JPS63275133A - Image sensor - Google Patents
Image sensorInfo
- Publication number
- JPS63275133A JPS63275133A JP62111051A JP11105187A JPS63275133A JP S63275133 A JPS63275133 A JP S63275133A JP 62111051 A JP62111051 A JP 62111051A JP 11105187 A JP11105187 A JP 11105187A JP S63275133 A JPS63275133 A JP S63275133A
- Authority
- JP
- Japan
- Prior art keywords
- image sensor
- cutting
- wafer
- chip
- cutting operation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005520 cutting process Methods 0.000 claims abstract description 32
- 238000006073 displacement reaction Methods 0.000 abstract 1
- 235000012431 wafers Nutrition 0.000 description 11
- 238000000034 method Methods 0.000 description 5
- 230000002950 deficient Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229920000379 polypropylene carbonate Polymers 0.000 description 2
- 238000002300 pressure perturbation calorimetry Methods 0.000 description 2
- 101100136092 Drosophila melanogaster peng gene Proteins 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Landscapes
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Solid State Image Pick-Up Elements (AREA)
- Dicing (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は高速ファクシミリやインテリジェントPPC,
OA機器の画像入力用としてのイメージセンサに関する
ものである。[Detailed Description of the Invention] The present invention is applicable to high-speed facsimile, intelligent PPC,
The present invention relates to an image sensor for inputting images of OA equipment.
従来の技術
近年高速ファクシミリやインテリジェントPPC1ある
いはコンピューターへの画像入力端末において、高速、
高解像度のイメージセンサのニーズが高まっている。そ
の原稿の読取り方式には、縮少結像して読み取る縮少方
式、等倍結像して読み取る密着方式の2方式がある。バ
イポーラIC技術を用いたStマルチチップ型の密着型
イメージセンサの場合、例えば、A4サイズの原稿;有
効センサ長224■賞をライン型のイメージセンサとし
て読み取るためには、チップ端まで検知素子を配列した
複数個のイメージセンサチップを直線上に高精度に配列
して構成する必要がある。分解能を高めるために、近年
16ドソト/ mm〜32ドツト/1mのイメージセン
サの開発が行なわれているが、イメージセンサチップを
高精度に切断加工する技術が要求されている。Conventional technology In recent years, high-speed facsimiles, intelligent PPCs, and image input terminals for computers have been
The need for high-resolution image sensors is increasing. There are two methods for reading the original: a reduction method in which a reduced image is formed and read, and a close contact method in which a same-size image is formed and read. In the case of a St multi-chip contact type image sensor using bipolar IC technology, for example, in order to read an A4 size document; effective sensor length 224■ as a line type image sensor, the sensing elements must be arranged to the edge of the chip. It is necessary to arrange a plurality of image sensor chips in a straight line with high precision. In order to improve the resolution, image sensors of 16 dots/mm to 32 dots/1 m have been developed in recent years, but a technique for cutting the image sensor chip with high precision is required.
第4図は、複数個のイメージセンサチップを直線上に配
列した例を示したものである。複数個のセンサチップは
左端チップを基準として、順次密着させて配置固定する
が、現実的にはセンサチップの切断精度によって各セン
サチップ接続部の受光窓間隔にバラツキが生ずる。例え
ば、16ドノト/1mの解像度のイメージセンサの場合
、受光窓は62.5μmのピンチで配列しているが、セ
ンサチップ接続部で生じる受光窓間隔の許容誤差は、理
想値62.5μmに対して15μm以下が要求される。FIG. 4 shows an example in which a plurality of image sensor chips are arranged in a straight line. A plurality of sensor chips are arranged and fixed in close contact one after another with the left end chip as a reference, but in reality, the spacing between the light receiving windows of each sensor chip connection section varies depending on the cutting precision of the sensor chips. For example, in the case of an image sensor with a resolution of 16 dots/1 m, the light-receiving windows are arranged with a pinch of 62.5 μm, but the tolerance of the light-receiving window spacing that occurs at the sensor chip connection is smaller than the ideal value of 62.5 μm. 15 μm or less is required.
また32ドツト/鶴解像度のイメージセンサの場合、許
容誤差は7.5μm以下となる。Further, in the case of an image sensor with a resolution of 32 dots/trundle, the permissible error is 7.5 μm or less.
一般的にイメージセンサチップは数百μm厚さの$iウ
ェハー上に形成されたものを精密グイシングツ−などを
用いて、個々のイメージセンサチップとして切断加工し
た後、接着剤を印刷したアルミナ基板上に複数個のイメ
ージセンサチップを直線上に配置し固定する。Generally, image sensor chips are formed on $i wafers several hundred μm thick, which are cut into individual image sensor chips using a precision cutting tool, and then cut onto an alumina substrate printed with adhesive. multiple image sensor chips are arranged and fixed in a straight line.
第5図はイメージセンサチップ接続部を示したものであ
るが、イメージセンサチップの切断位置が適正でない場
合第6図の様にイメージセンサチップの受光素子を損傷
させたり、第7図の様に受光窓間隔の許容誤差を越えて
しまったりする。Figure 5 shows the connection part of the image sensor chip, but if the cutting position of the image sensor chip is not appropriate, the light receiving element of the image sensor chip may be damaged as shown in Figure 6, or the image sensor chip may be damaged as shown in Figure 7. The tolerance for the distance between the light receiving windows may be exceeded.
従来、精密ダイシング等で切断加工を行なう場合の加工
位置決めは、顕微鏡を使用し肉眼で行なっており、16
ドソト/■鵬の15μm以下や32ドツト/ mlの7
,5μm以下のように許容誤差が小さくなったときには
、適正な位置での加工は困難である。Conventionally, when cutting with precision dicing, etc., processing positioning was done with the naked eye using a microscope.
Dosoto/■Peng's 15 μm or less and 32 dots/ml's 7
, 5 μm or less, it is difficult to process at an appropriate position.
発明が解決しようとする問題点
以上のように、高解像度イメージセンサ;16ドソト/
1m、32ドツト/11などのSiウェハーの切断は
適正な位置で行なうことが困難で、製造良品率を低下さ
せるという問題があった。Problems to be Solved by the Invention As mentioned above, a high resolution image sensor;
It is difficult to cut a Si wafer of 1 m, 32 dots/11, etc. at an appropriate position, and there is a problem in that the yield rate of non-defective products decreases.
本発明は、上記問題点を泥メ、高精度にイメージセンサ
チップを切断できるSiウェハーによる、品質の優れた
イメージセンサを提供するものである。The present invention overcomes the above-mentioned problems and provides a high-quality image sensor using a Si wafer that allows cutting of image sensor chips with high precision.
問題点を解決するための手段
上記問題点を解決するために、本発明のイメージセンサ
のSiウェハーは、Siウェハー」二にイメージセンサ
素子を形成すると同時に切断位置決め用寸法線を形成し
たものである。Means for Solving the Problems In order to solve the above problems, the Si wafer of the image sensor of the present invention is one in which an image sensor element is formed on the Si wafer and dimension lines for cutting positioning are formed at the same time. .
作用
本発明は上記した、イメージセンサのSiウェハーとす
ることによってイメージセンサチップを高精度に切断加
工することができる。Function: By using the Si wafer for the image sensor as described above, the present invention can cut the image sensor chip with high precision.
実施例
以下本発明の一実施例のイメージセンサについて、図面
を参照しながら説明する。第1図は本発明のイメージセ
ンサの″Siウェハーの平面図である。第1図において
、A−A’切断加工線は高精度が要求され、B−B’切
断加工線は高精度を要求されない。Embodiment Hereinafter, an image sensor according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a plan view of the Si wafer of the image sensor of the present invention. In FIG. 1, the A-A' cutting line requires high precision, and the B-B' cutting line requires high precision. Not done.
第2図は、第1図のイメージセンサチップ端部の拡大図
である。第2図において、1はイメージセンサチップの
端部で、この位置で切断加工すれば切断位置誤差は発生
しない。2はSiウェハー上のイメージセンサ素子と同
時に形成された切断位置決め用寸法線であり1からの距
離が0.5μmの精度で示されている。FIG. 2 is an enlarged view of the end portion of the image sensor chip in FIG. 1. FIG. In FIG. 2, reference numeral 1 indicates the end of the image sensor chip, and if cutting is performed at this position, no cutting position error will occur. 2 is a cutting positioning dimension line formed at the same time as the image sensor element on the Si wafer, and the distance from 1 is shown with an accuracy of 0.5 μm.
3は、2同様にSiウェハー上に形成されており、Si
ウェハーの試切凹加工を2と3の間で行ない、刃幅の測
定を0.5μmの精度で行なえるようになっている。第
3図は、第2図で示した、イメージセンサ端部付近に試
切凹加工を行なった図である。1.2.3は第2図と同
じで、4と5は試切凹加工による切断面の位置を示す。Similar to 2, 3 is formed on a Si wafer, and
Trial cutting of the wafer is performed between 2 and 3, and the blade width can be measured with an accuracy of 0.5 μm. FIG. 3 is a diagram in which trial cutting was performed near the end of the image sensor shown in FIG. 2. 1.2.3 are the same as in FIG. 2, and 4 and 5 indicate the positions of the cut surfaces obtained by trial cutting.
第3図において、試切断加工位置とイメージセンサチッ
プの理想的な切断加工位置までの寸法は2〜4で1.0
05511と読むことができ、刃幅は(3〜5)−(2
〜4 ) −1,2055−1,0055=0.20
00膳鳳と解かるQ従がって、適切な切断位置までの移
動量i 1.055m1と正確な刃幅; 0.20
C1nにより、イメージセンサ切断加エビソヂが求まり
、イメージセンサを高精度に切断加工することができる
。In Fig. 3, the dimension between the trial cutting position and the ideal cutting position of the image sensor chip is 2 to 4, which is 1.0.
It can be read as 05511, and the blade width is (3 to 5) - (2
~4) -1,2055-1,0055=0.20
Accordingly, the amount of movement to the appropriate cutting position i is 1.055 m1 and the accurate blade width is 0.20.
Using C1n, the image sensor cutting process is determined, and the image sensor can be cut with high precision.
発明の効果
以上のように本発明のイメージセンサは、高精度に切断
加工することができ、製造良品率を高めることが可能と
なった。Effects of the Invention As described above, the image sensor of the present invention can be cut with high precision, making it possible to increase the production rate of non-defective products.
第1図は本発明のイメージセンサの81ウエハーの平面
図、第2図は第1図のイメージセンサチップ端部の拡大
図、第3図は第2図に示したイメージセンサ端部付近に
試切凹加工を行なった説明−ジセンサチップの接続部を
示した説明図である。
1・・・・・・イメージセンサチップの端部、2・・・
・・・切断位置決め寸法線、3・・・・・・切断位置決
め寸法線;刃幅測定、4,5・・・・・・試切凹加工に
よる切断面位置。FIG. 1 is a plan view of the 81 wafer of the image sensor of the present invention, FIG. 2 is an enlarged view of the edge of the image sensor chip in FIG. 1, and FIG. It is an explanatory view showing the connection part of the disensor chip - explanation of notch processing. 1... End of image sensor chip, 2...
... Cutting positioning dimension line, 3... Cutting positioning dimension line; Blade width measurement, 4, 5... Cutting surface position by trial cutting concave machining.
Claims (1)
、チップ切断位置決め用寸法線を備えたことを特徴とす
るイメージセンサ。An image sensor characterized in that a Si multi-chip image sensor is provided with dimension lines for chip cutting positioning on a Si wafer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62111051A JPS63275133A (en) | 1987-05-07 | 1987-05-07 | Image sensor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62111051A JPS63275133A (en) | 1987-05-07 | 1987-05-07 | Image sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63275133A true JPS63275133A (en) | 1988-11-11 |
Family
ID=14551164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62111051A Pending JPS63275133A (en) | 1987-05-07 | 1987-05-07 | Image sensor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63275133A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102398114A (en) * | 2010-09-10 | 2012-04-04 | 株式会社迪思科 | segmentation method |
-
1987
- 1987-05-07 JP JP62111051A patent/JPS63275133A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102398114A (en) * | 2010-09-10 | 2012-04-04 | 株式会社迪思科 | segmentation method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5051807A (en) | Integrated semiconductor structure with incorporated alignment markings | |
US4999077A (en) | Method of fabricating full width scanning or imaging arrays from subunits | |
US7064046B2 (en) | Manufacturing method of semiconductor device | |
US4794736A (en) | Arrangement for mechanically and accurately processing a workpiece with a position detecting pattern or patterns | |
KR19980080075A (en) | Wafer with laser mark | |
JPS61253861A (en) | Manufacture of image sensor and scan array | |
US6330488B1 (en) | Method for controlling machining process of workpiece | |
JPH0329310A (en) | Semiconductor wafer | |
JP6153117B2 (en) | Process substrate with crystal orientation mark, crystal orientation detection method, and crystal orientation mark readout device | |
JPS63275133A (en) | Image sensor | |
JP4449088B2 (en) | Semiconductor wafer and manufacturing method thereof | |
CN117116798A (en) | Wafer defect scanning method | |
JP2595962B2 (en) | Semiconductor device | |
JP3248646B2 (en) | Dicing method and apparatus | |
JPH08107089A (en) | Dicing alignment method | |
CN101498873A (en) | Wire pattern and method for monitoring membrane material attaching deviation | |
CN101980071B (en) | Wire pattern and method for monitoring adhesion deviation of film material | |
JPH01186646A (en) | Dicing method | |
US6647619B2 (en) | Positioning arrangement and method | |
JPH0732441B2 (en) | Image sensor chip cutting method | |
JP3447538B2 (en) | Pattern inspection method | |
CN114111494A (en) | Method for measuring printing overprinting precision | |
JPS6057226B2 (en) | How to align semiconductor elements | |
JP2000091275A (en) | Manufacture of semiconductor element | |
JP2754803B2 (en) | Image sensor and method of manufacturing the same |