JPS63306617A - Recrystallization of semiconductor crystal - Google Patents
Recrystallization of semiconductor crystalInfo
- Publication number
- JPS63306617A JPS63306617A JP14137087A JP14137087A JPS63306617A JP S63306617 A JPS63306617 A JP S63306617A JP 14137087 A JP14137087 A JP 14137087A JP 14137087 A JP14137087 A JP 14137087A JP S63306617 A JPS63306617 A JP S63306617A
- Authority
- JP
- Japan
- Prior art keywords
- protective film
- film
- semiconductor layer
- layer
- recrystallized
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 52
- 239000013078 crystal Substances 0.000 title claims description 12
- 238000001953 recrystallisation Methods 0.000 title claims description 11
- 230000001681 protective effect Effects 0.000 claims abstract description 69
- 238000000034 method Methods 0.000 claims abstract description 20
- 238000006243 chemical reaction Methods 0.000 claims abstract description 4
- 238000010438 heat treatment Methods 0.000 claims description 9
- 238000000137 annealing Methods 0.000 abstract description 6
- 239000003870 refractory metal Substances 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 61
- 238000009826 distribution Methods 0.000 description 15
- 238000002844 melting Methods 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000008018 melting Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000010894 electron beam technology Methods 0.000 description 4
- 239000000758 substrate Substances 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 3
- 239000010937 tungsten Substances 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005566 electron beam evaporation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 239000011241 protective layer Substances 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910005091 Si3N Inorganic materials 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Landscapes
- Recrystallisation Techniques (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、再結晶化すべき半導体層上に保護膜を設け
た後、熱処理によってこの半導体層の再結晶化処理を行
う方法に関する。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of providing a protective film on a semiconductor layer to be recrystallized and then recrystallizing the semiconductor layer by heat treatment.
(従来の技術)
従来より絶縁層上に半導体結晶層を形成する技術の研究
・開発が進められてきている。従来、絶縁層上に形成さ
れた半導体層は非晶質層か多結晶層となっているので、
熱処理によってその半結晶化が行なわれている。この半
導体層を再結晶化するに当り、半導体層上に保2I膜を
設けて行っていた。この再結晶処理用の保護膜の特性と
して(1)再結晶化すべき半導体層の物質とヌレが良い
こと、
(り)再結晶化すべき半導体層のボールアップ(凝集)
を防いで平坦な再結晶化表面が得られること等が要求さ
れる。(Prior Art) Research and development of technology for forming a semiconductor crystal layer on an insulating layer has been progressing for some time. Conventionally, the semiconductor layer formed on the insulating layer is an amorphous layer or a polycrystalline layer.
Its semi-crystallization is carried out by heat treatment. When recrystallizing this semiconductor layer, a 2I film was provided on the semiconductor layer. The characteristics of this protective film for recrystallization processing are (1) good wettability with the substance of the semiconductor layer to be recrystallized, and (ri) ball-up (agglomeration) of the semiconductor layer to be recrystallized.
It is required that a flat recrystallized surface can be obtained by preventing this.
従来から種々のnQが用いられているが、このような特
性を有する保護膜としては主として二酸化珪=’Rst
o?膜が用いられていた。Various types of nQ have been used in the past, but silicon dioxide = 'Rst
o? membrane was used.
しかしながら、この5i02保護膜を用いてエネルギー
ビームによるアニールを行った場合には、゛ト導体層の
温度勾配を;gl整することが出来ず、再結晶層が破損
したり、その表面が粗くなったり、ボールアップが生じ
たりするため(例えば、文dV Tジャパニーズジャー
ナル オブ アプライド フイブラス(Japanes
e Journal ofApplied Physi
cs) 23 、 (2)、1985.pp、126
〜132λ)、この5i07保護層を種々の半導体の再
結晶化に適用することが困難であった。However, when energy beam annealing is performed using this 5i02 protective film, the temperature gradient of the conductor layer cannot be adjusted, and the recrystallized layer may be damaged or its surface may become rough. or ball-up (for example, BundV T Japanese Journal of Applied Physics).
e Journal of Applied Physi
cs) 23, (2), 1985. pp, 126
~132λ), it was difficult to apply this 5i07 protective layer to recrystallization of various semiconductors.
そこで、これらの問題点の解決を図る目的で、特願昭6
1−48465号において、Ge(ゲルマニウム)の半
導体層を再結晶化するに当り、保護膜としてW(タング
ステン)/絶縁膜/W(タングステン)の3層構造の保
護膜を使用した例がこの出願に係る発明者により提案さ
れている。Therefore, in order to solve these problems, a patent application
No. 1-48465, this application describes an example in which a three-layer protective film of W (tungsten)/insulating film/W (tungsten) was used as a protective film when recrystallizing a Ge (germanium) semiconductor layer. proposed by the inventor.
この従来提案された3層構造保護膜を第2図(A)に示
す、同図において、 10は基板、12は5i02のよ
うな絶縁膜、 14は再結晶すべきGe半導体層である
。そして、この保護膜16は第−W膜18.第二W膜2
2との間に5i02のような絶縁膜20をサンドイッチ
にした構造を有するため、このGe層14と、これと接
触する第−wHtoの界面でのヌレが良く、溶融Geの
ボールアップを抑えて再結晶化したGe表面を平坦化す
る効果が大きい。しかも、熱拡散の効果が大きいW膜を
用いているため、エネルギービームによる走査時にGe
層への局部的な熱集中を防ぐのでボールアップを防1(
二する効果があった。さらに、表面に設けた第二W膜2
2は電子ビームによるアニール時には帯電防Iに膜とし
て作用する効果もあった。This conventionally proposed three-layer protective film is shown in FIG. 2(A), in which 10 is a substrate, 12 is an insulating film such as 5i02, and 14 is a Ge semiconductor layer to be recrystallized. This protective film 16 is the -W film 18. Second W film 2
Since it has a structure in which an insulating film 20 such as 5i02 is sandwiched between the Ge layer 14 and the Ge layer 14, the interface between the Ge layer 14 and the -wHto which is in contact with this is good, and ball-up of molten Ge is suppressed. This has a great effect of flattening the recrystallized Ge surface. Moreover, since the W film, which has a large thermal diffusion effect, is used, Ge
Prevents ball-up by preventing localized heat concentration on the layer (1)
It had two effects. Furthermore, a second W film 2 provided on the surface
No. 2 also had the effect of acting as a film on the static protection I during annealing with an electron beam.
(発明が解決しようとする問題点)
しかしながら、L述した保護膜はいずれも全面に亙り均
一な厚みの保護膜であるため、結晶化すべき半導体層の
表面温度分布は入射するエネルギービームのエネルギー
分布によって決定され、通常は熱処理領域の中央部で高
く周辺部で低い、例えば第2図(B)に曲線Iで示すよ
うな滑らかな山型の分布となると考えられている。従っ
て。(Problem to be Solved by the Invention) However, since all of the protective films mentioned above have a uniform thickness over the entire surface, the surface temperature distribution of the semiconductor layer to be crystallized is the energy distribution of the incident energy beam. It is thought that the distribution is normally high in the center of the heat treatment area and low in the peripheral area, resulting in a smooth mountain-shaped distribution, for example, as shown by curve I in FIG. 2(B). Therefore.
必ずしも再結晶化に最適な温度分布に制御出来ず、再結
晶化層が微小グレインとなり易く、大面積の単結晶領域
が得られず、また、このような半導体結晶層に素子を作
り込んでも特性が劣化してしまうので、技術的に満足で
きる実用的な半導体結晶層は得られないという問題点が
あった。It is not always possible to control the optimal temperature distribution for recrystallization, the recrystallized layer tends to become minute grains, it is not possible to obtain a large-area single crystal region, and even if a device is fabricated in such a semiconductor crystal layer, the characteristics There was a problem in that a technically satisfactory and practical semiconductor crystal layer could not be obtained because of the deterioration of the semiconductor crystal layer.
この問題点の解決を図る一手法として、この保護膜に多
数の平行なストライプ状の溝(グレーティング)を直接
設けて、エネルギービームアニールを行うことも効果的
であるが、下地の再結晶化すべき半導体層の材質や厚み
、保護膜の厚み、その材質、及び又はその他の条件によ
っては、必ずしも再結晶化に最適な温度分布が得られな
い場合も考えられる。As one method to solve this problem, it is effective to directly provide many parallel striped grooves (gratings) on this protective film and perform energy beam annealing, but it is necessary to recrystallize the underlying layer. Depending on the material and thickness of the semiconductor layer, the thickness of the protective film, its material, and/or other conditions, it may not always be possible to obtain the optimum temperature distribution for recrystallization.
この発明の目的は、熱処理時に半導体層内に生しる温度
分布の制御性が良く、良好で大面積の半導体再結晶層を
得ることが可能な半導体結晶の再結晶化方法を提供する
ことにある。An object of the present invention is to provide a method for recrystallizing a semiconductor crystal, which allows good controllability of the temperature distribution that occurs in a semiconductor layer during heat treatment, and which makes it possible to obtain a good semiconductor recrystallized layer with a large area. be.
(問題点を解決するための手段)
この目的の達成のため、この発明の半導体結晶の再結晶
化方法によれば、次のような手段を採る。(Means for Solving the Problems) To achieve this object, the method for recrystallizing a semiconductor crystal of the present invention takes the following measures.
先ず、[り結晶化すべき′ニド導体層上にこの半導体層
とヌレが良く、かつ、化学反応を起さない保護膜を形成
する。First, a protective film that has good wettability with the semiconductor layer and does not cause any chemical reaction is formed on the nitride conductor layer to be crystallized.
次に、この保護膜を第一保護膜として、当該第一保護膜
上に第二保護膜を形成する。この第二保護膜として、好
ましくは、絶縁膜と高融点金属とを第一保護膜側から順
次に設けた保護膜とするのが良い。Next, using this protective film as a first protective film, a second protective film is formed on the first protective film. The second protective film is preferably a protective film in which an insulating film and a high melting point metal are sequentially provided from the first protective film side.
次に、この第二保護膜にその表面側から複数の平行な、
ストライプ状の溝(この溝のことをグレーティングとい
う。)を形成する。Next, from the surface side of this second protective film, a plurality of parallel
Striped grooves (these grooves are called gratings) are formed.
次に、この第一保護膜側から、これら溝のストライプ方
向と平行、垂直又は斜めに、エネルギービームの走査を
行って熱処理を行う。Next, heat treatment is performed by scanning an energy beam from the first protective film side parallel to, perpendicular to, or diagonal to the stripe direction of these grooves.
(作用)
この方法によれば、第一保護膜の上側にグレーティング
付き第二保護膜を形成した保護膜を用い、第二保護膜側
からこのグレーティングのストライプ方向と平行な方向
、直交する方向或は斜めの方向に、特にレーザビーム走
査や電子ビーム走査を行って27ニールを行うので、両
保護膜の材料、厚さ、グレーティングの幅やその深さに
応じ、グレーティングの部分とそうでない部分とで温度
差が生じ、よって再結晶化される半導体結晶層に再結晶
化に適した多数の微小の凹凸のある山型の温度分布を得
る。(Function) According to this method, a protective film in which a second protective film with a grating is formed on the upper side of the first protective film is used, and the direction from the second protective film side is parallel to, perpendicular to, or perpendicular to the stripe direction of the grating. Since 27-annealing is performed in an oblique direction, particularly by laser beam scanning or electron beam scanning, the grating parts and non-grating parts can be separated depending on the material and thickness of both protective films, the width of the grating, and its depth. As a result, a temperature difference is generated in the semiconductor crystal layer to be recrystallized, and a mountain-shaped temperature distribution with many minute irregularities suitable for recrystallization is obtained.
(実施例) 以下、図面を参照してこの発明の詳細な説明する。(Example) Hereinafter, the present invention will be described in detail with reference to the drawings.
第1図(A)〜(E)はこの発明の詳細な説明するため
の工程図であって、(A)〜(D)の工程段階を要部断
面図で示し、(E)の工程段階は基板面に直交する方向
から見た平面図で示しである。尚、第1図において、第
2図に示した構成成分と同一の構成成分については同一
の符号を付して示すと共に、各構成成分の寸法、形状、
配置関係はこの発明が理解出来る程度に概略的に示しで
ある。また、以下の実施例で説明する数値的条件は巾な
る好適例にすぎず、従って、この発明はこれらの数値に
のみ限定されるものではないことを理解されたい。FIGS. 1(A) to 1(E) are process diagrams for explaining the present invention in detail, in which the process steps of (A) to (D) are shown in cross-sectional views of main parts, and the process step of (E) is is a plan view seen from a direction perpendicular to the substrate surface. In FIG. 1, the same components as those shown in FIG. 2 are indicated with the same reference numerals, and the dimensions, shapes, and
The arrangement relationship is shown schematically to the extent that the present invention can be understood. Further, it should be understood that the numerical conditions described in the following examples are merely preferred examples, and therefore, the present invention is not limited only to these numerical values.
先ず、この実施例では、基板lO上に5i02又はその
他の絶縁層12を設け、その上側に再結晶化すべき例え
ばゲルマニウムGeの半導体層14を例えば電子ビーム
蒸着法で形成する。First, in this embodiment, a 5i02 or other insulating layer 12 is provided on a substrate IO, and a semiconductor layer 14 of, for example, germanium Ge to be recrystallized is formed on the top thereof by, for example, electron beam evaporation.
次に、この再結晶化すべき半導体層上に、この半導体層
とヌレが良く、かつ、化学反応を起さない第一保護膜1
6を形成し、第1図(A)に示すような構造を得る。こ
の実施例では、この第一保護層16を例えば三層構造の
保護膜1Bとし、これを第一キャップ膜として設ける。Next, on this semiconductor layer to be recrystallized, a first protective film 1 which has good wettability with this semiconductor layer and does not cause a chemical reaction.
6 to obtain a structure as shown in FIG. 1(A). In this embodiment, the first protective layer 16 is, for example, a three-layer protective film 1B, which is provided as a first cap film.
この第一保護膜1Bは、例えば、半導体層!4上にスパ
ッタ法で第−W膜18を形成し、続いてCVD法によっ
て例えば5i02絶縁膜の非晶質11!20を形成し、
次に。This first protective film 1B is, for example, a semiconductor layer! 4, a -W film 18 is formed by sputtering, and then an amorphous 5i02 insulating film 11!20, for example, is formed by CVD.
next.
第二W膜22をスパッタ法により形成する。この場合、
−例として、第−W膜18の厚みを500A程度とし、
非晶質膜20の膜厚を1.OJLm程度とし、第二W膜
22の膜厚を200A程度とするが。A second W film 22 is formed by sputtering. in this case,
- As an example, the thickness of the -th W film 18 is about 500A,
The thickness of the amorphous film 20 is set to 1. The thickness of the second W film 22 is approximately 200A.
これら膜厚は、設計に応じて任意好適な膜厚とすること
が出来る。These film thicknesses can be set to any suitable film thickness depending on the design.
次に、この発明では、第1図(B)に示すように、この
第二W22M上に二層構造の第二保護膜24を第二キャ
ップ膜として形成する。この実施例では、この第二保護
膜24を、先ず、5i02等の任意好適な非晶質膜28
を厚さ例えばIgm程度に蒸着形成し、続いて、任意好
適な高融点金属膜28′ 例えばMo(モリブデン
)或はWの膜を厚さ500A程度に蒸着形成する。Next, in the present invention, as shown in FIG. 1(B), a second protective film 24 having a two-layer structure is formed as a second cap film on the second W 22M. In this embodiment, the second protective film 24 is first formed using any suitable amorphous film 28 such as 5i02.
is formed by vapor deposition to a thickness of, for example, about Igm, and then an arbitrary suitable high melting point metal film 28', such as a film of Mo (molybdenum) or W, is formed by vapor deposition to a thickness of about 500 Å.
次に、この発明では、この第二保護膜24の高融点金属
膜28側から第一保護膜1Bの第二W膜22に達するス
トライプ状の複数の平行な溝すなわちグレーティング3
2(第1図CD)に示す、)を形成するため、通常のホ
トリソ工程を用いて例えばライン幅が10Bm及びスペ
ース幅が5gmのラインアンドスペースのレジストパタ
ーン30を第二保護膜24の高融点金属膜28上に形成
する(第1図(C))。Next, in the present invention, a plurality of striped parallel grooves or gratings 3 reach from the high melting point metal film 28 side of the second protective film 24 to the second W film 22 of the first protective film 1B.
2 (shown in FIG. 1 CD)), a line-and-space resist pattern 30 with a line width of 10 Bm and a space width of 5 gm, for example, is formed using a normal photolithography process to form a high-melting point resist pattern 30 of the second protective film 24 (as shown in FIG. 1 CD). It is formed on the metal film 28 (FIG. 1(C)).
続いて、適当なエツチング技術例えば反応性イオンエツ
チング技術を用いて、−例として高融点金属膜28の表
面から下側の第一保護膜16の第二W1922に達する
深さにまで、エツチングしてグレーティング32を形成
した後、通常の適当な方法でレジストパターン30を除
去し、第1図(D)に示すようなグレーティング付き第
二保護膜24を()る、尚、このグレーティング32の
深さは、第二W膜22に達しない任意な深さとすること
も出来、従って、その値は第−及び第二保護膜18及び
24の形成材料とか、厚みとか、或は再結晶化すべき半
導体層14の種類に応じて適切に設定することが出来る
。Subsequently, using a suitable etching technique, such as a reactive ion etching technique, for example, etching is performed from the surface of the high melting point metal film 28 to a depth reaching the second W 1922 of the lower first protective film 16. After forming the grating 32, the resist pattern 30 is removed by a conventional and appropriate method, and a second protective film 24 with a grating is formed as shown in FIG. 1(D). can be set to an arbitrary depth that does not reach the second W film 22, therefore, its value depends on the forming material and thickness of the first and second protective films 18 and 24, or the semiconductor layer to be recrystallized. It can be set appropriately according to the 14 types.
このような第一保護膜18及びグレーティング付き第二
保護膜24を再結晶化すべき半導体層14に設けた状態
で、この第二保護膜24側の面に対し電灯の方向から、
エネルギービーム例えば電子ビーム又はレーザビームを
照射し、このグレーティング32のストライプ方向(矢
印aで示す方向又はその逆方向、)に°沿って主走査す
ると共に、これに直交する方向に副走査(矢印すで示す
方向)することによって再結晶化すべき半導体層14の
全領域にクリアニールを行ってこの半導体層14を帯溶
融再結晶化させる(第1図(E))、この主走査方向は
、矢印aの方向に限定されるものではなく、ストライプ
方向と直交する方向或はこの方向と斜めに交差する方向
とすごとも出来、これに応じて副走査方向も適当に変え
ることが出来る。この実施例では1例えば−例として電
子ビームを用いる場合には、その加速電圧を20KeV
程度。With the first protective film 18 and the second protective film 24 with grating provided on the semiconductor layer 14 to be recrystallized, the surface on the second protective film 24 side is viewed from the direction of the electric light.
An energy beam, such as an electron beam or a laser beam, is irradiated to main scan along the stripe direction of the grating 32 (the direction indicated by arrow a or the opposite direction), and perform sub-scan in the direction perpendicular to the stripe direction (direction indicated by arrow a or the opposite direction). Clear annealing is performed on the entire region of the semiconductor layer 14 to be recrystallized by scanning (in the direction shown by ), and the semiconductor layer 14 is recrystallized by band melting (FIG. 1(E)). This main scanning direction is indicated by the arrow. The direction is not limited to the direction a, but can also be perpendicular to the stripe direction or diagonally intersect with this direction, and the sub-scanning direction can be changed appropriately accordingly. In this embodiment, for example, if an electron beam is used, the acceleration voltage is set to 20 KeV.
degree.
ビーム電流を1.7〜1.9mA程度及び走査速度を1
m/sec程度とするが、それぞれ設計に応じて任意好
適な条件を設定出来る。The beam current was set to about 1.7 to 1.9 mA and the scanning speed was set to 1.
m/sec, but any suitable conditions can be set depending on the design.
このような第一保護膜16及び第二グレーティン、グ付
き第二保XLIPJ24を用いて下層の再結晶化すべき
半導体層14をエネルギービームで、例えば矢印各グレ
ーティング32の影響を受けるため、第3図に曲線■で
示すように、グレーティング32の部分とそうでない部
分とに微小温度差が生じ、従って温度分布曲線が波打ち
ながら全体として熱処理領域の中央部で高く周辺部で低
くなるような山型の分布となる。このような多数の温度
変化の微小な凹凸は再結晶化すべき半導体層14の全体
に亙り分布しているので、この温度分布状態で半導体層
14が冷却していくと、半導体層の各所の温度の低い部
分に微小グレインが集中して発生し、それらが核となっ
て再結晶化が進むため、ボールアップが無くしかも表面
が平坦面な良好な再結晶層を得ることが出来る。Using such a first protective film 16, a second grating, and a second protective XLIPJ 24 with gratings, an energy beam is applied to the semiconductor layer 14 to be recrystallized in the lower layer. As shown by the curve ■ in the figure, a minute temperature difference occurs between the grating 32 part and the non-grating part, so the temperature distribution curve is wavy and overall has a mountain-like shape that is higher in the center of the heat treatment area and lower in the peripheral part. The distribution is as follows. These many minute irregularities due to temperature changes are distributed throughout the semiconductor layer 14 to be recrystallized, so when the semiconductor layer 14 is cooled in this temperature distribution state, the temperature at various parts of the semiconductor layer increases. Fine grains are generated in a concentrated manner in the lower part of the crystal, and these serve as nuclei to proceed with recrystallization, making it possible to obtain a good recrystallized layer with no ball-up and a flat surface.
次に、これら第−及び第二保護膜1B及び24を。Next, these first and second protective films 1B and 24 are applied.
バッファフッ酸又はその他の好適な酸を用いる湿式、或
は任意好適なドライエツチングにより、除土して、半導
体再結晶層を得る。The soil is removed by wet etching using buffered hydrofluoric acid or other suitable acid, or by any suitable dry etching to obtain a semiconductor recrystallized layer.
I:述した実施例では、再結晶化すべき半導体層14を
Geの半導体層としたが、それ以外の任意好適な材料例
えばSiその他の任意好適な半導体層としても良く、ま
た、その形成方法も電子ビーム蒸着法以外の方法を用い
ることが出来る。Siの半導体層を再結晶化する場合に
は、SiとWとが7ニ一ル時に反応するため、第一保護
膜1Bとして半導体層14とヌレ性が良くかつこれと反
応しない例えば5i02等といった非晶質膜の単独保、
tl膜或はW等の高融点金属と5i02等の非晶質Vと
を組合せた2層構造の保w1膜を用い、Siが直接高融
点金属と接触しないようにするのが良い。I: In the embodiment described above, the semiconductor layer 14 to be recrystallized is a Ge semiconductor layer, but it may be made of any other suitable material such as Si or any other suitable semiconductor layer, and the method of forming it may also be changed. Methods other than electron beam evaporation can be used. When recrystallizing a Si semiconductor layer, since Si and W react at 700 nm, the first protective film 1B should be made of a material such as 5i02 that has good wettability with the semiconductor layer 14 and does not react with it. Independent maintenance of amorphous film,
It is preferable to use a tl film or a protective w1 film with a two-layer structure in which a high melting point metal such as W and amorphous V such as 5i02 are combined to prevent Si from directly contacting the high melting point metal.
さらに、」二連の実施例では第−及び第二保護膜16及
び24の絶縁膜として5iO211ffを用いたが、こ
れに限定されず、S i3 N、、AIN或いはその他
の好適な絶縁膜で良く、又、これら絶縁膜の形成もCV
Dはもとよりその他の方法であっても良い。Furthermore, although 5iO211ff was used as the insulating film for the first and second protective films 16 and 24 in the two series of embodiments, the invention is not limited thereto, and Si3N, AIN, or other suitable insulating films may be used. , and the formation of these insulating films is also CV
In addition to D, other methods may also be used.
また上述したW(タングステン)膜の形成も上述したス
パッタ法以外の方法であっても良い。Further, the above-mentioned W (tungsten) film may be formed by a method other than the above-mentioned sputtering method.
さらに、」−述した各構成成分の厚み、深さ、幅その他
の寸法は設計に応じ任意好適な値に設定出来る。Furthermore, the thickness, depth, width, and other dimensions of each of the above-mentioned constituent components can be set to any suitable value depending on the design.
(発明の効果)
上述した説明からも明らかなように、この発明によれば
、第一保護膜の上側に第二保、:l膜を設け、この第二
保護膜にグレーティングを設けたため、グレーティング
の有無従ってライン部とスペース部とに起因する第−及
び第二保護膜からなる総合的な保護膜の膜厚の相違によ
りエネルギービームの吸収が異なり、半導体層の全領域
に分布する多数の微小部分で温度の凹凸分布が形成され
、従って、大面積の半導体再結晶層を得ることが出来る
ような再結晶に最適な温度分布を実現出来る。(Effects of the Invention) As is clear from the above description, according to the present invention, the second protective film is provided above the first protective film, and the grating is provided on the second protective film, so that the grating The absorption of the energy beam differs depending on the overall thickness of the protective film consisting of the first and second protective films caused by the line part and the space part. An uneven distribution of temperature is formed in the portion, and therefore, it is possible to realize an optimum temperature distribution for recrystallization, which makes it possible to obtain a semiconductor recrystallized layer with a large area.
また、ライン部の低温領域にグレインバウンダリを意図
的に集中させて、グレインの成長方向を揃えることが出
来し、さらには、高融点金属ストライプ領域を設けたた
め、均熱効果が上り、グレインの成長を一層促進させる
ことが出来る。In addition, by intentionally concentrating the grain boundaries in the low-temperature region of the line part, the grain growth direction can be aligned.Furthermore, by providing the high-melting point metal stripe region, the heating effect is improved and the grain growth can be further promoted.
第1図(A)〜(E)はこの発明の゛ト導体結晶の再結
晶化方法の説明に供する工程図、第2図は従来の再結晶
化の説明図で、(A)はその説明に供する断面図、(B
)はその説明に供する温度分布曲線図、
第3図はこの発明の説明に供する温度分布の説明図であ
る。
10・・・基板、 12・・・絶縁層14・
・・flf結晶化すべき半導体層l6・・・第一保護膜
、18・・・第−W膜’bo、 2+3・・・非晶質膜
、 22・・・第二wF!特詐出願人 工業技術院
長 飯塚 十三周辺部 中央部
周辺部従来の再結晶化の説明図
第2図Figures 1 (A) to (E) are process diagrams for explaining the method of recrystallizing conductor crystals of the present invention, Figure 2 is an explanatory diagram of conventional recrystallization, and (A) is an explanation thereof. Cross-sectional view (B
) is a temperature distribution curve diagram for explaining the invention, and FIG. 3 is an explanatory diagram of the temperature distribution for explaining the present invention. 10... Substrate, 12... Insulating layer 14.
...flf Semiconductor layer to be crystallized l6...first protective film, 18...-W film'bo, 2+3...amorphous film, 22...second wF! Special fraud applicant Director of the Agency of Industrial Science and Technology Juzo Iizuka Surrounding area Central area
Explanatory diagram of conventional recrystallization of peripheral area Figure 2
Claims (1)
が良く、かつ、化学反応を起さない保護膜を設けた後、
熱処理による当該半導体層の再結晶化処理を行うに当り
、 前記保護膜を第一保護膜として、該第一保護膜上に第二
保護膜を形成し、 該第二保護膜にその表面側から複数の平行な、ストライ
プ状の溝を形成し、 前記第二保護膜側から、前記溝のストライプ方向と平行
、垂直又は斜めに、エネルギービームを走査して熱処理
を行う ことを特徴とする半導体結晶の再結晶化方法。(1) After providing a protective film on the semiconductor layer to be recrystallized that has good wettability with the semiconductor layer and does not cause a chemical reaction,
When recrystallizing the semiconductor layer by heat treatment, the protective film is used as a first protective film, a second protective film is formed on the first protective film, and the second protective film is coated from the surface side of the second protective film. A semiconductor crystal characterized in that a plurality of parallel striped grooves are formed, and heat treatment is performed by scanning an energy beam from the second protective film side parallel to, perpendicular to, or diagonal to the stripe direction of the grooves. Recrystallization method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14137087A JPS63306617A (en) | 1987-06-08 | 1987-06-08 | Recrystallization of semiconductor crystal |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14137087A JPS63306617A (en) | 1987-06-08 | 1987-06-08 | Recrystallization of semiconductor crystal |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63306617A true JPS63306617A (en) | 1988-12-14 |
Family
ID=15290410
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14137087A Pending JPS63306617A (en) | 1987-06-08 | 1987-06-08 | Recrystallization of semiconductor crystal |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63306617A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6130025A (en) * | 1984-07-21 | 1986-02-12 | Agency Of Ind Science & Technol | Manufacture of single crystal semiconductor thin film |
JPS6281709A (en) * | 1985-10-07 | 1987-04-15 | Agency Of Ind Science & Technol | Manufacture of semiconductor device |
-
1987
- 1987-06-08 JP JP14137087A patent/JPS63306617A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6130025A (en) * | 1984-07-21 | 1986-02-12 | Agency Of Ind Science & Technol | Manufacture of single crystal semiconductor thin film |
JPS6281709A (en) * | 1985-10-07 | 1987-04-15 | Agency Of Ind Science & Technol | Manufacture of semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6281709A (en) | Manufacture of semiconductor device | |
US4861418A (en) | Method of manufacturing semiconductor crystalline layer | |
JPH0450746B2 (en) | ||
JPH027415A (en) | Formation of soi thin film | |
US4678538A (en) | Process for the production of an insulating support on an oriented monocrystalline silicon film with localized defects | |
JPS63306617A (en) | Recrystallization of semiconductor crystal | |
US5094714A (en) | Wafer structure for forming a semiconductor single crystal film | |
JPH0556314B2 (en) | ||
JPS63306616A (en) | Recrystallization of semiconductor crystal | |
JPS63306615A (en) | Recrystallization of semiconductor crystal | |
JPH06140324A (en) | Method of crystallizing semiconductor film | |
JPS5825220A (en) | Manufacture of semiconductor substrate | |
JPS6017911A (en) | Manufacture of semiconductor device | |
JPS59121823A (en) | Fabrication of single crystal silicon film | |
JPS61201414A (en) | Manufacture of semiconductor single crystal layer | |
JPH03178124A (en) | Manufacture of semiconductor device | |
JPS6315471A (en) | Thin film transistor and manufacture thereof | |
JPH0797555B2 (en) | Method for manufacturing SOI substrate | |
JPH0157491B2 (en) | ||
JP2569402B2 (en) | Manufacturing method of semiconductor thin film crystal layer | |
JPS62179112A (en) | Formation of soi structure | |
JPS62250629A (en) | Manufacture of semiconductor device | |
JPH027414A (en) | Formation of soi thin film | |
JPH0797556B2 (en) | Method for manufacturing SOI substrate | |
JPH01147826A (en) | Manufacture of multilayer semiconductor substrate |