JPS63311212A - Optical waveguide device and method for packaging optical waveguide - Google Patents
Optical waveguide device and method for packaging optical waveguideInfo
- Publication number
- JPS63311212A JPS63311212A JP14748787A JP14748787A JPS63311212A JP S63311212 A JPS63311212 A JP S63311212A JP 14748787 A JP14748787 A JP 14748787A JP 14748787 A JP14748787 A JP 14748787A JP S63311212 A JPS63311212 A JP S63311212A
- Authority
- JP
- Japan
- Prior art keywords
- optical
- substrate
- waveguide
- optical waveguide
- waveguide chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 70
- 238000000034 method Methods 0.000 title description 10
- 238000004806 packaging method and process Methods 0.000 title 1
- 239000000758 substrate Substances 0.000 claims abstract description 50
- 239000013307 optical fiber Substances 0.000 claims abstract description 40
- 238000005530 etching Methods 0.000 claims description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- 230000008878 coupling Effects 0.000 abstract description 3
- 238000010168 coupling process Methods 0.000 abstract description 3
- 238000005859 coupling reaction Methods 0.000 abstract description 3
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000011651 chromium Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 230000000694 effects Effects 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 230000008602 contraction Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000001020 plasma etching Methods 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910003327 LiNbO3 Inorganic materials 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000004021 metal welding Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
Landscapes
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は光通信等の分野で用いられる光導波路装置と、
光導波路の実装方法に関するものでおる。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an optical waveguide device used in fields such as optical communication,
This article concerns a method for mounting optical waveguides.
光導波路と光ファイバを接続する従来技術としては、昭
和61年度電子通信学会総合全国大会誌(10−301
>に掲載されているものが知られている。この技術は、
光導波路の3分割モジュールを作り、これらモジュール
をレーザーを用いた金属溶接により固定することが特徴
である。As a conventional technology for connecting optical waveguides and optical fibers, the 1986 IEICE General National Conference Journal (10-301
> are known. This technology is
It is characterized by creating three-part optical waveguide modules and fixing these modules by metal welding using a laser.
しかしながら上記の従来技術では、3個のモジュールか
ら成るため、固定の際には光軸合せに特殊な治具が必要
であり、しかも長時間を要するという問題点がおった。However, since the above-mentioned conventional technology consists of three modules, a special jig is required for optical axis alignment during fixation, and moreover, there are problems in that it takes a long time.
また、光ファイバをメタルチューブに固定する場合には
樹脂を用いる必要がおり、この樹脂とメタルチューブを
構成する部材との熱膨張率、熱収縮率の差が大きく、こ
のため、温度変化によって固定部に機械的な歪みを生じ
ることがあった。In addition, when fixing an optical fiber to a metal tube, it is necessary to use resin, and there is a large difference in coefficient of thermal expansion and thermal contraction between this resin and the materials that make up the metal tube. Mechanical distortion may occur in the parts.
そこで本発明は、光ファイバと光導波路を低損失で結合
することが可能で、しかも光軸合わせに時間を取られる
ことなく、組立、固定を容易に行い得る光導波路装置と
、その実装方法を提供することを目的とする。Therefore, the present invention provides an optical waveguide device that can couple an optical fiber and an optical waveguide with low loss, and that can be easily assembled and fixed without taking time for optical axis alignment, and a method for mounting the same. The purpose is to provide.
本発明に係る光導波路装置は、光導波路が形成された導
波路チップと、この導波路チップが嵌入する大きさの凹
部を有する基板とを含み、この基板には、下記の如き溝
部が形成されていることを特徴とする。すなわち溝部は
、上記凹部に上記導波路チップが嵌入された状態で、上
記光導波路を上記基板側に仮想的に延長した線を中央部
に含む線パターンの位置に光ファイバを配置したとき、
この光ファイバのコアと上記光導波路の端面とが一致す
るような深さを有している。The optical waveguide device according to the present invention includes a waveguide chip on which an optical waveguide is formed, and a substrate having a recessed portion large enough to fit the waveguide chip, and this substrate has a groove portion as described below formed therein. It is characterized by In other words, when the optical fiber is placed in the groove, with the waveguide chip fitted into the recess, the optical fiber is placed at the position of a line pattern whose central portion includes a line that is a virtual extension of the optical waveguide toward the substrate.
The depth is such that the core of this optical fiber and the end face of the optical waveguide coincide.
また、本発明に係る光導波路の実装方法は、導波路チッ
プを基板の上面に載置し、この導波路チップに整合した
第1のマスクパターンを基板の上面に形成する第1の工
程と、第1のマスクパターンを介して基板を上面からエ
ツチングし、導波路チップが嵌入する大きさの凹部をセ
ルファライン的に形成する第2の工程と、この凹部に導
波路チップが嵌入された状態で、光導波路を基板側に仮
想的に延長した線を中央部に含む線パターンの位置に開
孔を有する第2のマスクパターンを形成する第3の工程
と、この第2のマスクパターンを介して基板を上面から
エツチングし、光ファイバを配置したときこの光ファイ
バのコアと光導波路の端面とが一致する深さの溝部を形
成する第4の工程と、上記の凹部に導波路チップを嵌入
すると共に溝部に光ファイバを配設して固定する第5の
工程とを備えることを特徴とする。Further, the method for mounting an optical waveguide according to the present invention includes a first step of placing a waveguide chip on the top surface of a substrate, and forming a first mask pattern matching the waveguide chip on the top surface of the substrate; A second step of etching the substrate from the top surface through the first mask pattern to form a recess large enough to fit the waveguide chip in a self-aligned manner; , a third step of forming a second mask pattern having an opening at the position of the line pattern including a line in the center of which the optical waveguide is virtually extended toward the substrate; A fourth step of etching the substrate from the top surface to form a groove with a depth that matches the core of the optical fiber and the end surface of the optical waveguide when the optical fiber is placed, and fitting the waveguide chip into the recess. The present invention is characterized in that it also includes a fifth step of arranging and fixing the optical fiber in the groove.
本発明に係る光導波路装置は、以上の通りに構成される
ので、基板の凹部に導波路チップを嵌入し、溝部に光フ
ァイバを配置するだけで、当該溝部の深さの作用と当該
溝部の長手方向に光導波路が存在することとにより、必
然的に光軸合わせがなされるようになる。Since the optical waveguide device according to the present invention is configured as described above, by simply fitting the waveguide chip into the recess of the substrate and arranging the optical fiber in the groove, the effect of the depth of the groove can be adjusted. Due to the presence of the optical waveguide in the longitudinal direction, optical axis alignment is inevitably achieved.
また、本発明に係る光導波路の実装方法は、以上の通り
に構成されるので、導波路チップを嵌入する凹部はセル
ファライン的に基板に形成され、従って光ファイバとの
光軸合わせを容易にするよう作用する。Further, since the optical waveguide mounting method according to the present invention is configured as described above, the recess into which the waveguide chip is inserted is formed in the substrate in a self-aligned manner, and therefore the optical axis alignment with the optical fiber can be easily performed. act to do so.
(実施例〕
以下、添付図面の第1図ないし第4図を参照して、本発
明の一実施例を説明する。なあ、図面の説明において同
一の要素には同一の符号を付し、重複する説明を省略す
る。(Embodiment) Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 1 to 4 of the accompanying drawings.In the explanation of the drawings, the same elements are denoted by the same reference numerals, and Omit the explanation.
第1図は本発明の一実施例に係る光導波路装置の組立斜
視図である。同図において、導波路チツプ1には光導波
路3が形成され、ここでは1人力2出力の光導波路とな
っている。導波路チップ1は直方体であるが基板2も直
方体であり、その厚さは導波路チップ1の厚さより大き
い。基板2の中央部には導波路チップ1がちょうど嵌入
し、かつ埋没する大きさの凹部4が形成されている。ま
た基板2には、凹部4に導波路チップ1が嵌入された状
態で、その光導波路3を基板2側に仮想的に延長した線
を中央部に含む線パターンの位置に、その断面が略V字
状の溝部5A〜5Cが例えばリングラフィ工程を経て形
成されている。FIG. 1 is an assembled perspective view of an optical waveguide device according to an embodiment of the present invention. In the figure, an optical waveguide 3 is formed in a waveguide chip 1, and here it is an optical waveguide capable of producing two outputs per person. Although the waveguide chip 1 is a rectangular parallelepiped, the substrate 2 is also a rectangular parallelepiped, and its thickness is larger than that of the waveguide chip 1. A recess 4 is formed in the center of the substrate 2 and is large enough for the waveguide chip 1 to fit and be buried therein. Further, in the substrate 2, with the waveguide chip 1 fitted in the recess 4, the cross section is approximately at the position of a line pattern including a line in the center that is a virtual extension of the optical waveguide 3 toward the substrate 2 side. The V-shaped grooves 5A to 5C are formed, for example, through a phosphorography process.
この溝部5A〜5Cの深さは、導波路チップ1を凹部4
に嵌入した状態でこれら溝部5A〜5Cに光ファイバ6
A〜6Cを配置したとき、これら光ファイバ6A〜6C
の中心部(コア)と光導波路3の端面とが一致するよう
に形成される。そして、基板2の凹部4に導波路チップ
1を嵌入し、基板2の溝部5A〜5Cに光ファイバ6A
〜6Cを配置し、光ファイバ6A〜6Cの端面と光導波
路3の端面とを突き合せた債、樹脂、半田等を用いて固
定することにより、光導波路3と光ファイバ6A〜6C
との光結合を図ることができる。The depth of the grooves 5A to 5C is such that the waveguide chip 1 is
The optical fibers 6 are inserted into these grooves 5A to 5C while
When A to 6C are arranged, these optical fibers 6A to 6C
The center portion (core) of the optical waveguide 3 is formed so as to coincide with the end face of the optical waveguide 3. Then, the waveguide chip 1 is fitted into the recess 4 of the substrate 2, and the optical fiber 6A is inserted into the grooves 5A to 5C of the substrate 2.
6C, and by fixing the end faces of the optical fibers 6A to 6C and the end face of the optical waveguide 3 using bond, resin, solder, etc., the optical waveguide 3 and the optical fibers 6A to 6C are connected.
It is possible to achieve optical coupling with
次に、上記実施例に係る光導波路装置の製造工程を、第
2図ないし第4図を参照して説明する。Next, the manufacturing process of the optical waveguide device according to the above embodiment will be explained with reference to FIGS. 2 to 4.
まず、基板1に凹部4を形成する場合には、次のように
する。例えば、LiNbO3から成り、大きざが110
X20の導波路チップ1の裏面(光導波路3が形成され
た面とは逆の面)に、クロム(Cr )および金(Au
)からなるCr/Au (20OA/200OA>
20を真空蒸着する(第2図(a>図示)。First, when forming the recess 4 in the substrate 1, the following procedure is performed. For example, it is made of LiNbO3 and has a size of 110 mm.
Chromium (Cr) and gold (Au
) consisting of Cr/Au (20OA/200OA>
20 is vacuum-deposited (see FIG. 2 (a)).
次に、シリコン(Si )から成り、大きざが15X3
5mで厚さが導波路チップ1よりも厚い基板2上に、ア
ルミニウム(AN)21を真空蒸着して1μm堆積させ
た後、ネガ型レジスト22をスピンコードする(第2図
(b)図示)。そこで、上記導波路チップ1を光導波路
3側を上向きにして基板2の所要位置に載置し、紫外線
23を照射することにより導波路チップ1をマスクとし
て露光する(第2図(C>図示)。このとき、光導波路
3の光軸は3i基板2の<110>方向になるようにし
ておく。次に、導波路チップ1を取り外して現像するこ
とにより、ネガ型レジスト22のうち導波路チップ1が
載置されていた部分22Aが除去される(第2図(d)
図示)。これによって、導波路チップ1によりセルファ
ライン的に形成された第1のマスクパターンが得られる
。Next, it is made of silicon (Si) and has a size of 15×3.
On the substrate 2, which is 5 m thick and thicker than the waveguide chip 1, aluminum (AN) 21 is vacuum-deposited to a thickness of 1 μm, and then a negative resist 22 is spin-coded (as shown in FIG. 2(b)). . Therefore, the waveguide chip 1 is placed at a desired position on the substrate 2 with the optical waveguide 3 side facing upward, and is exposed to ultraviolet rays 23 using the waveguide chip 1 as a mask (see Fig. 2 (C> ) At this time, the optical axis of the optical waveguide 3 is set in the <110> direction of the 3i substrate 2.Next, by removing the waveguide chip 1 and developing it, the waveguide in the negative resist 22 is The portion 22A on which the chip 1 was placed is removed (FIG. 2(d))
(Illustrated). As a result, a first mask pattern formed in a self-aligned manner by the waveguide chip 1 is obtained.
次に、反応性イオンエツチング装置を用い、エツチング
ガスとしてCBr F3を1105CC、カス圧を1.
5Pa、電力をIKWの条件下で、上記ネガ型レジスト
22をマスクとし、3iから成る基板2 (A、l!
21を含む。)をエツチングし、凹部4の深さが導波路
チップ1の厚さと等しくなったときエツチングを止める
。そして、最後にリン酸等を用いて、残余のネガ型レジ
スト22およびAI!21を除去する。この結果、第2
図(e)に示されるように、導波路チップ1が嵌入する
だけの大きさの凹部4が形成された基板2を得ることが
できる。Next, using a reactive ion etching device, CBr F3 was used as an etching gas at 1105 CC, and the gas pressure was set at 1.
Under conditions of 5 Pa and IKW power, using the negative resist 22 as a mask, the substrate 2 consisting of 3i (A, l!
Including 21. ), and the etching is stopped when the depth of the recess 4 becomes equal to the thickness of the waveguide chip 1. Finally, using phosphoric acid or the like, the remaining negative resist 22 and AI! 21 is removed. As a result, the second
As shown in Figure (e), it is possible to obtain a substrate 2 in which a recess 4 large enough to fit the waveguide chip 1 is formed.
光ファイバ6A〜6Cを固定するための溝部5(5A〜
5C)を、3i基板2の<110>方向に形成する場合
には、下記のようにする。Grooves 5 (5A to 6C) for fixing optical fibers 6A to 6C
5C) in the <110> direction of the 3i substrate 2, proceed as follows.
まず、基板2の凹部4に導波路チップ1を嵌入する。こ
の時、凹部4の大きさと導波路チップ1の大きさとの誤
差は0.1μm程度に抑えられている。次に、導波路チ
ップ1が嵌入された基板2の表面に、二酸化シリコン(
Si 02 >30を1μmの厚さで被着し、更に、ポ
ジ型レジスト31を1.5μmの厚さでスピンコードす
る。これに、第4図に示すようなフォトマスク32を重
ねて露光する(第3図(a)図示)。ここで、第4図に
示されるように、フォトマスク32は導波路チップ1の
光導波路3の線パターン(網目状パターンを施して示す
。)を中央部に含み、この線パターンを延長した露光線
パターン33を有し、ハツチングで示された部分で紫外
線を通過させない溝部となっている。露光線パターン3
3の線幅は、光ファイバ6A〜6Cの外径との関係で、
所定に定められる。First, the waveguide chip 1 is fitted into the recess 4 of the substrate 2. At this time, the error between the size of the recess 4 and the size of the waveguide chip 1 is suppressed to about 0.1 μm. Next, silicon dioxide (
Si 02 >30 is deposited to a thickness of 1 μm, and a positive resist 31 is further spin-coded to a thickness of 1.5 μm. A photomask 32 as shown in FIG. 4 is placed over this and exposed (as shown in FIG. 3(a)). Here, as shown in FIG. 4, the photomask 32 includes the line pattern (shown as a mesh pattern) of the optical waveguide 3 of the waveguide chip 1 in the center, and exposes the extended line pattern. It has a line pattern 33, and the hatched portions are grooves that do not allow ultraviolet rays to pass through. Exposure line pattern 3
The line width of 3 is related to the outer diameter of the optical fibers 6A to 6C,
prescribed.
このようなフォトマスク32を用いて露光を行つた後、
川縁して導波路チップ1を取出し、凹部4に上記レジス
トと同じポジ型レジスト31Aを充填し、これらポジ型
レジスト31.31Aをマスクとして、S!0230を
反応性イオンエツチング装置を用いてエツチングする(
第3図(b)図示)。これにより、ポジ型レジスト31
の露光線パターン33に対応する位置でS!0230が
除去される(第3図(C)図示)。After performing exposure using such a photomask 32,
The waveguide chip 1 is taken out, the recess 4 is filled with the same positive type resist 31A as the above resist, and using these positive type resists 31 and 31A as a mask, S! Etching 0230 using a reactive ion etching device (
(Illustrated in FIG. 3(b)). As a result, the positive resist 31
S! at the position corresponding to the exposure line pattern 33 of 0230 is removed (as shown in FIG. 3(C)).
しかる後、このSi 0230をマスクとして、3iか
ら成る基板2をエツチング液(例えば、CH3CO0H
,NHO3、HF系)を用いてエツチングする。この結
果、露光線パターン33に対応する基板2の表面がエツ
チングされ、壁面が54.7度に傾斜した溝部5が形成
される。溝部5の深さが67μmとなったとき、エツチ
ングを止める。そして、ポジ型レジスト33を除去する
(第3図(d>図示)。また、導波路チップ1のポジ型
レジスト31Aも除去する。Thereafter, using this Si0230 as a mask, the substrate 2 made of 3i is etched with an etching solution (for example, CH3CO0H).
, NHO3, HF system). As a result, the surface of the substrate 2 corresponding to the exposure line pattern 33 is etched, and a groove 5 whose wall surface is inclined at 54.7 degrees is formed. Etching is stopped when the depth of the groove 5 reaches 67 μm. Then, the positive resist 33 is removed (FIG. 3 (d> shown). The positive resist 31A of the waveguide chip 1 is also removed.
かくして、第1図に示したような導波路チップ1と基板
2とができ上る。そこで、第1図を用いて既述した如く
、基板2の凹部4に導波路チップ1を嵌入し、溝部5A
〜5Cに光ファイバ6A〜6Cを配置し、光ファイバ6
A〜6Cを導波路チップ1側に押し付け、光ファイバ6
A〜6Cの端面と光導波路3の端面とが当接するように
して固定する。すると、溝部5A〜5Gの深さが67μ
mであるから、光ファイバ6A〜6Cとして外径が12
5μmであるものを用いると、光導波路3の層の深さま
で考えると、光ファイバ6A〜6Cの中心部(コア)と
光導波路3の層の中心部とが一致(光軸が一致)する。In this way, a waveguide chip 1 and a substrate 2 as shown in FIG. 1 are completed. Therefore, as already described using FIG. 1, the waveguide chip 1 is fitted into the recess 4 of the substrate 2, and the groove 5A is
Optical fibers 6A to 6C are arranged at ~5C, and optical fiber 6
A to 6C are pressed against the waveguide chip 1 side, and the optical fiber 6
The end faces of A to 6C and the end face of the optical waveguide 3 are fixed in contact with each other. Then, the depth of grooves 5A to 5G is 67μ.
m, so the outer diameter of the optical fibers 6A to 6C is 12
When a layer having a thickness of 5 μm is used, when considering the depth of the layer of the optical waveguide 3, the centers (cores) of the optical fibers 6A to 6C match the center of the layer of the optical waveguide 3 (the optical axes match).
この場合、上記固定を樹脂により行ったとしても、従来
のように光ファイバをメタルチューブに固定する構成を
採らないので、熱膨張率、熱収縮率の差が固定に係る部
材間で大きく異ならず、従って歪みを生じにくく、光の
伝搬を低損失で行なうことが可能となる。そして、上記
凹部4や溝部5の形成がリソグラフィ工程を経てセルフ
ァライン的に行なわれ、かつ凹状溝部5の形成が結晶方
位に従って高精度に行なわれることから、光軸合せを無
調整で行うことが可能であり、組立作業を容易に短時間
で行うことができる。In this case, even if the above-mentioned fixation is performed with resin, the optical fiber is not fixed to the metal tube as in the past, so the difference in thermal expansion coefficient and thermal contraction coefficient does not differ greatly between the fixing members. Therefore, distortion is less likely to occur, and light propagation can be carried out with low loss. Since the recesses 4 and grooves 5 are formed in a self-aligned manner through a lithography process, and the recessed grooves 5 are formed with high precision according to the crystal orientation, optical axis alignment can be performed without adjustment. possible, and the assembly work can be done easily and in a short time.
本発明は上記の実施例に限定されるものではなく、種々
の変形が可能である。The present invention is not limited to the above embodiments, and various modifications are possible.
例えば、溝部の断面形状は必ずしも略V字状あるいは逆
台形状ではなくてもよく、凹になっていることで十分で
ある。また、溝部の数は光導波路の入力数および出力数
に応じて、適宜に変更することが可能である。また、基
板はガリウムヒ素(Ga As )やインジウムリン(
InP>等であってよい。For example, the cross-sectional shape of the groove portion does not necessarily have to be approximately V-shaped or inverted trapezoidal, and it is sufficient that it is concave. Furthermore, the number of grooves can be changed as appropriate depending on the number of inputs and the number of outputs of the optical waveguide. In addition, the substrate is made of gallium arsenide (GaAs) or indium phosphide (
InP> etc.
更に、導波路チップが基板の凹部にちょうど埋没して嵌
入するようにしたが、要は光ファイバの中心部と光導波
路の端面とが一致していればよいから、導波路チップが
基板表面より突出していても、逆に、導波路チップが基
板表面より落込んでいても、これらに対応した深さで溝
部を形成することで対処できる。Furthermore, we made sure that the waveguide chip was just buried in the recess of the substrate, but the point is that the center of the optical fiber and the end face of the optical waveguide only need to match, so the waveguide chip is lower than the surface of the substrate. Even if the waveguide chip is protruding, or conversely, even if the waveguide chip is depressed from the substrate surface, it can be handled by forming a groove portion with a depth corresponding to the protrusion.
また、溝部と光ファイバをCr/AuやAl1等でメタ
ライズして合金させることにより固定したり、あるいは
半田を用いて光ファイバを固定するようにしてもよい。Further, the groove and the optical fiber may be fixed by metalizing and alloying them with Cr/Au, Al1, etc., or the optical fiber may be fixed using solder.
このようにすると、樹脂に比べて安定的に確実な固定が
可能となる。This allows for more stable and reliable fixation than with resin.
以上、詳細に説明した通り本発明の光導波路装置では、
導波路チップが嵌入された状態で光導波路と光ファイバ
の光軸が一致するような溝部が、例えばりソゲラフイエ
程を経て基板に形成されているので、凹部に導波路チッ
プを嵌入し、溝部に光ファイバを配置するだけで光軸合
わせができ、かつ低損失な光結合を実施できる。As explained in detail above, in the optical waveguide device of the present invention,
A groove in which the optical axes of the optical waveguide and the optical fiber coincide with each other when the waveguide chip is inserted is formed in the substrate, for example, through a Sogerahuie process, so the waveguide chip is inserted into the recess and the groove is Optical axes can be aligned simply by arranging optical fibers, and low-loss optical coupling can be achieved.
また、本発明の実装方法では、導波路デツプを嵌入する
凹部がセルファライン的に形成されるので、正確な位置
決めが可能であり、特殊な治具を要せず、組立作業を容
易に短時間で行うことができる。In addition, in the mounting method of the present invention, since the recess into which the waveguide depth is inserted is formed in a self-aligned manner, accurate positioning is possible, and no special jig is required, making assembly work easier and shorter. It can be done with
第1図は本発明の一実施例に係る光導波路装置の構成を
示す組立斜視図、第2図および第3図は゛第1図に示す
光導波路装置の製造工程の断面図、第4図は基板に溝部
を形成するために用いるフォトマスクの平面図である。
1・・・導波路チップ、2・・・基板、3・・・光導波
路、4・・・凹部、5,5A〜5C・・・溝部、6.6
A〜6C・・・光ファイバ。
特許出願人 住友電気工業株式会社
代理人弁理士 長谷用 芳 樹第 2 図
7jFJ′3 図FIG. 1 is an assembled perspective view showing the configuration of an optical waveguide device according to an embodiment of the present invention, FIGS. 2 and 3 are cross-sectional views of the manufacturing process of the optical waveguide device shown in FIG. FIG. 3 is a plan view of a photomask used to form a groove in a substrate. DESCRIPTION OF SYMBOLS 1... Waveguide chip, 2... Substrate, 3... Optical waveguide, 4... Recessed part, 5,5A-5C... Groove part, 6.6
A~6C...Optical fiber. Patent Applicant: Sumitomo Electric Industries, Ltd. Representative Patent Attorney Yoshiki Hase 2nd Figure 7jFJ'3
Claims (1)
チップが嵌入する大きさの凹部を有する基板とを含み、
この基板には、 前記凹部に前記導波路チップが嵌入された状態で、前記
光導波路を前記基板側に仮想的に延長した線を中央部に
含む線パターンの位置に光ファイバを配置したとき、こ
の光ファイバのコアと前記光導波路の端面とが一致する
深さの溝部が、前記線パターン位置に形成されているこ
とを特徴とする光導波路装置。 2、前記凹部は、この凹部が形成される前の基板上に前
記導波路チップを載置して形成したマスクパターンを使
用して、エッチングにより作られていることを特徴とす
る特許請求の範囲第1項記載の光導波路装置。 3、前記溝部は、Cr/Auによりメタライズされてい
ることを特徴とする特許請求の範囲第1項または第2項
記載の光導波路装置。 4、前記基板はシリコンから形成されていることを特徴
とする特許請求の範囲第1項ないし第3項のいずれかに
記載の光導波路装置。 5、導波路チップを基板の上面に載置し、この導波路チ
ップに整合した第1のマスクパターンを前記基板の上面
に形成する第1の工程と、前記第1のマスクパターンを
介して前記基板を上面からエッチングし、前記導波路チ
ップが嵌入する大きさの凹部を形成する第2の工程と、
前記凹部に前記導波路チップが嵌入された状態で、前記
光導波路を前記基板側に仮想的に延長した線を中央部に
含む線パターンの位置に開孔を有する第2のマスクパタ
ーンを形成する第3の工程と、 前記第2のマスクパターンを介して前記基板を上面から
エッチングし、光ファイバを配置したときこの光ファイ
バのコアと前記光導波路の端面とが一致する深さの溝部
を形成する第4の工程と、前記凹部に前記導波路チップ
を嵌入すると共に前記溝部に光ファイバを配設して固定
する第5の工程とを備えることを特徴とする光導波路の
実装方法。[Claims] 1. A waveguide chip having an optical waveguide formed thereon, and a substrate having a recessed portion large enough to fit the waveguide chip;
When an optical fiber is placed on this substrate at a line pattern position including a line in the center of which the optical waveguide is virtually extended toward the substrate side with the waveguide chip fitted into the recess, An optical waveguide device characterized in that a groove portion having a depth that matches the core of the optical fiber and the end face of the optical waveguide is formed at the position of the line pattern. 2. Claims characterized in that the recess is made by etching using a mask pattern formed by placing the waveguide chip on the substrate before the recess is formed. The optical waveguide device according to item 1. 3. The optical waveguide device according to claim 1 or 2, wherein the groove portion is metalized with Cr/Au. 4. The optical waveguide device according to any one of claims 1 to 3, wherein the substrate is made of silicon. 5. A first step of placing a waveguide chip on the top surface of the substrate and forming a first mask pattern on the top surface of the substrate that matches the waveguide chip; a second step of etching the substrate from the top surface to form a recess large enough to fit the waveguide chip;
With the waveguide chip fitted into the recess, a second mask pattern is formed that has openings at the position of a line pattern whose center part includes a line that is a virtual extension of the optical waveguide toward the substrate. a third step, etching the substrate from the top surface through the second mask pattern to form a groove portion having a depth such that when an optical fiber is placed, the core of the optical fiber and the end surface of the optical waveguide coincide with each other; and a fifth step of fitting the waveguide chip into the recess and arranging and fixing the optical fiber in the groove.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14748787A JPS63311212A (en) | 1987-06-12 | 1987-06-12 | Optical waveguide device and method for packaging optical waveguide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14748787A JPS63311212A (en) | 1987-06-12 | 1987-06-12 | Optical waveguide device and method for packaging optical waveguide |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63311212A true JPS63311212A (en) | 1988-12-20 |
Family
ID=15431502
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14748787A Pending JPS63311212A (en) | 1987-06-12 | 1987-06-12 | Optical waveguide device and method for packaging optical waveguide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63311212A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01287605A (en) * | 1988-01-15 | 1989-11-20 | E I Du Pont De Nemours & Co | Optical fiber connector assembly and manufacture thereof |
JPH05119230A (en) * | 1991-10-29 | 1993-05-18 | Nec Corp | Optical fiber array connecting structure |
US5218663A (en) * | 1991-03-19 | 1993-06-08 | Fujitsu Limited | Optical waveguide device and method for connecting optical waveguide and optical fiber using the optical waveguide device |
EP0649039B1 (en) * | 1993-10-19 | 2002-04-03 | Matsushita Electric Industrial Co., Ltd. | Components for optical circuits and method of manufacturing the same |
KR100584115B1 (en) | 2003-12-24 | 2006-05-30 | 전자부품연구원 | Light splitter and method of manufacturing the same |
JP2015072330A (en) * | 2013-10-02 | 2015-04-16 | 富士通株式会社 | Optical waveguide component, manufacturing method of the same, and optical waveguide device |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57119314A (en) * | 1981-01-16 | 1982-07-24 | Omron Tateisi Electronics Co | Connecting method between optical fiber and optical waveguide |
JPS59146004A (en) * | 1983-02-08 | 1984-08-21 | Sumitomo Electric Ind Ltd | Optical integrated circuit |
JPS59185306A (en) * | 1983-04-07 | 1984-10-20 | Agency Of Ind Science & Technol | Method for mounting optical integrated circuit |
-
1987
- 1987-06-12 JP JP14748787A patent/JPS63311212A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57119314A (en) * | 1981-01-16 | 1982-07-24 | Omron Tateisi Electronics Co | Connecting method between optical fiber and optical waveguide |
JPS59146004A (en) * | 1983-02-08 | 1984-08-21 | Sumitomo Electric Ind Ltd | Optical integrated circuit |
JPS59185306A (en) * | 1983-04-07 | 1984-10-20 | Agency Of Ind Science & Technol | Method for mounting optical integrated circuit |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01287605A (en) * | 1988-01-15 | 1989-11-20 | E I Du Pont De Nemours & Co | Optical fiber connector assembly and manufacture thereof |
US5218663A (en) * | 1991-03-19 | 1993-06-08 | Fujitsu Limited | Optical waveguide device and method for connecting optical waveguide and optical fiber using the optical waveguide device |
JPH05119230A (en) * | 1991-10-29 | 1993-05-18 | Nec Corp | Optical fiber array connecting structure |
EP0649039B1 (en) * | 1993-10-19 | 2002-04-03 | Matsushita Electric Industrial Co., Ltd. | Components for optical circuits and method of manufacturing the same |
KR100584115B1 (en) | 2003-12-24 | 2006-05-30 | 전자부품연구원 | Light splitter and method of manufacturing the same |
JP2015072330A (en) * | 2013-10-02 | 2015-04-16 | 富士通株式会社 | Optical waveguide component, manufacturing method of the same, and optical waveguide device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5557695A (en) | Waveguide-optical fiber connection structure and waveguide-optical fiber connection method | |
US6621961B2 (en) | Self-alignment hybridization process and component | |
CA2063310A1 (en) | Optical waveguide device and method for connecting optical waveguide and optical fiber using the optical waveguide device | |
US5197109A (en) | Method of manufacturing assembly of optical waveguide substrate and optical fiber aligning substrate | |
JPH02195309A (en) | Optical coupling element | |
US7128474B2 (en) | Optical device, enclosure and method of fabricating | |
US6400857B1 (en) | Method for making integrated and composite optical devices utilizing prefabricated optical fibers and such devices | |
JPH08179155A (en) | Method for coupling lens with optical fiber and production of lens substrate | |
JPS63311212A (en) | Optical waveguide device and method for packaging optical waveguide | |
JP3666463B2 (en) | Optical waveguide device and method for manufacturing optical waveguide device | |
JP2533122B2 (en) | Optical waveguide device | |
JP4146788B2 (en) | Optical waveguide connection module and method for fabricating the same | |
JP2701326B2 (en) | Method for connecting optical waveguide and method for manufacturing optical waveguide connecting portion | |
JPH07261047A (en) | Formation of integrated lightguide structure using double masking and attached mask-pattern pair | |
JPS5938706A (en) | Optical fiber collimator | |
JPS61260208A (en) | Light guide with fiber guide | |
JPH04161908A (en) | Optical ic connecting device | |
JPS6187113A (en) | Waveguide type module and its production | |
JPH05264832A (en) | Production of optical waveguide with guide groove | |
JPH11183750A (en) | Manufacture of optical waveguide module for optical device, and optical device | |
JPS60127778A (en) | Semiconductor laser integrated photoconductive element | |
JPS6017406A (en) | Method for coupling optical waveguide and optical fiber together | |
JPH06289255A (en) | Connecting structure and connecting method for optical coupler and optical fiber | |
JPH0772347A (en) | Production of optical waveguide with guide groove | |
JPH04204510A (en) | Waveguide passage type optical part |