JPS63276878A - Controller for air cooling type fuel cell - Google Patents

Controller for air cooling type fuel cell

Info

Publication number
JPS63276878A
JPS63276878A JP62085759A JP8575987A JPS63276878A JP S63276878 A JPS63276878 A JP S63276878A JP 62085759 A JP62085759 A JP 62085759A JP 8575987 A JP8575987 A JP 8575987A JP S63276878 A JPS63276878 A JP S63276878A
Authority
JP
Japan
Prior art keywords
flow rate
gas
air
manifold
cooling gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62085759A
Other languages
Japanese (ja)
Inventor
Shuichi Matsumoto
秀一 松本
Akira Sasaki
明 佐々木
Kenro Mitsuta
憲朗 光田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP62085759A priority Critical patent/JPS63276878A/en
Publication of JPS63276878A publication Critical patent/JPS63276878A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04014Heat exchange using gaseous fluids; Heat exchange by combustion of reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To make each flow rate of cooling gas and oxidizer gas controllable separately with a simple piping system as well as to make cell temperature controllable by installing an oxidizer gas flow control valve, controlling a flow rate at the oxidizer gas outlet side, a flow controller, setting the cooling gas and a cell's operating temperature to the specified temperature, and a temperature controller. CONSTITUTION:A flow rate of oxidizer gas flowing in an oxidizer gas passage 4 is detected by a flow detector 25, and it is controlled by a control valve 26 so as to become the flow rate conformed to the load by a flow controller 27. And, air in an amount to supply the oxidizer consumed by a cell is controlled by a control valve 12 and it is supplied. And, a cooling gas flow rate alters a gas quantity to be fed to a cell stack 1 by controlling the rotating speed of a blower 15, and it is controlled by a temperature controller 28 to as to make the cell stack 1 settable to the specified operating temperature. With this constitution, each flow rate of the cooling gas and the oxidizer gas is separately controllable and, what is more, control over the cell temperature is performable irrespective of the flow rate of the oxidizer gas.

Description

【発明の詳細な説明】 〔従来の技術〕 従来、燃料[1,池のガス冷却方式としては、冷却ガス
流路と酸化剤ガス流路の圧力損失に応じて内部で分配さ
れるデイストリビュートガス冷却方式と、各ガスを独立
に供給するセパレートガス冷却方式の2通りがある。
[Detailed Description of the Invention] [Prior Art] Conventionally, as a gas cooling method for a fuel [1] pond, distributed gas is distributed internally according to the pressure loss in the cooling gas flow path and the oxidizing gas flow path. There are two methods: a cooling method and a separate gas cooling method in which each gas is supplied independently.

第2図は例えば特開昭58−178964号公報に示さ
れた従来のデイストリビュートガス冷却方式の燃料電池
であり、図において燃料電池スタック(1)の冷却板(
2)に冷却ガス流路(3)が設けられている。(4)は
酸化剤ガス流路、(5)は燃料ガス流路である。
Figure 2 shows a conventional distributed gas cooling type fuel cell disclosed in, for example, Japanese Unexamined Patent Publication No. 58-178964.
2) is provided with a cooling gas flow path (3). (4) is an oxidizing gas flow path, and (5) is a fuel gas flow path.

また、第3図は同じく特開昭58−178964号公報
に示された上記の従来のディス) IJビュートガス冷
却方式の燃料電池の空気供給系統図であり、図において
、燃料電池スタック(1)K冷却ガスおよび酸化剤ガス
入口マニホールド(6)、冷却ガスおよび酸化剤ガスの
出口側マニホールド(7)、燃料ガス入口マニホールド
(8)、燃料ガス出口マニホールド(9)が付設されで
いる。冷却ガスおよび酸化剤ガスの循環系統(10)に
は、新しい空気の供給系統(11)、供給空気流tv@
節弁(12)、空気の排出系統(13)、排出空気流量
調節弁(14)が設けられている。(15)は循環プロ
゛Tである。
Furthermore, FIG. 3 is an air supply system diagram of the above-mentioned conventional disk) IJ butte gas cooling type fuel cell, which is also shown in Japanese Unexamined Patent Publication No. 58-178964. In the figure, the fuel cell stack (1) A K cooling gas and oxidizing gas inlet manifold (6), a cooling gas and oxidizing gas outlet manifold (7), a fuel gas inlet manifold (8), and a fuel gas outlet manifold (9) are attached. The cooling gas and oxidant gas circulation system (10) includes a fresh air supply system (11), a supply air flow tv@
A moderation valve (12), an air exhaust system (13), and an exhaust air flow rate control valve (14) are provided. (15) is a cyclic program T.

また、第4図は例えばレポート・トイ(DOE)NAS
A、0161−10に示された従来のセパレートガス冷
却方式の燃料電池を示し、第5図はその空気供給経路図
である。図において、燃料電池スタック(1)に、酸化
剤ガス入口マニホールド(16)、酸化剤ガス出口マニ
ホールド(17)、冷却ガス人口マニホールド(18)
、冷却ガス出ロマニポ・−ルド(19)、酸化剤ガスの
供給系統(20)および酸化剤ガスit調節弁(21)
が付設されている。
Also, Figure 4 shows, for example, Report Toy (DOE) NAS.
A, 0161-10 shows a conventional separate gas cooling type fuel cell, and FIG. 5 is an air supply route diagram thereof. In the figure, a fuel cell stack (1) includes an oxidizing gas inlet manifold (16), an oxidizing gas outlet manifold (17), and a cooling gas population manifold (18).
, cooling gas output ROM manipold (19), oxidizing gas supply system (20), and oxidizing gas IT control valve (21)
is attached.

その他、第2図、第3図におけろと同一符号・は同一乃
至相当部分を示し、ており、説明は省略する。
In addition, the same reference numerals as in FIGS. 2 and 3 indicate the same or corresponding parts, and the explanation will be omitted.

次に動作について説明する。まず、第2図、第3図に示
したデイストリビュートガス冷却方式では、ニアコンプ
レッサなどから系統(11)’1通り送り込まねる空気
は。ブロア(15)を通り電池スタック(1)へ、供給
され、入口マニホールド(6) K :ttiいて電池
反応に使用される酸化剤ガス流路(4)と電池反応によ
って発生する熱を除去するのして使用される冷却ガス流
路(3)とに圧力損失により分配される。
Next, the operation will be explained. First, in the distributed gas cooling system shown in FIGS. 2 and 3, air cannot be sent into the system (11) from a near compressor or the like. The oxidant gas is supplied to the battery stack (1) through the blower (15), and is connected to the inlet manifold (6) to remove the heat generated by the oxidant gas flow path (4) used for the battery reaction and the battery reaction. The cooling gas flow path (3) used as a cooling gas is distributed by pressure loss.

酸化剤ガス流路(4)および冷却ガス流路(3)を出た
ガスは出口マニホールド(7)において再度混合され、
循環流量と排出流量を調節する調節弁(14)を通り循
環系統(10)を形成する。ここでは、酸化剤ガスと冷
却ガスの流量は個別に制御することはできない。
The gases exiting the oxidizing gas flow path (4) and the cooling gas flow path (3) are mixed again in the outlet manifold (7),
A circulation system (10) is formed through a control valve (14) that adjusts the circulation flow rate and the discharge flow rate. Here, the flow rates of the oxidant gas and the cooling gas cannot be controlled individually.

次に、第4図、第5図に示したセパレートガス冷却方式
では、冷却ガス系統については、同じく系統(11)よ
り送り込まれる例えば空気等の冷却ガスは、プロア(1
5)を通り冷却ガス入口マニホールド(18)より電池
スタック(1)へ供給され、冷却ガス流路(3)を通っ
てw2池反応で発生する熱を除去した後、出口マニホー
ルド(19)に果められ循環流量と排出流量を調節する
調節弁(14)を通り循環系統(10)を形成する。つ
いで、酸化剤ガス系統は、系統(20)より送り込まれ
る空気は調節弁(21)により負荷に応じた流量に調節
され、入口マニホールド(16)へ供給され酸化剤ガス
流路(4)を通りながら燃料ガスと電池反応をして、出
口マニホールド(17)を通って排出される。
Next, in the separate gas cooling system shown in FIGS. 4 and 5, for the cooling gas system, the cooling gas such as air, which is also sent from the system (11), is
5), the cooling gas is supplied to the battery stack (1) from the inlet manifold (18), and after passing through the cooling gas flow path (3) to remove the heat generated by the W2 pond reaction, the output is supplied to the outlet manifold (19). A circulation system (10) is formed by passing through a control valve (14) that adjusts the flow rate for circulation and the flow rate for discharge. Next, in the oxidant gas system, the air sent from the system (20) is adjusted to a flow rate according to the load by the control valve (21), and is supplied to the inlet manifold (16) and passes through the oxidant gas flow path (4). While reacting with the fuel gas, it is discharged through the outlet manifold (17).

〔発明が解決しようとする問題点1 以上のような従来の空冷式燃料電池の制御装置は、デイ
ストリビュートガス冷却方式では、酸化剤ガスと冷却ガ
スの流量は個別に制御することができないため、負荷に
応じた酸化剤ガス流量す供給する際に冷却ガス流量も同
時に動いてしまうので、流量制御と電池の温度制御が干
渉し合い、最適な運転状態を応じたが困難であるという
問題点があった。また、セパレートガス冷却方式では、
冷却ガスおよび酸化剤ガスの個別の流量制御が可能で、
そのため電池温度制御も容易であるが、冷却ガスおよび
酸化剤ガス両方に供給系統、排出系統を設けなければな
らず、装置が複雑となり、コストも高くなるという問題
点があった。
[Problem to be Solved by the Invention 1] In the conventional air-cooled fuel cell control device as described above, in the distributed gas cooling method, the flow rates of the oxidizing gas and the cooling gas cannot be controlled separately. When supplying the oxidizing gas flow rate according to the load, the cooling gas flow rate also changes at the same time, so flow control and battery temperature control interfere with each other, making it difficult to adjust to the optimal operating condition. there were. In addition, with separate gas cooling method,
Separate flow rate control for cooling gas and oxidant gas is possible.
Therefore, battery temperature control is easy, but there are problems in that a supply system and a discharge system must be provided for both the cooling gas and the oxidizing gas, making the device complex and increasing the cost.

この発明は上記のような問題点を解消するためになされ
たもので、簡単な配管系統で冷却ガスおよび酸化剤ガス
の流量を個別に制御でき、かつ、電池の温度制御も酸化
剤ガスの流量にかかわらず行うことができ、最適運転状
態が設定し易い空冷式燃料電池の制御装置を得ることを
目的とする。
This invention was made to solve the above-mentioned problems, and it is possible to control the flow rates of cooling gas and oxidizing gas separately with a simple piping system, and the temperature of the battery can also be controlled by controlling the flow rate of oxidizing gas. It is an object of the present invention to provide a control device for an air-cooled fuel cell that can easily set the optimum operating state regardless of the conditions.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る空冷式燃料電池は、冷却ガス流路入口側
と酸化剤ガス流路出口側を1合化した第1のマニホール
ドに収め、冷却ガス流路出口側と酸化剤ガス流路入口側
を第2のマニホールドB(、で収め、冷却ガス流路入口
へは第1のマニホードの外部から冷却管を接続し、空気
は冷却管を通って供給され、冷却ガス流路入口側から冷
却ガス流路出口、第2のマニホールドを通って排出され
る冷却ガス系統と、冷却ガス流路出口から第2のマニホ
ールドを通り、酸化剤ガス流路入口へ入り、酸化剤ガス
流路出口、第1のマニホールドを通って排出される酸化
剤ガス系統とに分けられるようにし、第1のマニホール
ドより排出される酸化剤ガス流量を調節する調節弁が配
されでいる。
The air-cooled fuel cell according to the present invention is housed in a first manifold in which the inlet side of the cooling gas flow path and the outlet side of the oxidizing gas flow path are integrated. A cooling pipe is connected from the outside of the first manifold to the inlet of the cooling gas flow path, and air is supplied through the cooling pipe, and the cooling gas is supplied from the inlet of the cooling gas flow path. A cooling gas system discharged through a flow path outlet and a second manifold; A control valve is arranged to adjust the flow rate of the oxidant gas discharged from the first manifold.

〔作 用〕[For production]

この発明においては、冷却ガス流量と酸化剤ガス流量は
個別圧制御することができる。すなわち、負荷に応じた
酸化剤ガス流量は、第1のマニホールドよる排出される
酸化剤ガス系統に設置された調節弁により制御され、冷
却ガスは、電池の動作温度を所定の温度になるように調
節されて供給される。
In this invention, the cooling gas flow rate and the oxidizing gas flow rate can be individually pressure controlled. That is, the flow rate of the oxidizing gas according to the load is controlled by a control valve installed in the oxidizing gas system discharged from the first manifold, and the cooling gas is controlled so that the operating temperature of the battery becomes a predetermined temperature. regulated and supplied.

〔実施例〕〔Example〕

第1図はこの発明の一実施例を示し、図において、燃料
電池スタック(1)に、冷却ガス流路入口側および酸化
剤ガス流路出口側を重合した第1(Dマニホールド(2
2)、冷却ガス流路出口側および酸化剤ガス流路入口側
を重合した第2のマニホールド(23)が付設されてお
り、さらに、冷却管(24)、酸化剤ガス排出流量検出
器(25)、流量検出器(25)で検出された流量を調
節する調節弁(26)、流量検出器(25)で検出され
た流量が、負荷に応じた流IKなるよう、また、負荷に
応じて新しい空気を供給するように、調節弁(26)お
よび調節弁(12)を制御する流量制御装置(27)、
電池スタック(1)の動作温度が所定の温度となるよう
、例えばブロア(15)の回転数を調節するm度制御装
#(28)が設けられている。
FIG. 1 shows an embodiment of the present invention. In the figure, a fuel cell stack (1) is provided with a first (D manifold) (2
2), a second manifold (23) is attached in which the cooling gas flow path outlet side and the oxidant gas flow path inlet side are overlapped, and furthermore, a cooling pipe (24) and an oxidant gas discharge flow rate detector (25) are attached. ), a control valve (26) that adjusts the flow rate detected by the flow rate detector (25), and a control valve (26) that adjusts the flow rate detected by the flow rate detector (25) so that the flow rate detected by the flow rate detector (25) becomes the flow IK according to the load, and also according to the load. a flow control device (27) controlling the regulating valve (26) and the regulating valve (12) to supply fresh air;
A temperature control device # (28) is provided that adjusts, for example, the rotation speed of the blower (15) so that the operating temperature of the battery stack (1) is a predetermined temperature.

その他、第2図〜第5図におけると同一符号は同一乃至
相当部分を示しており、説明は省略する。
In addition, the same reference numerals as in FIGS. 2 to 5 indicate the same or corresponding parts, and the explanation will be omitted.

次に動作について説明する。エアーコンプレッサなどか
ら系統(11)を通って送り込まれる空気は、調節弁(
12)を通り循環系統(10)に入り、ブロア(15)
で昇圧、加速され、第1の・マニホールド(22)、冷
却管(24)を経て冷却ガス流路(3)へ供給される。
Next, the operation will be explained. Air sent from an air compressor etc. through the system (11) is controlled by the control valve (
12), enters the circulation system (10), and enters the blower (15).
The gas is pressurized and accelerated, and is supplied to the cooling gas flow path (3) via the first manifold (22) and the cooling pipe (24).

この空気は、冷却ガス流路(3)で電池反応により発生
する熱を除去した後、第27二ホールド(23)で酸化
剤ガス流路(4)または循環系統(10)へ分岐される
。酸化剤ガス流路(4)を通り、電池反応を起しながら
第1のマニホールド(22)に排出された酸化剤ガスは
、流量検出器(25)、施蓋調節弁(26)を通った後
、系外へ排出される。
After this air removes the heat generated by the battery reaction in the cooling gas flow path (3), it is branched to the oxidizing gas flow path (4) or the circulation system (10) at the 27th second hold (23). The oxidizing gas that passed through the oxidizing gas channel (4) and was discharged to the first manifold (22) while causing a battery reaction passed through the flow rate detector (25) and the lid control valve (26). After that, it is discharged from the system.

ここで酸化剤ガス流路(4)を流れる酸化剤ガスの流量
は、流量検出器(25)で検出され、流量制御装置(2
7)により負荷に応じた1tVcなるように調節弁(2
6)で調節される。また、調節弁(12)によって電池
で消費された酸化剤ガスを補給する量の空気が調節され
て供給される。一方、冷却ガス流量は、ブロア(15)
の回転数を調節することにより電池スタック(1)へ供
給するガス量を変え、電池スタック(1)を所定の動作
温度に設定できるようにm度制御装fi (2B)によ
り調節される。
Here, the flow rate of the oxidizing gas flowing through the oxidizing gas channel (4) is detected by the flow rate detector (25), and the flow rate of the oxidizing gas flowing through the oxidizing gas flow path (4) is detected by the flow rate detector (25).
7) to adjust the control valve (2) so that the voltage is 1tVc according to the load.
6). Further, an amount of air to replenish the oxidant gas consumed by the battery is regulated and supplied by the control valve (12). On the other hand, the cooling gas flow rate is
The amount of gas supplied to the battery stack (1) is changed by adjusting the rotational speed of the battery stack (1), and the temperature is adjusted by the temperature control device fi (2B) so that the battery stack (1) can be set at a predetermined operating temperature.

負荷変動時には、負荷指令が流量制御装置(27)と温
度制御装fl(2B)へ入力され、流量制御装置(27
)は負荷に応じた流量となるように調節弁(12)、調
節弁(26)を調節する。また温度制御(2B)は急激
な負荷変化時は、電池スタック(1)の温度が変化する
ため、その変化分を補うようにブロア(15)の回転数
をツイードフォーワード制御により調節し、一定の動作
温度を保つ制御を行う。
When the load fluctuates, the load command is input to the flow rate control device (27) and the temperature control device fl (2B), and the flow rate control device (27)
) adjusts the control valve (12) and control valve (26) so that the flow rate corresponds to the load. In addition, temperature control (2B) adjusts the rotation speed of the blower (15) using Tweed forward control to compensate for the temperature change in the battery stack (1) when the load changes suddenly, so that the temperature remains constant. control to maintain the operating temperature.

なお、上記実施例では冷却ガス系統を循環系統としたが
、小型の発電システムでは、循環系統とするよりも第2
のマニホールド(23)から外部へ排出しまう構成の方
がコストが低くなる場合がある。
Note that in the above embodiment, the cooling gas system is a circulation system, but in a small power generation system, the second
A configuration in which the liquid is discharged to the outside from the manifold (23) may be cheaper.

また、上記実施例では流量検出器(25)は酸化剤ガス
流路(4)を出たガスの流量を測定する位置に設置して
あったが、これは“空気の供給系統(11)で測定でき
るように設置してもよい。
In addition, in the above embodiment, the flow rate detector (25) was installed at a position to measure the flow rate of the gas exiting the oxidant gas flow path (4), but this is not an "air supply system (11)". It may be installed so that it can be measured.

〔発明の効果〕〔Effect of the invention〕

この発明は、以上の説明から明らかなように、冷却ガス
流路入口側と酸化剤ガス流路出口側を重合化した第1の
マニホールドに収め、冷却ガス流踏出口側と酸化剤ガス
流路入口側を同一の第2のマニホールドに収め、空気は
第1のマニホールドに取付けられた冷却管より冷却ガス
流路入口へ供給され、冷却ガス流路出口、第2のマニホ
ールドを経て排出される冷却ガス系統と、冷却ガス流路
出口、第2のマニホールドを経て酸化剤ガス流路入口、
酸化剤ガス流路出口、第1のマニホールドを経て排出さ
れる酸化剤ガス系統とに分けられるようにし、かつ、第
1のマニホールドより排出される酸化剤ガス流量を調節
する調節弁を設置したので、装置が安価となり、冷却ガ
ス流量と酸化剤ガス流量を個別に制御でき、電池の最適
運転状態へ設定しやすくなるという効果がある。また、
負荷変動時には、プロア回転数のフィードフォワード制
御により電池の動作温度の変化を最小に抑えながら負荷
を変化させることができるという効果もある。
As is clear from the above description, the present invention has an inlet side of a cooling gas flow path and an outlet side of an oxidant gas flow path placed in a polymerized first manifold; The inlet side is housed in the same second manifold, and air is supplied to the inlet of the cooling gas flow path from the cooling pipe attached to the first manifold, and is discharged through the outlet of the cooling gas flow path and the second manifold. a gas system, a cooling gas flow path outlet, an oxidizing gas flow path inlet via a second manifold,
The oxidizing gas flow path outlet is separated into the oxidizing gas system that is discharged through the first manifold, and a control valve is installed to adjust the flow rate of the oxidizing gas discharged from the first manifold. This has the advantage that the device is inexpensive, the cooling gas flow rate and the oxidizing gas flow rate can be controlled individually, and it becomes easier to set the battery to the optimum operating state. Also,
When the load fluctuates, there is also the effect that the load can be changed while minimizing changes in the operating temperature of the battery through feedforward control of the proar rotation speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の一実施例の空気供給系統図、第2図
は従来の燃料電池の斜視図、第3図は第2図のものの空
気供給系統図、第4図は従来の別の燃料市、池の斜視図
、第5図は第4図のものの空気供給系統図である。 (1)−・燃料電池スタック、(3)・−冷却ガス流路
、(4)拳―酸化剤ガス流路、(5)・・燃料ガス流路
、(8)・・燃料ガスのへロマニホールド、(9)−・
燃料ガスの出口マニホールド、(10)−−i環系統、
(11)−・空気の供給系統、(15)・・ブロア、(
22)−・第1のマニホールド、(2j)−9第2のマ
ニホールド、(25)−・流量検出器、 (26’)・
・酸化剤ガス流蓋調節弁、(27)・・流量制御製蓋、
(28)−・温度制御装置。 なお、各図中、同一符号は同−又は相当部分を示す。 帛2図 工 帛3図 χ次j畔かス
Fig. 1 is an air supply system diagram of an embodiment of the present invention, Fig. 2 is a perspective view of a conventional fuel cell, Fig. 3 is an air supply system diagram of the one shown in Fig. 2, and Fig. 4 is a diagram of another conventional fuel cell. A perspective view of the fuel tank and pond; FIG. 5 is a diagram of the air supply system of FIG. 4; (1) - Fuel cell stack, (3) - Cooling gas flow path, (4) Fist - Oxidizing gas flow path, (5) Fuel gas flow path, (8) Fuel gas hero Manifold, (9)-・
Fuel gas outlet manifold, (10)--i ring system,
(11)--Air supply system, (15)...Blower, (
22)--First manifold, (2j)-9 second manifold, (25)--Flow rate detector, (26')-
・Oxidizer gas flow lid control valve, (27)...Flow rate control lid,
(28)--Temperature control device. In each figure, the same reference numerals indicate the same or corresponding parts. Facility 2 Artwork 3

Claims (3)

【特許請求の範囲】[Claims] (1)燃料ガスと空気等の酸化剤ガスにより発電し、空
気により冷却を行う空冷式燃料電池の制御装置において
、冷却ガス流路入口側と酸化剤ガス出口側を重合化して
収めた第1のマニホールドと、冷却ガス流路出口側と酸
化剤ガス流路入口側を一体化して収めた第2のマニホー
ルドとを備え、上記冷却ガス流路を出た空気は上記酸化
剤ガス入口側へ供給される系統と再び上記第1のマニホ
ールドへ循環する系統へ分かれるようにし、上記酸化剤
ガス流路を通つて上記第1のマニホールドより排出され
る上記酸化剤ガス出口側の流量を検出して負荷および利
用率に応じた流量に制御する酸化剤ガス流量調節弁と、
上記冷却ガスを上記燃料電池の動作温度を所定の温度に
設定する流量制御装置および温度制御装置とを備えてな
ることを特徴とする空冷式燃料電池の制御装置。
(1) In a control device for an air-cooled fuel cell that generates electricity using fuel gas and an oxidant gas such as air and cools it with air, the first and a second manifold that integrates the cooling gas flow path outlet side and the oxidant gas flow path inlet side, and the air exiting the cooling gas flow path is supplied to the oxidant gas inlet side. The flow rate on the outlet side of the oxidizing gas discharged from the first manifold through the oxidizing gas flow path is detected and the load is determined. and an oxidizing gas flow rate control valve that controls the flow rate according to the utilization rate;
A control device for an air-cooled fuel cell, comprising a flow rate control device and a temperature control device for setting the cooling gas to a predetermined operating temperature of the fuel cell.
(2)冷却ガス循環系統は第2のマニホールドより第1
のマニホールドへ戻る循環ルートを形成し、循環流量は
電池動作温度を所定の温度となるようにブロアの回転数
により調節され、新しい空気は負荷に応じた流量に設定
されて上記冷却ガス循環系統へ供給される特許請求の範
囲第1項記載の空冷式燃料電池の制御装置。
(2) The cooling gas circulation system is connected to the first manifold from the second manifold.
The circulation flow rate is adjusted by the rotation speed of the blower to keep the battery operating temperature at a predetermined temperature, and the new air is set at a flow rate according to the load and sent to the cooling gas circulation system. A control device for an air-cooled fuel cell according to claim 1.
(3)電池の動作温度調節は、負荷変動の際にはフイー
ドフオワード制御を行い、負荷変動時の電池動作温度の
変動を最小限に抑えて運転する特許請求の範囲第1項記
載の空冷式燃料電池の制御装置。
(3) The battery operating temperature is controlled by performing feed forward control when the load fluctuates, and the battery is operated while minimizing fluctuations in the battery operating temperature when the load fluctuates. Control device for air-cooled fuel cells.
JP62085759A 1987-04-09 1987-04-09 Controller for air cooling type fuel cell Pending JPS63276878A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62085759A JPS63276878A (en) 1987-04-09 1987-04-09 Controller for air cooling type fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62085759A JPS63276878A (en) 1987-04-09 1987-04-09 Controller for air cooling type fuel cell

Publications (1)

Publication Number Publication Date
JPS63276878A true JPS63276878A (en) 1988-11-15

Family

ID=13867790

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62085759A Pending JPS63276878A (en) 1987-04-09 1987-04-09 Controller for air cooling type fuel cell

Country Status (1)

Country Link
JP (1) JPS63276878A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1498971A2 (en) * 2003-07-14 2005-01-19 Asia Pacific Fuel Cell Technologies, Ltd. Cooling of air-cooled fuel cell system
WO2006095926A2 (en) * 2005-03-10 2006-09-14 Toyota Jidosha Kabushiki Kaisha Air-cooled fuel cell system
US7314679B2 (en) 2003-07-15 2008-01-01 Honda Motor Co., Ltd. Air supply apparatus for a fuel cell
US7390587B2 (en) 2000-03-29 2008-06-24 Idatech, Llc Fuel cell system with load management
US7399548B2 (en) 2003-04-21 2008-07-15 Honda Motor Co., Ltd. Fuel cell stack
JP2010015712A (en) * 2008-07-01 2010-01-21 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system and power generation method
JP2010020965A (en) * 2008-07-09 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system, and operation method thereof
JP2010020966A (en) * 2008-07-09 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system, and operation method thereof
JP2010044960A (en) * 2008-08-13 2010-02-25 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system and power generation method of fuel cell
US7820331B2 (en) * 2004-08-30 2010-10-26 Casio Computer Co., Ltd. Fuel cell and fuel cell system
DE112004002313B4 (en) * 2003-11-28 2011-09-15 Toyota Jidosha Kabushiki Kaisha fuel cell

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7390587B2 (en) 2000-03-29 2008-06-24 Idatech, Llc Fuel cell system with load management
US7399548B2 (en) 2003-04-21 2008-07-15 Honda Motor Co., Ltd. Fuel cell stack
EP1498971A3 (en) * 2003-07-14 2007-01-03 Asia Pacific Fuel Cell Technologies, Ltd. Cooling of air-cooled fuel cell system
EP1498971A2 (en) * 2003-07-14 2005-01-19 Asia Pacific Fuel Cell Technologies, Ltd. Cooling of air-cooled fuel cell system
US7314679B2 (en) 2003-07-15 2008-01-01 Honda Motor Co., Ltd. Air supply apparatus for a fuel cell
DE112004002313B4 (en) * 2003-11-28 2011-09-15 Toyota Jidosha Kabushiki Kaisha fuel cell
US7820331B2 (en) * 2004-08-30 2010-10-26 Casio Computer Co., Ltd. Fuel cell and fuel cell system
WO2006095926A3 (en) * 2005-03-10 2007-02-22 Toyota Motor Co Ltd Air-cooled fuel cell system
JP2006252934A (en) * 2005-03-10 2006-09-21 Toyota Motor Corp Air cooling type fuel cell system
WO2006095926A2 (en) * 2005-03-10 2006-09-14 Toyota Jidosha Kabushiki Kaisha Air-cooled fuel cell system
KR101133698B1 (en) * 2005-03-10 2012-04-10 도요타 지도샤(주) Air-cooled fuel cell system
JP2010015712A (en) * 2008-07-01 2010-01-21 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system and power generation method
JP2010020965A (en) * 2008-07-09 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system, and operation method thereof
JP2010020966A (en) * 2008-07-09 2010-01-28 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system, and operation method thereof
JP2010044960A (en) * 2008-08-13 2010-02-25 Nippon Telegr & Teleph Corp <Ntt> Fuel cell power generation system and power generation method of fuel cell

Similar Documents

Publication Publication Date Title
US4729930A (en) Augmented air supply for fuel cell power plant during transient load increases
US4002805A (en) Method and apparatus for controlling the fuel flow to a steam reformer in a fuel cell system
JPS63276878A (en) Controller for air cooling type fuel cell
JPS5923066B2 (en) Fuel cell power generator equipped with fuel processing means
US5961928A (en) Gas generating system and method
US3961986A (en) Method and apparatus for controlling the fuel flow to a steam reformer in a fuel cell system
US3585077A (en) Reformer fuel flow control
JP3824908B2 (en) Method of operating fuel cell batteries with control system and plant including them
JPS6229869B2 (en)
JPH03167759A (en) Catalyst temperature controller of fuel reformer for use in fuel cell
JPH02281569A (en) Fused carbonate fuel cell power generating plant
JPS6332868A (en) Fuel cell power generating system
JPS61267273A (en) Control method for power generation plant of fuel cell and its apparatus
JPS58163183A (en) Fuel cell generating system
JPH0389466A (en) Feed gas flow control device for fuel cell
JP2814706B2 (en) Fuel cell generator
JPH03108268A (en) Fuel cell reaction gas supply controller
JP3557904B2 (en) Operating method of fuel reformer and fuel cell power generation system
JPH08250139A (en) Fuel-cell generating system
JPH0556628B2 (en)
JPS622461A (en) Recirculation device for fuel line of fuel cell power generation system
JPS6348774A (en) Combustion gas controller of fuel reformer
JPS58133784A (en) Control system of fuel cell power generating plant
JPS591626A (en) Moistening method for atmosphere gas
JPH05135793A (en) Combustion control device for fuel cell power generating facilities