 is 3
When it is 0%, the number of blowholes is 10/250t*
This corresponds to the first grade of the X-ray test method of JIS Z 3104, and is within the permissible range. Next, r of C02
When the foothold ratio exceeds 40%, blowholes will no longer occur, but the droplets will become large and move irregularly, making it impossible to form a smooth Uranami bead. For this reason, conventionally, mixed gases in which the mixing ratio of CO2 exceeds 30% have not been practically used.
そこで、本発明は、C02の混合比率が30%以上のブ
ローホールの発生が許容範囲内で、しか本。Therefore, the present invention only allows the occurrence of blowholes with a C02 mixing ratio of 30% or more to be within the permissible range.
溶滴移行を円滑【こ行わせるために、板厚5m+の軟卆
の水平溶接に対して250〜350Aの高電流を使用し
1例えば平均電流が25OAのときパルス平均電圧が2
5V程度まで電圧を下げること:こよって、第1図Sこ
示すように、消耗電極3の先端3aが被溶接材1および
2の表面1aおよび2aより内部にもぐらせた、いわゆ
る「うもれアーク」の形態を採用した。この「うもれア
ーク」の形態でパルス電流を通電すると、電極先端3a
の溶融金属の周囲に被溶接材の溶融金@1bおよび2b
という壁が存在するために、電極先端3aの溶融金属が
、パルス電流に同期して円a1こ移行し、あたかもスプ
レー移行と同様に安定な溶滴4の移行を行わせることが
できることを考え出した。なお。In order to achieve smooth droplet transfer, a high current of 250 to 350 A is used for horizontal welding of a soft plate with a thickness of 5 m+.1 For example, when the average current is 25 OA, the pulse average voltage is 2.
Lowering the voltage to about 5V: As a result, as shown in FIG. The format was adopted. When a pulse current is applied in this "hidden arc" form, the electrode tip 3a
The molten metal of the material to be welded is surrounded by the molten metal of @1b and 2b.
Because of the existence of this wall, the molten metal at the electrode tip 3a moves around the circle a1 in synchronization with the pulse current, and it was devised that the droplets 4 can be transferred stably in the same way as spray transfer. . In addition.
第1図における5はアーク、6はアーク光を示している
。In FIG. 1, reference numeral 5 indicates an arc, and reference numeral 6 indicates arc light.
上記の考えに基ずいて、第2図に示す被溶接材をMAG
パルス溶接番こより良好な裏波溶接が得られるパルス溶
接条件1こついて検討した。第7図は、直径1.2fl
の軟鋼消耗電極および40%のCO2を含むアルゴンガ
スを用いて平均パルス電流280A、平均アーク電圧2
5Vのパルス電流二こおいて。Based on the above idea, the material to be welded shown in Fig. 2 was
Pulse welding number 1 A pulse welding condition that allows better uranami welding to be obtained was investigated. Figure 7 shows a diameter of 1.2 fl.
average pulse current 280 A, average arc voltage 2 using mild steel consumable electrodes and argon gas containing 40% CO2.
Apply two pulsed currents of 5V.
パルス通電時間(以下、パルス幅という)TP(横Pl
h)を変化させた場合に良好な裏波ビードを辱ることが
できる適正なパルス電流値1p (縦軸)を求めた線図
である。同図において1曲線PAとPBとの間のm域が
良好な裏波ビードを得ることができる範囲である。つぎ
に、第7図で求めた適正パルス条件において、C02の
混合比率を増加させていくと、アーク電圧を低くしたう
もれアークの形態で本、消耗電極の先端3aの溶融金属
が通常のCO,溶接と同様に大粒となり、被溶接材の溶
融金属1bおよび2bと短絡を生じるようになり。Pulse energization time (hereinafter referred to as pulse width) TP (lateral Pl)
h) is a diagram illustrating an appropriate pulse current value 1p (vertical axis) that can destroy a good Uranami bead when changing .h). In the figure, the range m between curves PA and PB is the range in which a good underwave bead can be obtained. Next, when the mixing ratio of CO2 is increased under the proper pulse conditions determined in Fig. 7, the molten metal at the tip 3a of the consumable electrode becomes normal CO, As with welding, the grains become large and cause a short circuit with the molten metals 1b and 2b of the welded materials.
CO2の混合比率が60%をこえると、パルス電流に同
1411 した円滑な溶滴移行が行われなくなり、安定
した裏波ビードを得ることができなくなる。以・上の理
由によって1本発明の溶接方法におけるCO2の混合比
率は30乃至60%(限定される。If the CO2 mixing ratio exceeds 60%, smooth droplet transfer corresponding to the pulse current will not occur, making it impossible to obtain stable Uranami beads. For the above reasons, the mixing ratio of CO2 in the welding method of the present invention is limited to 30 to 60%.
す、上の検討および実験結果から、第2図の被溶接材シ
こついて、従来のCO2溶接および従来のMAG溶接(
CO2の混合比率が20%のアルゴンがス)の溶接帖果
と対比させて1本発明の溶接方法をこよ被加工材
軟鋼板厚5f1
25I!/min
消耗電極 軟鋼直径1.2fl突出し長さ
12〜15fl
パルス平均電流 260〜280A
溶接平均電圧 25〜26V
溶接速度 65σ/min
溶接方法によって溶接した表ビードの外観写真。From the above study and experimental results, we found that the workpiece shown in Fig. 2 is suitable for conventional CO2 welding and conventional MAG welding (
The welding method of the present invention was applied to the workpiece in comparison with the welding process using argon with a CO2 mixing ratio of 20%.
Mild steel plate thickness 5f1 25I! /min Consumable electrode Mild steel diameter 1.2fl Projection length
12-15fl Pulse average current 260-280A Welding average voltage 25-26V Welding speed 65σ/min The appearance photograph of the surface bead welded by the welding method.
裏ビードの外観写真2よび断面マクロ写真であって1表
ビードの写真ではスパッタが付着しており。In the photo 2 of the outer appearance of the back bead and the macro cross-sectional photo, spatter is observed in the photo of the front bead 1.
裏ビード写真では垂れ落ちが生じかけている個所が発生
している)こもかかわらず、均一な浸液ビードが得られ
ておらず、断面マクロ写真でも、裏波溶接方法によって
溶接した表ビードの外観写真、長ビードの外観写真およ
び断面マクロ写真であって、長ビードおよび裏ビードと
もに略均−?、(ビードが得られており、断面マクロ写
真においても良好な刈波ビードが得られているが、別途
X線試験を行うと、前述した第6図の曲線BHの点BH
2fこ示すように、溶接長2501 の間昏こ40個の
ブぞれ1本発明の溶接方法によって溶接した表ビー従来
のMAG溶接方法と同様、また(4それ以上の表ビード
および関ビードともに略均−なビードが得られており、
断面マクロ写真においても良好な裏波ビードが得られて
おり、しかも別途X線試験においても、^j4述した第
6図の曲線BHの点Bt(4Iこ示すように、溶接長2
50fHの間に3個のブローホールしか発生せず、充分
(こ1級の範囲内だ入っている。(The photo of the back bead shows some areas where dripping is occurring.) Despite this, a uniform immersion bead is not obtained, and even the cross-sectional macro photo shows the appearance of the front bead welded using the Uranami welding method. The photo shows the exterior photo and cross-sectional macro photo of the long bead, and both the long bead and the back bead are approximately average. , (A bead was obtained, and a good shear wave bead was obtained in the cross-sectional macro photograph, but when a separate X-ray test was performed, the point BH of the curve BH in Fig.
2f As shown in the figure, during the welding length 2501, each of the 40 beads was welded by the welding method of the present invention. Approximately uniform beads are obtained,
A good Uranami bead was obtained in the cross-sectional macro photograph, and in a separate X-ray test, the weld length 2
Only three blowholes were generated during 50 fH, which was sufficient (within the first grade range).
本発明の溶接方法によると、第2図に示す被溶接材を通
常のプレス加工作業によって製作して突合せした場合に
おけるギャップGが0.5 tn* f:>つても、従
来のCO2溶接のように、垂れ落ちが生じたり裏波ビー
ドが碍られないというような欠点がな(、また従来のM
AG溶接(20%C02入りアルゴンガス)のよう番ζ
多数のブローホールを生じることなく、通常のプレス清
度で良好な裏波ビードを安定して得ることができる。According to the welding method of the present invention, when the materials to be welded shown in Fig. 2 are produced by normal press working and butted, the gap G is 0.5 tn However, there are disadvantages such as dripping and failure of the Uranami beads (also, conventional M
AG welding (argon gas with 20% CO2)
Good Uranami beads can be stably obtained with normal press cleanliness without producing many blowholes.
第1図は1本発明の溶接方法を実施した場合の消耗電極
先端と被溶接材の溶融金属との状態を説明する図。
第2図は、従来および本発明の溶接方法1こ用いる被溶
接材と溶接用トーチとの配置を示す正面からみた斜視図
。
第3図は、第2図の側面図、
第4図は、第3図の点線Aの拡大図。
第5図は、下向溶接5こおいて、アルゴンガス中のCO
,の混合比率(横軸)とスプレー移行が得られる溶接電
流(縦軸)との関係を示す線図。
第6図は、第2図番こ示す被溶接材において、アルゴン
ガス中のCo1の混合比率(横軸)とブローホール数(
縦軸)との関係を示す線図。
第7図は第2図に示す被溶接材において、パルス通電時
間TP(横軸)と適正な裏波ビードを得るためのパルス
電流値1p(縦軸)との関係を示す線図である。
1.2・・・被溶接材、Ll乃至L4・・・被溶接線。
−r 1乃至’r 4・・・溶接用トーチ代理人 弁理
士 中 井 宏
第グ図
第2図
(L3) 7 (L祠
第羊図
(ハ) (B) (こ)第5
図FIG. 1 is a diagram illustrating the state of the tip of the consumable electrode and the molten metal of the material to be welded when the welding method of the present invention is carried out. FIG. 2 is a front perspective view showing the arrangement of welding materials and welding torches used in the conventional welding method and the welding method 1 of the present invention. FIG. 3 is a side view of FIG. 2, and FIG. 4 is an enlarged view of dotted line A in FIG. Figure 5 shows CO in argon gas at the downward welding point 5.
, a diagram showing the relationship between the mixing ratio (horizontal axis) and the welding current (vertical axis) at which spray transfer is obtained. Figure 6 shows the mixing ratio of Co1 in argon gas (horizontal axis) and the number of blowholes (
A diagram showing the relationship with the vertical axis). FIG. 7 is a diagram showing the relationship between the pulse energization time TP (horizontal axis) and the pulse current value 1p (vertical axis) for obtaining a proper Uranami bead in the welded material shown in FIG. 2. 1.2... Material to be welded, Ll to L4... Line to be welded. -r 1 to 'r 4...Welding torch agent Patent attorney Hiroshi Nakai Figure 2 (L3) 7 (L Shrine Figure 2 (C) (B) (K) 5th
figure
Claims (1)
面の被溶接線L_1、L_2を水平方向から裏波溶接す
るアーク溶接方法において、アルゴンガスに30〜60
%の炭酸ガスを混合したシールドガスを使用し、両側面
の被溶接線を同時に同方向に消耗性電極溶接用トーチT
_1、T_2を移動させパルス電流により溶接する水平
パルスアーク溶接方法。In an arc welding method in which halves of the materials to be welded 1 and 2 are abutted from above and below and the weld lines L_1 and L_2 on both sides are welded horizontally, 30 to 60% of argon gas is added.
Using a shielding gas mixed with % carbon dioxide gas, weld the consumable electrode welding torch T in the same direction on both sides of the weld line at the same time.
A horizontal pulse arc welding method in which _1 and T_2 are moved and welded by pulsed current.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18403186A JPH0724935B2 (en) | 1986-08-04 | 1986-08-04 | Horizontal pulse arc welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18403186A JPH0724935B2 (en) | 1986-08-04 | 1986-08-04 | Horizontal pulse arc welding method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6340673A true JPS6340673A (en) | 1988-02-22 |
JPH0724935B2 JPH0724935B2 (en) | 1995-03-22 |
Family
ID=16146144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18403186A Expired - Fee Related JPH0724935B2 (en) | 1986-08-04 | 1986-08-04 | Horizontal pulse arc welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0724935B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006334629A (en) * | 2005-06-01 | 2006-12-14 | Honda Motor Co Ltd | Method for welding frame for motor-cycle |
WO2022190687A1 (en) * | 2021-03-09 | 2022-09-15 | 株式会社ワイテック | Arc welding method |
-
1986
- 1986-08-04 JP JP18403186A patent/JPH0724935B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006334629A (en) * | 2005-06-01 | 2006-12-14 | Honda Motor Co Ltd | Method for welding frame for motor-cycle |
WO2022190687A1 (en) * | 2021-03-09 | 2022-09-15 | 株式会社ワイテック | Arc welding method |
Also Published As
Publication number | Publication date |
---|---|
JPH0724935B2 (en) | 1995-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DeRuntz | Assessing the benefits of surface tension transfer® welding to industry | |
JPH0399780A (en) | Method of gas metal arc welding of aluminum base work | |
US20040262269A1 (en) | Hybrid laser-arc welding method with gas flow rate adjustment | |
JPH079149A (en) | Gas shielded arc welding method for galvanized steel sheet, welding machine therefor and galvanized steel sheet product welding by the welding method and the machine | |
JPH06114587A (en) | Butt welding method for thick plates | |
JPS6340673A (en) | Horizontal pulse arc welding method | |
JPH0623553A (en) | Manufacture of welded steel tube | |
JP5268594B2 (en) | Welding method of type I joint, type I welded joint, and welded structure using the same | |
JPH1177299A (en) | Method for welding metallic tube | |
JPH0252586B2 (en) | ||
JPH08281429A (en) | Method for fillet-welding stainless steel and manufacture of stainless steel shapes | |
JPH04284974A (en) | Gas shielded arc welding method at high speed | |
CA1071715A (en) | Method of high speed gas shielded arc welding | |
JP3082119B2 (en) | Gas shielded arc welding method of galvanized steel sheet and galvanized steel sheet product welded by the welding method | |
JPS62286675A (en) | Multi electrode gas shield arc welding method for strip steel | |
JPH0866774A (en) | Plasma key hole welding method | |
JPH03234368A (en) | Root running method for narrow groove welding | |
JPH02187272A (en) | First layer welding method for one-side welding | |
JPH05140B2 (en) | ||
JP3566863B2 (en) | High-speed plasma welding pipe making method for small diameter steel pipes. | |
JPH0422669B2 (en) | ||
Allen et al. | An investigation of fusion quality in conventional MIG, synergic pulsed MIG, flux cored arc and manual metal arc welding | |
JPS59163092A (en) | Production of steel plate frame | |
JP2002103035A (en) | Seam welding method of uo steel pipe | |
JPS5890382A (en) | Submerged arc welding method with low heat input |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |