JPS63286579A - Formation of thin film - Google Patents
Formation of thin filmInfo
- Publication number
- JPS63286579A JPS63286579A JP12186087A JP12186087A JPS63286579A JP S63286579 A JPS63286579 A JP S63286579A JP 12186087 A JP12186087 A JP 12186087A JP 12186087 A JP12186087 A JP 12186087A JP S63286579 A JPS63286579 A JP S63286579A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- film
- chamber
- thin film
- ion beams
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000010409 thin film Substances 0.000 title claims abstract description 23
- 230000015572 biosynthetic process Effects 0.000 title abstract description 12
- 239000000758 substrate Substances 0.000 claims abstract description 48
- 239000010408 film Substances 0.000 claims abstract description 38
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 23
- 238000005229 chemical vapour deposition Methods 0.000 claims description 18
- 238000000034 method Methods 0.000 claims description 8
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 150000002500 ions Chemical class 0.000 abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 5
- 239000000126 substance Substances 0.000 abstract description 5
- 230000005284 excitation Effects 0.000 abstract description 4
- 239000010453 quartz Substances 0.000 abstract description 3
- 239000007789 gas Substances 0.000 description 10
- 239000000203 mixture Substances 0.000 description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 5
- 229910052581 Si3N4 Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 239000012495 reaction gas Substances 0.000 description 4
- 229910052786 argon Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 3
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000000873 masking effect Effects 0.000 description 2
- 150000004767 nitrides Chemical class 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 235000012431 wafers Nutrition 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000012159 carrier gas Substances 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 210000000078 claw Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000000498 cooling water Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000006911 nucleation Effects 0.000 description 1
- 238000010899 nucleation Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Landscapes
- Chemical Vapour Deposition (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、化学気相成長(以下CVDと称す)により薄
膜を形成する方法の改良に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to an improvement in a method of forming a thin film by chemical vapor deposition (hereinafter referred to as CVD).
[従来の技術及び問題点コ
CVDにより基板表面に薄膜や被覆膜を形成する技術は
、物理的蒸着(PVD)による薄膜形成に比べて生産性
が高く、異形物にも成膜できる等の利点を有する反面、
次のような問題があった。[Conventional technology and problems] The technology of forming thin films and coating films on the surface of substrates by CVD has higher productivity than thin film formation by physical vapor deposition (PVD), and has advantages such as being able to form films on irregularly shaped objects. Although it has advantages,
There were the following problems.
■、一般にCVDにより密着性が良好で緻密な薄膜を形
成できる温度範囲は、600〜1000℃でかなり高く
、かつ耐熱性の低い基板への成膜は不可能であった。最
近、熱に代わってプラズマやエキシマレーザなどで励起
し、成膜温度を低温側に移行させたCVD技術も開発さ
れているが、低温では膜の基板への密着性や緻密性が良
好でないか、もしくは良好となる成膜条件が限られてお
り、その膜形成の制御が困難である問題があった。(2) Generally, the temperature range in which a dense thin film with good adhesion can be formed by CVD is quite high, from 600 to 1000°C, and it has been impossible to form a film on a substrate with low heat resistance. Recently, CVD technology has been developed that uses plasma, excimer laser, etc. to excite the film instead of heat, and shifts the film formation temperature to a lower temperature. Otherwise, there is a problem that the film formation conditions that are favorable are limited, and it is difficult to control the film formation.
■、従来のCVD技術では、反応ガス争キャリアガスの
流量変化と基板温度変化で化学反応の制御を行なってい
るが、かかるマクロ的な制御では基板周辺のガス量を精
密にコントロールすることができない。また、ガスの反
応性も充分に高くないため、反応生成物の化学組成が化
学量論的組成からはずれ、所望の化合物薄膜の形成が困
難であった。In conventional CVD technology, chemical reactions are controlled by changing the flow rate of the carrier gas and changing the substrate temperature, but such macroscopic control cannot precisely control the amount of gas around the substrate. . Furthermore, since the reactivity of the gas is not sufficiently high, the chemical composition of the reaction product deviates from the stoichiometric composition, making it difficult to form a desired compound thin film.
■、前記■で述べた化学反応の制御方法では、基板全体
に亙って殆ど均一な反応が起り、薄膜の一部を局所的に
化学反応又は反応条件を変えることは非常に困難であっ
た。その結果、化学組成、硬さ、密着性、緻密性、結晶
構造等の膜質を局所的に変化させるためには、基板の一
部をマスキングするなどの煩雑な工程を必要とし、工業
的には非効率的であった。(2) In the chemical reaction control method described in (2) above, the reaction occurs almost uniformly over the entire substrate, and it is extremely difficult to locally change the chemical reaction or reaction conditions in a part of the thin film. . As a result, in order to locally change the film quality such as chemical composition, hardness, adhesion, density, crystal structure, etc., a complicated process such as masking a part of the substrate is required, which is difficult to achieve industrially. It was inefficient.
本発明は、上記従来の問題点を解決するためになされた
もので、基板上に低温で密着性、緻密性の優れた薄膜を
形成でき、かつ局所的に膜質を容易に変化させることが
可能な薄膜の形成方法を提供しようとするものである。The present invention was made to solve the above-mentioned conventional problems, and it is possible to form a thin film with excellent adhesion and density on a substrate at low temperature, and to easily change the film quality locally. The purpose of this invention is to provide a method for forming thin films.
[問題点を解決するための手段]
本発明は、基板表面に化学的気相成長(CVD)により
膜形成を行なうと同時に該基板表面又は表面近傍にイオ
ンビームを照射せしめることを特徴とする薄膜の形成方
法である。[Means for Solving the Problems] The present invention provides a thin film characterized by forming a film on the surface of a substrate by chemical vapor deposition (CVD) and simultaneously irradiating the surface or the vicinity of the substrate with an ion beam. This is the formation method.
上記基板としては、例えば半導体ウェハ、鋼材などから
なる工具等を挙げることができる。Examples of the substrate include semiconductor wafers, tools made of steel, and the like.
上記CVDで形成される膜の材質としては、例えば窒化
珪素、窒化アルミニウム、窒化チタンなどの窒化物、又
はアルミナ、ジルコニア、シリカなどの酸化物等を挙げ
ることができる。Examples of the material of the film formed by the above-mentioned CVD include nitrides such as silicon nitride, aluminum nitride, and titanium nitride, and oxides such as alumina, zirconia, and silica.
上記イオンビームのイオンとしては、例えばアルゴン、
窒素、酸素、ラジカル化された炭化水素等を挙げること
ができる。The ions in the ion beam include, for example, argon,
Examples include nitrogen, oxygen, and radicalized hydrocarbons.
[作用コ
本発明によれば、基板表面に化学的気相成長(CVD)
により膜形成を行なうと同時に該基板表面又は表面近傍
にイオンビームを照射せしめることによって、基板及び
成膜中の膜表面において吸着原子の放出、原子の微小変
位、それに伴う欠陥の導入等が繰返し起こる。その結果
、表面のクリーニング、凝縮核生成サイトの増大による
膜内微視組織の微細化などが生じ、基板に対する密着性
が優れ、かつ緻密な薄膜の形成が可能となる。[Operations] According to the present invention, chemical vapor deposition (CVD) is applied to the surface of the substrate.
By irradiating the surface of the substrate or the vicinity of the surface with an ion beam at the same time as forming a film, the release of adsorbed atoms, the minute displacement of atoms, and the introduction of defects as a result occur repeatedly on the substrate and the surface of the film being formed. . As a result, the surface is cleaned and the microstructure within the film becomes finer due to an increase in the number of condensation nucleation sites, making it possible to form a dense thin film with excellent adhesion to the substrate.
しかも、成膜温度を低下させることが可能となり、耐熱
性の乏しい基板にも成膜することができる。Moreover, it becomes possible to lower the film-forming temperature, and it is possible to form a film even on a substrate with poor heat resistance.
また、従来方法では化学量論的組成の化合物薄膜の形成
が困難な場合でも、反応性の高いイオンビームを照射す
ることにより不足している元素を膜成分の一つとして補
助的に反応させることができるため、所望の組成の化合
物薄膜を形成できる。In addition, even when it is difficult to form a compound thin film with a stoichiometric composition using conventional methods, by irradiating with a highly reactive ion beam, the missing elements can be reacted as one of the film components as an auxiliary. Therefore, a compound thin film having a desired composition can be formed.
更に、反応性の高いイオンビームを局所的に照射するこ
によって、基板の所望部分に前述した緻密性、密着性に
優れ、かつ所望の化学組成を有する薄膜を形成すること
ができる。この時、イオン源又は基板を移動させること
によ、って、マスキング等の煩雑な操作を行なうことな
く効率よく局所的に膜質を変化させることが可能となる
。Furthermore, by locally irradiating a highly reactive ion beam, it is possible to form a thin film on a desired portion of the substrate with excellent density and adhesion as described above and having a desired chemical composition. At this time, by moving the ion source or the substrate, it is possible to efficiently and locally change the film quality without performing complicated operations such as masking.
なお、通常のCVD技術による成膜が行われる雰囲気は
、常圧もしくは10’ torr〜102torrの減
圧下であり、この程度の真空度ではイオンビーム中の粒
子は爪体原子・分子と頻繁に衝突を繰返し、その運動エ
ネルギー、荷電エネルギー等を失うため、上述したよう
な効果が得られ難い。このため、従来ではCVDとイオ
ンビームとの組合わせは殆ど試みられなかった。しかし
ながら、近年、電子サイクロトロン共鳴(ECR)プラ
ズマCVDを一例とするような10’ torrに及ぶ
比較的高真空下でのCVD技術が実用化されてきた。本
発明は、かかる高真空下ではイオンビームがその高エネ
ルギー粒子の効果を発揮し得ることに着目し、CVDに
応用するこにより、既述した膜質改善と化学組成の制御
性向上とを達成できたものである。Note that the atmosphere in which film formation is performed using normal CVD technology is under normal pressure or reduced pressure of 10' torr to 102 torr, and at this degree of vacuum, particles in the ion beam frequently collide with atoms and molecules of the claw body. This is repeated and the kinetic energy, charge energy, etc. are lost, making it difficult to obtain the above-mentioned effects. For this reason, in the past, almost no attempt was made to combine CVD and an ion beam. However, in recent years, CVD techniques under relatively high vacuum up to 10' torr, such as electron cyclotron resonance (ECR) plasma CVD, have been put into practical use. The present invention focuses on the fact that ion beams can exhibit the effects of high-energy particles under such high vacuum conditions, and by applying this to CVD, it is possible to achieve the aforementioned improvement in film quality and controllability of chemical composition. It is something that
[発明の実施例]
以下、本発明の実施例を図面を参照して詳細に説明する
。[Embodiments of the Invention] Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
図面は、本実施例の薄膜形成に用いるカウフマン型イオ
ン源が取付けられたECRプラズマCVD装置を示す概
略断面図である。図中の1は、チャンバであり、該チャ
ンバ1内の上部側にはプラズマ発生室2が、その下には
成膜室3が夫々形成されている。前記プラズマ発生室2
に対応する前記チャンバ1の上部中央には、矩形状のマ
イクロ波導波管4が連結され、該導波管4が連結された
チャンバ1部分には石英窓5が配置されている。The drawing is a schematic cross-sectional view showing an ECR plasma CVD apparatus equipped with a Kauffman type ion source used for forming the thin film of this example. Reference numeral 1 in the figure is a chamber, and a plasma generation chamber 2 is formed at the upper side of the chamber 1, and a film forming chamber 3 is formed below it. The plasma generation chamber 2
A rectangular microwave waveguide 4 is connected to the upper center of the chamber 1 corresponding to the chamber 1, and a quartz window 5 is arranged in the portion of the chamber 1 to which the waveguide 4 is connected.
同プラズマ発生室2に対応する前記チャンバ1の上部に
は、プラズマガス導入管6が連結されている。同プラズ
マ発生室2に対応する前記チャンバ1の側壁は、二重壁
構造になっており、二つの壁により形成された環状空間
7には冷却水の供給管8と排出管9が連結されてプラズ
マ発生室2の温度が上昇するのを抑制できるようになっ
ている。A plasma gas introduction pipe 6 is connected to the upper part of the chamber 1 corresponding to the plasma generation chamber 2. The side wall of the chamber 1 corresponding to the plasma generation chamber 2 has a double wall structure, and a cooling water supply pipe 8 and a discharge pipe 9 are connected to an annular space 7 formed by the two walls. It is possible to suppress the temperature of the plasma generation chamber 2 from rising.
同プラズマ発生室2に対応する前記チャンバ1の側壁周
囲には、励磁コイルlOが配設されている。An excitation coil IO is arranged around the side wall of the chamber 1 corresponding to the plasma generation chamber 2.
前記成膜室3に対応する前記チャンバ1の側壁には、反
応ガス導入管11が連結されている。同成膜室3に対応
する前記チャンバ1の側壁には、フランジ12が形成さ
れ、このフランジ12にはイオン源筐体13が取付けら
れている。このイオン源筐体12内には、熱陰極フィラ
メント14が配設されており、該フィラメント14には
筐体13外部から挿入されたイオン化ガス導入管15が
連結されている。前記フィラメント14の外周には、環
状陽極16及びマグネット17が略同心円状に配設され
ている。また、前記チャンバ1の成膜室3側に位置する
前記筐体14部分には引出しグリッド18が形成されて
いる。A reaction gas introduction pipe 11 is connected to a side wall of the chamber 1 corresponding to the film forming chamber 3 . A flange 12 is formed on the side wall of the chamber 1 corresponding to the film forming chamber 3, and an ion source housing 13 is attached to this flange 12. A hot cathode filament 14 is disposed inside the ion source housing 12, and an ionized gas introduction tube 15 inserted from outside the housing 13 is connected to the filament 14. An annular anode 16 and a magnet 17 are arranged approximately concentrically around the outer periphery of the filament 14. Further, a drawer grid 18 is formed in a portion of the casing 14 located on the film forming chamber 3 side of the chamber 1.
更に、前記成膜室3内には基板ホルダ19が配置されて
いる。なお、前記チャンバ1の下部には真空ポンプ(図
示せず))と連結された排気管20が設けられている。Furthermore, a substrate holder 19 is arranged within the film forming chamber 3. Note that an exhaust pipe 20 connected to a vacuum pump (not shown) is provided at the bottom of the chamber 1.
上記ECRプラズマCVD装置において、CVDはマイ
クロ波導波管4を通り、石英窓5を通してチャンバlの
プラズマ発生室2に導かれたマイクロ波と、励磁コイル
IOによって印加された磁界によって維持される電子サ
イクロトロン共鳴状態下で発生したプラズマ中のイオン
を磁界によって成膜室3に引出し、反応ガス導入管11
から導入した反応ガスと基板ホルダ19に予め保持され
た基板21上で反応させることによりなされる。一方、
イオン源はイオン化ガス導入管15から熱陰極フィラメ
ント14にガスを導入することにより、該フィラメント
14から放出され、マグネット17によって陽極1Bと
の間に閉じ込められた電子によりイオン化された後、引
出しグリッド18を通過してビーム状となり、基板ホル
ダ19に保持された基板シlに照射される。これら操作
を同時に行なうことにより、基板21表面への成膜がな
されながら、基板21及びその近傍にイオンビームが照
射される。In the above-mentioned ECR plasma CVD apparatus, CVD is performed using a microwave that passes through a microwave waveguide 4 and is guided into the plasma generation chamber 2 of the chamber 1 through a quartz window 5, and an electron cyclotron that is maintained by a magnetic field applied by an excitation coil IO. Ions in the plasma generated under the resonance condition are drawn out into the film forming chamber 3 by a magnetic field, and the reaction gas introduction pipe 11
This is done by causing a reaction gas introduced from the substrate to react on the substrate 21 held in advance by the substrate holder 19. on the other hand,
The ion source is operated by introducing gas into the hot cathode filament 14 from the ionized gas introduction tube 15, and the gas is emitted from the filament 14 and is ionized by electrons trapped between it and the anode 1B by the magnet 17. The beam passes through the beam, forms a beam, and irradiates the substrate holder 19 held by the substrate holder 19. By performing these operations simultaneously, the ion beam is irradiated onto the substrate 21 and its vicinity while a film is being formed on the surface of the substrate 21.
上述したECRプラズマCVD装置を用いて次に示す条
件にて窒化ケイ素薄膜を形成した。即ち、直径7.6o
のシリコンウェハを基板21として使用し、プラズマ発
生室2にN2ガス、成膜室3に5IH4ガスを、流量比
がN2/SI H4−1,0となるように導入し、投入
電力aoo w、チャンバ1内圧力を5 x 10′5
torrs基板21の温度を100℃に設定した状態で
30分開成膜を行ないながら、■直径約5Gのアルゴン
イオンビームを加速電圧300V、ビーム電流密度0.
1mA/cIj、■直径約5cInの窒素イオンビーム
を加速電圧500V、ビーム電流密度0.4fflA/
cI11で夫々基板21に中心に向けて照射した。A silicon nitride thin film was formed using the ECR plasma CVD apparatus described above under the following conditions. That is, the diameter is 7.6o
Using a silicon wafer as the substrate 21, N2 gas was introduced into the plasma generation chamber 2 and 5IH4 gas was introduced into the film forming chamber 3 so that the flow rate ratio was N2/SI H4-1,0. Pressure inside chamber 1 is 5 x 10'5
While performing open film formation for 30 minutes with the temperature of the torrs substrate 21 set at 100°C, an argon ion beam with a diameter of about 5G was applied at an acceleration voltage of 300V and a beam current density of 0.
1 mA/cIj, ■Nitrogen ion beam with a diameter of approximately 5 cIn was accelerated at a voltage of 500 V and a beam current density of 0.4 fflA/
Each substrate 21 was irradiated with cI11 toward the center.
しかして、成膜後の基板についてイオンビーム照射を受
けた基板中心付近と、イオンビーム照射を受けなかった
と考えられる基板中心から3c11離れた位置との2箇
所の位置でSi/Nの組成比、屈折率、スクラッチテス
トによるAE発生(剥離開始)荷重を測定した。その結
果を下記表に示した。Therefore, the Si/N composition ratio was determined at two locations on the substrate after film formation: near the center of the substrate that was irradiated with the ion beam, and at a location 3c11 away from the center of the substrate that was not thought to be irradiated with the ion beam. The refractive index and the AE generation (peeling initiation) load were measured by a scratch test. The results are shown in the table below.
表
上表から明らかなように、アルゴンイオンビームを照射
した基板については、2箇所の試験位置でSi/Nの組
成比が同一であるにもかかわらず、同イオンビームが照
射された基板中心の方が高い屈折率とSE発生荷重を示
し、この部分で窒化ケイ素薄膜の緻密性、密着性が向上
していることがわかる。As is clear from the table above, regarding the substrate irradiated with the argon ion beam, although the Si/N composition ratio is the same at the two test positions, the center of the substrate irradiated with the same ion beam It can be seen that the silicon nitride thin film has improved density and adhesion in this region, showing a higher refractive index and SE generation load.
また、窒素イオンビームを照射した基板では基板中心で
安定窒化物(Si3N4)に対応する組成比0.75が
得られており、化学反応に寄与する窒素がイオンビーム
によって付加されていることがわかる。In addition, in the substrate irradiated with the nitrogen ion beam, a composition ratio of 0.75 corresponding to stable nitride (Si3N4) was obtained at the center of the substrate, indicating that nitrogen that contributes to chemical reactions is added by the ion beam. .
上述した実施例では、同一基板上において膜質が明瞭に
異なる薄膜を形成できるというCVD法におけるイオン
ビーム照射の効果が実証されている。The above-mentioned embodiments demonstrate the effectiveness of ion beam irradiation in the CVD method in that thin films with clearly different film qualities can be formed on the same substrate.
[発明の効果]
以上詳述した如く、本発明によれば基板上に低温で密着
性、緻密性の優れた薄膜を形成でき、かつ局所的に膜質
を容易に変化させることが可能な薄膜の形成方法を提供
できる。[Effects of the Invention] As detailed above, according to the present invention, a thin film with excellent adhesion and density can be formed on a substrate at low temperatures, and the film quality can be easily changed locally. A forming method can be provided.
図面は、本発明の実施例で使用したECRプラズマCV
D装置を示す概略断面図である。
1・・・チャンバ、2・・・プラズマ発生室、3・・・
成膜室、4・・・マイクロ波導波管、6・・・プラズマ
ガス導入管、lO・・・励磁コイル、11・・・反応ガ
ス導入管、14・・・熱陰極フィラメント、IB・・・
環状陽極、19・・・基板ホルダ、20・・・排気管、
21・・・基板。The drawing shows the ECR plasma CV used in the embodiment of the present invention.
It is a schematic sectional view showing D device. 1...Chamber, 2...Plasma generation chamber, 3...
Film forming chamber, 4... Microwave waveguide, 6... Plasma gas introduction tube, 1O... Excitation coil, 11... Reaction gas introduction tube, 14... Hot cathode filament, IB...
Annular anode, 19... substrate holder, 20... exhaust pipe,
21... Board.
Claims (1)
に該基板表面又は表面近傍にイオンビームを照射せしめ
ることを特徴とする薄膜の形成方法。1. A method for forming a thin film, which comprises forming a film on the surface of a substrate by chemical vapor deposition and simultaneously irradiating the surface or the vicinity of the substrate with an ion beam.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12186087A JPS63286579A (en) | 1987-05-19 | 1987-05-19 | Formation of thin film |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP12186087A JPS63286579A (en) | 1987-05-19 | 1987-05-19 | Formation of thin film |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63286579A true JPS63286579A (en) | 1988-11-24 |
JPH0465906B2 JPH0465906B2 (en) | 1992-10-21 |
Family
ID=14821722
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP12186087A Granted JPS63286579A (en) | 1987-05-19 | 1987-05-19 | Formation of thin film |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63286579A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56155535A (en) * | 1980-05-02 | 1981-12-01 | Nippon Telegr & Teleph Corp <Ntt> | Film forming device utilizing plasma |
JPS60165721A (en) * | 1984-02-08 | 1985-08-28 | Agency Of Ind Science & Technol | Reactive ion beam etching method |
-
1987
- 1987-05-19 JP JP12186087A patent/JPS63286579A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS56155535A (en) * | 1980-05-02 | 1981-12-01 | Nippon Telegr & Teleph Corp <Ntt> | Film forming device utilizing plasma |
JPS60165721A (en) * | 1984-02-08 | 1985-08-28 | Agency Of Ind Science & Technol | Reactive ion beam etching method |
Also Published As
Publication number | Publication date |
---|---|
JPH0465906B2 (en) | 1992-10-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5376223A (en) | Plasma etch process | |
EP0797688B1 (en) | Method for deposition of diamondlike carbon films | |
EP0536664B1 (en) | A method for forming a thin film | |
TW201634727A (en) | Process component and method to improve mocvd reaction process | |
JPH0312921A (en) | Method and apparatus for etching | |
JP2004292934A (en) | Ion nitriding apparatus and deposition system using the same | |
JP4416402B2 (en) | Plasma device for forming functional layer and method for forming functional layer | |
JPS63286579A (en) | Formation of thin film | |
CN112899617B (en) | Method, device, component and plasma processing device for forming plasma-resistant coating | |
JPH09118977A (en) | Method for building up thin film | |
JP3568164B2 (en) | Processing method of magnetic thin film | |
JPH07273086A (en) | Plasma treatment apparatus and plasma treatment method employing said apparatus | |
JP3039880B2 (en) | Carbon film formation method | |
JPH0665744A (en) | Production of diamond-like carbon thin film | |
JP2617539B2 (en) | Equipment for producing cubic boron nitride film | |
JP3190100B2 (en) | Carbon material production equipment | |
JPH01104763A (en) | Production of thin metal compound film | |
JP2005123389A (en) | Plasma treatment method, plasma film forming method, plasma etching method and plasma treatment device | |
JP2963116B2 (en) | Plasma processing method and plasma processing apparatus | |
JP3099801B2 (en) | Film forming method and apparatus | |
JPS6074534A (en) | Method and equipment for forming thin film | |
JP3367687B2 (en) | Plasma processing method and plasma processing apparatus | |
JPS63107899A (en) | Formation of thin film | |
JPS63206390A (en) | Production of diamond thin film | |
JPS6293366A (en) | Manufacture of boron nitride film |