JPS63318186A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS63318186A
JPS63318186A JP62153664A JP15366487A JPS63318186A JP S63318186 A JPS63318186 A JP S63318186A JP 62153664 A JP62153664 A JP 62153664A JP 15366487 A JP15366487 A JP 15366487A JP S63318186 A JPS63318186 A JP S63318186A
Authority
JP
Japan
Prior art keywords
semiconductor laser
laser device
optical waveguide
wavelength
array
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62153664A
Other languages
Japanese (ja)
Inventor
Tomoaki Uno
智昭 宇野
Jiyun Onoya
順 雄谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62153664A priority Critical patent/JPS63318186A/en
Publication of JPS63318186A publication Critical patent/JPS63318186A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • H01S3/1055Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length one of the reflectors being constituted by a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/023Mount members, e.g. sub-mount members
    • H01S5/02325Mechanically integrated components on mount members or optical micro-benches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4031Edge-emitting structures
    • H01S5/4062Edge-emitting structures with an external cavity or using internal filters, e.g. Talbot filters

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To make the spectrum of a semiconductor laser narrower in width by a method wherein a specified one it the gain wavelengths of a semiconductor laser element is selectively and partially fed back and the refractive index is varied so as to control the specified wavelength. CONSTITUTION:A light waveguide array 2 and an output waveguide 8 are formed through diffusing Ti into an LiNbO3 crystal. A diffraction grating 4 is patterned through a dual light beam interference exposure method and formed by means of etching a LiNbO3 dielectric substrate 5 of a Z plate. The oscillating frequency of a semiconductor laser device is controlled by the voltage applied onto an electrode 3, using an electro-optical effect of the LiNbO3 substrate 5. The laser oscillation is generated between a reflecting coating 7 and the diffraction grating 4 and both a single longitudinal mode oscillation and a narrow spectrum width can be obtained at the same time.

Description

【発明の詳細な説明】 産業上の利用分野 本発明はミコヒーレント光通信等に用いる狭いスペクト
ル線幅を有する波長多重可能な半導体レーザ装置に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a wavelength-multiplexable semiconductor laser device having a narrow spectral linewidth and used in micoherent optical communications and the like.

従来の技術 近年の急速な光通信分野の発達に伴ない、波長多重化し
たコヒーレント光通信方式が要求されている。
BACKGROUND OF THE INVENTION With the rapid development of the optical communication field in recent years, a wavelength multiplexed coherent optical communication system is required.

従来コヒーレント光通信方式においては、伝送帯域を増
やすだめの狭いスペクトル線幅を有する半導体レーザ装
置として第2図a、  bに示す外部共振器型の構成が
用いられていた。第2図において、21は半導体レーザ
、22はレンズ、23は回折格子、24は分布反射型半
導体レーザ、25は発光部、26は光導波路部、27は
回折格子である。
In the conventional coherent optical communication system, an external resonator type structure shown in FIGS. 2a and 2b has been used as a semiconductor laser device having a narrow spectral linewidth to increase the transmission band. In FIG. 2, 21 is a semiconductor laser, 22 is a lens, 23 is a diffraction grating, 24 is a distributed reflection type semiconductor laser, 25 is a light emitting section, 26 is an optical waveguide section, and 27 is a diffraction grating.

発明が解決しようとする問題点 ところが、第2図aにおいては狭いスペクトル線幅は得
られるもののハイブリッドな構成のために時間的に特性
が変化する不安定を有していた。
Problems to be Solved by the Invention However, although a narrow spectral linewidth can be obtained in FIG. 2a, due to the hybrid configuration, there is instability in which the characteristics change over time.

さらに系が大きく、特に波長多重化する際には問題とな
っていた。
Furthermore, the system is large, which poses a problem especially when wavelength multiplexing is performed.

第2図すにおいては、モノリシック構成で第2図aの欠
点を改善しようというものであるが、光導波路部の光導
波損失が大きく十分に狭いスペクトル線幅を得られてい
ない。さらに半導体材料の温度に対する屈折率変化が大
きいために、発振周波数が不安定であるという欠点もあ
った。
In FIG. 2, an attempt is made to improve the drawback of FIG. 2a by using a monolithic structure, but the optical waveguide loss in the optical waveguide section is large and a sufficiently narrow spectral linewidth cannot be obtained. Another drawback is that the oscillation frequency is unstable because the refractive index of the semiconductor material changes greatly with respect to temperature.

問題点を解決するための手段 すなわち本発明は、前述した従来例の問題点に鑑み、レ
ーザ共振器の一部を高反射率化し他の一端を低反射率化
した半導体レーザ素子の前記低反射率端面から出射する
光が、単一横モードで光を導波する手段と、前記単一横
モードで光を導波する手段内の一部に設けた前記半導体
レーザ素子の利得波長内の特定の波長を一部分選択的に
帰還する手段と、屈折率を変化することにより前記特定
の波長を制御する手段とを有する誘電体光導波路と光学
的に結合してなる構成を複数個配列して1本の出力用光
導波路から出力光を取出すことにより前述した問題点を
解決している。
Means for solving the problems, that is, the present invention, in view of the problems of the conventional example described above, provides a low reflection semiconductor laser device in which a part of the laser resonator has a high reflectance and the other end has a low reflectance. A means for guiding light in a single transverse mode, and a specificity within the gain wavelength of the semiconductor laser element provided in a part of the means for guiding light in a single transverse mode, for the light emitted from the optical fiber end surface. A plurality of structures optically coupled to a dielectric optical waveguide having means for selectively feeding back a part of the wavelength of the wavelength and means for controlling the specific wavelength by changing the refractive index are arranged. The above-mentioned problem is solved by extracting the output light from the output optical waveguide of the book.

作  用 本発明は、屈折率の温度変化が小さく、屈折率を制御可
能でさらに光導波損失の小さな光導波路材料を用いて、
外部共振器構成の半導体レーザを構成することにより、
安定に狭いスペクトル線幅を有し、発掘周波数調整可能
で、発振周波数安定な特性を得ることができる。さらに
アレイ化した構成では半導体レーザアレイと誘電体光導
波路アレイの光学的結合がアレイ間の距離を等しくする
ことにより同時に行なうことができる。
Function The present invention uses an optical waveguide material that has a small temperature change in refractive index, can control the refractive index, and has small optical waveguide loss.
By configuring a semiconductor laser with an external cavity configuration,
It has a stable narrow spectral linewidth, the excavation frequency can be adjusted, and the oscillation frequency can be stabilized. Furthermore, in an array configuration, the semiconductor laser array and the dielectric optical waveguide array can be optically coupled at the same time by making the distance between the arrays equal.

実施例 本発明の実施例を第1図を用いて説明する。第1図は、
3個の半導体レーザのアレイを用いた半導体レーザ装置
である。
Embodiment An embodiment of the present invention will be described with reference to FIG. Figure 1 shows
This is a semiconductor laser device using an array of three semiconductor lasers.

第1図において、1は半導体レーザアレイ、2は光導波
路アレイ、3は屈折率調整用電極、4は導波路型回折格
子、5はZ板のL I N b Os誘電体基板、6.
6’ 、ei’は無反射コーティング、7は反射コーテ
ィング、8は出力導波路である。
In FIG. 1, 1 is a semiconductor laser array, 2 is an optical waveguide array, 3 is an electrode for adjusting the refractive index, 4 is a waveguide type diffraction grating, 5 is a Z-plate L I N b Os dielectric substrate, 6.
6' and ei' are anti-reflective coatings, 7 is a reflective coating, and 8 is an output waveguide.

光導波路アレイ2および出力導波路8はLiNbO3結
晶にT1を拡散して作られる。回折格子は三光束干渉露
光法によりバターニングされ基板6をエツチングするこ
とにより作られる。回折格子の周期Aは の式で求められ、λ=1.3μmではA〜0.29μm
となる。レーザ発振は、反射コーティング7と回折格子
4との間で起こシ、単−縦モード発振と狭いスペクトル
線幅が同時に得られる。2閣程度の光導波路長でIMH
z以下のスペクトル線幅が安定に得られた。3つの半導
体レーザ装置の発振周波数(波長)はLiN□3基板の
電気光学効果を用いて、電極3に印加する電圧によって
制御することができる。電圧による発振周波数制御幅は
数人程度である。作製された素子は、安定に動作し、温
度や電流変化に対しても安定であった。
The optical waveguide array 2 and the output waveguide 8 are made by diffusing T1 into a LiNbO3 crystal. The diffraction grating is fabricated by etching the substrate 6 which has been patterned by a three-beam interference exposure method. The period A of the diffraction grating is determined by the formula, and when λ = 1.3 μm, A ~ 0.29 μm
becomes. Laser oscillation occurs between the reflective coating 7 and the diffraction grating 4, and single-longitudinal mode oscillation and narrow spectral linewidth are simultaneously obtained. IMH with an optical waveguide length of about 2 cabinets
A spectral linewidth below z was stably obtained. The oscillation frequencies (wavelengths) of the three semiconductor laser devices can be controlled by the voltage applied to the electrode 3 using the electro-optic effect of the LiN□3 substrate. The oscillation frequency control width by voltage is about a few people. The fabricated device operated stably and was stable against changes in temperature and current.

発明の効果 本発明の構成により、波長多重可能なコヒーレント光通
信等に用いる狭いスペクトル線幅を有する半導体レーザ
装置を得ることができる。
Effects of the Invention According to the configuration of the present invention, it is possible to obtain a semiconductor laser device having a narrow spectral linewidth for use in wavelength-multiplexable coherent optical communications and the like.

またその特性は温度や電流の変化に対しても、発振周波
数変動の小さいものである。アレイ化した装置では光軸
調整が一度に行なえる効果がある。
Furthermore, its characteristics include small fluctuations in oscillation frequency even with changes in temperature and current. Arrayed devices have the advantage of being able to adjust the optical axis all at once.

以上のように、本発明はコヒーレント光通信の技術の進
歩および実用化に向けて産業上大きな意義を有する。
As described above, the present invention has great industrial significance for the advancement and practical application of coherent optical communication technology.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の半導体レーザ装置の斜視図
、第2図aは従来のレーザ装置の構成図、第2図すは同
断面図である。 1・・・・・・半導体レーザアレイ、2・・・・・・光
導波路アレイ、3・・・・・・電極、4・・・・・・回
折格子、6・・・・・・基板、6.6’、6’・・・・
・・無反射コーティング、7・・・・・・反射コーティ
ング、8・・・・・・出力導波路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名?!
−−−千4亭会トレー丈゛ 22−  レンズ Z3.27−  目断符子 (α) Cb)
FIG. 1 is a perspective view of a semiconductor laser device according to an embodiment of the present invention, FIG. 2a is a configuration diagram of a conventional laser device, and FIG. 2 is a sectional view thereof. DESCRIPTION OF SYMBOLS 1... Semiconductor laser array, 2... Optical waveguide array, 3... Electrode, 4... Diffraction grating, 6... Substrate, 6.6', 6'...
...Anti-reflection coating, 7...Reflection coating, 8...Output waveguide. Name of agent: Patent attorney Toshio Nakao and one other person? !
---Sen4-tei tray length ゛22- Lens Z3.27- Eye mark (α) Cb)

Claims (5)

【特許請求の範囲】[Claims] (1)レーザ共振器の一端を高反射率化し他の一端を低
反射率化した半導体レーザ素子の前記低反射率端面から
出射する光が、単一横モードで光を導波する手段と、前
記単一横モードで光を導波する手段内の一部に設けた前
記半導体レーザ素子の利得波長内の特定の波長を一部分
選択的に帰還する手段と、屈折率を変化することにより
前記特定の波長を制御する手段とを有する誘電体光導波
路と光学的に結合してなる半導体レーザ装置。
(1) means for guiding light emitted from the low reflectance end face of a semiconductor laser element in which one end of a laser resonator has a high reflectance and the other end has a low reflectance in a single transverse mode; means for selectively feeding back a specific wavelength within the gain wavelength of the semiconductor laser element provided in a part of the means for guiding light in a single transverse mode; A semiconductor laser device optically coupled to a dielectric optical waveguide having means for controlling the wavelength of the semiconductor laser.
(2)半導体レーザ素子が複数の半導体レーザ素子の配
列であり、誘電体光導波路が前記複数の半導体レーザ素
子の利得波長内のそれぞれ異なる特定の波長を一部分選
択的に帰還する手段を有し前記半導体レーザ素子の配列
と対向するように光学的に結合して配列した誘電体光導
波路の配列であり、前記誘電体光導波路の配列の半導体
レーザと対向するとは異なる他端を接続して1本の出力
用光導波路とする特許請求の範囲第(1)項記載の半導
体レーザ装置。
(2) The semiconductor laser device is an array of a plurality of semiconductor laser devices, and the dielectric optical waveguide has means for selectively feeding back a portion of each different specific wavelength within the gain wavelengths of the plurality of semiconductor laser devices. It is an array of dielectric optical waveguides optically coupled and arranged to face an array of semiconductor laser elements, and the other end of the array of dielectric optical waveguides, which is different from the one facing the semiconductor laser, is connected to form one. A semiconductor laser device according to claim (1), wherein the semiconductor laser device is an output optical waveguide.
(3)誘電体光導波路がX板のLiNbO_3により構
成される特許請求の範囲第(1)項または第(2)項に
記載の半導体レーザ装置。
(3) The semiconductor laser device according to claim (1) or (2), wherein the dielectric optical waveguide is formed of LiNbO_3 of an X-plate.
(4)半導体レーザ素子の利得波長内の特定の波長を一
部分選択的に帰還する手段が導波路型の回折格子による
ものである特許請求の範囲第(1)項または第(2)項
に記載の半導体レーザ装置。
(4) According to claim (1) or (2), the means for selectively feeding back a portion of a specific wavelength within the gain wavelength of the semiconductor laser device is a waveguide type diffraction grating. semiconductor laser equipment.
(5)誘電体光導波路の半導体レーザと光学的に結合す
る端面から半導体レーザ素子の利得波長内の特定の波長
を一部分選択的に帰還する手段にいたる距離が、得よう
とするレーザ発振光のスペクトル線幅の値に応じてある
特定の長さよりも長く設定される特許請求の範囲第(1
)項または第(2)項記載の半導体レーザ装置。
(5) The distance from the end surface of the dielectric optical waveguide that is optically coupled to the semiconductor laser to the means for selectively feeding back a specific wavelength within the gain wavelength of the semiconductor laser element is the distance that Claim No. 1, which is set longer than a certain length depending on the value of the spectral line width.
) or (2).
JP62153664A 1987-06-19 1987-06-19 Semiconductor laser device Pending JPS63318186A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62153664A JPS63318186A (en) 1987-06-19 1987-06-19 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62153664A JPS63318186A (en) 1987-06-19 1987-06-19 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS63318186A true JPS63318186A (en) 1988-12-27

Family

ID=15567481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62153664A Pending JPS63318186A (en) 1987-06-19 1987-06-19 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS63318186A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0801316A3 (en) * 1996-04-10 1998-06-10 Ohmeda Inc. Photoplethysmographic instrument having an integrated multimode optical coupler device
FR2826193A1 (en) * 2001-06-15 2002-12-20 Thales Sa Wavelength multiplexing dense telecommunications laser networks having coherent light transmitter block/external cavities coupled and optical guide/narrow band filter facing cavities.

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0801316A3 (en) * 1996-04-10 1998-06-10 Ohmeda Inc. Photoplethysmographic instrument having an integrated multimode optical coupler device
FR2826193A1 (en) * 2001-06-15 2002-12-20 Thales Sa Wavelength multiplexing dense telecommunications laser networks having coherent light transmitter block/external cavities coupled and optical guide/narrow band filter facing cavities.

Similar Documents

Publication Publication Date Title
US6483635B1 (en) Apparatus for light amplification
RU2169936C2 (en) Acoustic-optical waveguide gear for selection of lengths of waves and process of its manufacture
KR100576712B1 (en) High frequency optical source integrated 3 dB coupler with gratings and method for fabricating the same
WO2017092094A1 (en) Wavelength tunable semiconductor laser
US6795479B2 (en) Generation of optical pulse train having high repetition rate using mode-locked laser
WO2007107187A1 (en) Integrated laser optical source with active and passive sections formed in distinct substrates
JPH02195309A (en) Optical coupling element
JPH1146046A (en) Single mode laser
CN113809634A (en) Hybrid integrated external cavity tunable laser based on lithium niobate photonic waveguide
JP2708467B2 (en) Tunable semiconductor laser
JP2947142B2 (en) Tunable semiconductor laser
US5666374A (en) Tunable optical arrangement
JPS63229796A (en) Photo-semiconductor element
JPS63318186A (en) Semiconductor laser device
JPH08334796A (en) Optical wavelength conversion integrating element
JPS622478B2 (en)
JP2936792B2 (en) Waveguide type optical device
JPS59154086A (en) Frequency stabilized semiconductor laser
JP3529275B2 (en) WDM light source
JP2001177182A (en) External resonator semiconductor laser and optical waveguide device
WO2007107186A1 (en) Integrated laser optical source
JPS61125187A (en) Semiconductor light-emitting device
JPS63148692A (en) Multiple wave length distribution bragg reflection type semiconductor laser array
JP3112105B2 (en) WDM light source
JPH02250384A (en) Light source apparatus for variable wavelength semiconductor laser