JPS63262548A - Manufacture of gas sensor element - Google Patents
Manufacture of gas sensor elementInfo
- Publication number
- JPS63262548A JPS63262548A JP9689587A JP9689587A JPS63262548A JP S63262548 A JPS63262548 A JP S63262548A JP 9689587 A JP9689587 A JP 9689587A JP 9689587 A JP9689587 A JP 9689587A JP S63262548 A JPS63262548 A JP S63262548A
- Authority
- JP
- Japan
- Prior art keywords
- catalyst
- gas
- sputtering
- gas sensor
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 6
- 239000003054 catalyst Substances 0.000 claims abstract description 28
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000002256 photodeposition Methods 0.000 claims abstract description 9
- 230000003197 catalytic effect Effects 0.000 claims abstract description 7
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 6
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 6
- 239000002923 metal particle Substances 0.000 claims abstract description 5
- 239000004065 semiconductor Substances 0.000 claims description 15
- 229910000510 noble metal Inorganic materials 0.000 claims description 8
- 238000000151 deposition Methods 0.000 claims description 5
- 230000035945 sensitivity Effects 0.000 abstract description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 abstract description 11
- 238000004544 sputter deposition Methods 0.000 abstract description 11
- 239000002245 particle Substances 0.000 abstract description 8
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 abstract description 7
- 239000000243 solution Substances 0.000 abstract description 7
- 239000000758 substrate Substances 0.000 abstract description 5
- 239000007864 aqueous solution Substances 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 abstract description 3
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 abstract description 2
- 229910052737 gold Inorganic materials 0.000 abstract description 2
- 239000010931 gold Substances 0.000 abstract description 2
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 abstract description 2
- 230000001376 precipitating effect Effects 0.000 abstract description 2
- 239000012528 membrane Substances 0.000 abstract 3
- 229910002621 H2PtCl6 Inorganic materials 0.000 abstract 1
- 229910052593 corundum Inorganic materials 0.000 abstract 1
- 229910001845 yogo sapphire Inorganic materials 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 24
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000010408 film Substances 0.000 description 5
- 229910003437 indium oxide Inorganic materials 0.000 description 5
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 229910052763 palladium Inorganic materials 0.000 description 3
- 229910052697 platinum Inorganic materials 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000010948 rhodium Substances 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 230000001699 photocatalysis Effects 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical group O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 1
- 239000011362 coarse particle Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000005247 gettering Methods 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229940110676 inzo Drugs 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000011941 photocatalyst Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 239000002341 toxic gas Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Landscapes
- Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
Abstract
Description
【発明の詳細な説明】
[技術分野]
この発明は、可燃性ガス警報器等の検出部として用いら
れるガスセンサ素子の製造技術の分野に属する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field] The present invention belongs to the field of manufacturing technology for gas sensor elements used as detection units of combustible gas alarms and the like.
[背景技術]
現在、ガス漏れ警報器または毒性ガス検出器等の検出部
分を構成するセンサ素子としては、金属酸化物半導体を
用いた半導体式ガスセンサが多く用いられている。半導
体式ガスセンサは、H2、CO等の還元性ガスがセンサ
表面に接触するとセンサの抵抗値が変化するという物性
をもってガス濃度検出を行っている。実際のセンサ素子
の組成は、酸化スズ(SnO2)、酸化亜鉛(Z n
O)などの金属酸化物半導体を主材料とし、それらに白
金(Pt)、パラジウム(Pd)などの貴金属6、触媒
を微量添加しであることが多い。この触媒は、センサの
ガス感度を向上させる働きや、センサのガス選択性を改
善するために用いられている。[Background Art] Currently, semiconductor gas sensors using metal oxide semiconductors are often used as sensor elements constituting detection parts of gas leak alarms, toxic gas detectors, and the like. A semiconductor type gas sensor detects gas concentration using a physical property that the resistance value of the sensor changes when a reducing gas such as H2 or CO comes into contact with the sensor surface. The composition of the actual sensor element is tin oxide (SnO2), zinc oxide (Zn
The main material is a metal oxide semiconductor such as O), and a small amount of a noble metal such as platinum (Pt) or palladium (Pd) and a catalyst are often added thereto. This catalyst is used to improve the gas sensitivity of the sensor and the gas selectivity of the sensor.
すなわち、この触媒の担持状態をコントロールすること
により、センサの特性を変化させ得る。That is, by controlling the supported state of this catalyst, the characteristics of the sensor can be changed.
一般に触媒粒子の担持状態は、粒子の分散が均一で高密
度になされていることが望ましい。言いかえれば、微粒
子触媒が高分散状態であれば、センサのガス感度をさら
に向上させ得る。Generally, it is desirable for the catalyst particles to be supported in such a way that the particles are uniformly dispersed and have a high density. In other words, if the particulate catalyst is highly dispersed, the gas sensitivity of the sensor can be further improved.
通常センサ素子に触媒を担持させる場合は、センサ母材
であるSn○z、Zn○などの粉末を触媒金属イオンを
含む溶液中に入れて混合し、その粉末を熱処理するか、
または素子状に成形した母材を触媒金属を含む溶液中に
含浸させるような方法で行う。薄膜状の素子であるなら
ば、試料り一ゲット中に適量の触媒を混合しておき、ス
パッタリングするような方法が考えられる。以上のよう
な方法で触媒を担持じた場合には、触媒粒子の成長をコ
ントロールすることが困難であり、また分散性に関して
も制御困難であるため、感度特性が得られないことが多
い。Normally, when supporting a catalyst on a sensor element, powder of Sn○z, Zn○, etc., which is the sensor base material, is mixed in a solution containing catalytic metal ions, and the powder is heat-treated, or
Alternatively, a method may be used in which a base material formed into an element shape is impregnated in a solution containing a catalyst metal. If the element is a thin film, a method can be considered in which an appropriate amount of catalyst is mixed in the sample get and sputtering is performed. When a catalyst is supported by the method described above, it is difficult to control the growth of catalyst particles, and it is also difficult to control dispersibility, so that sensitivity characteristics are often not obtained.
[発明の目的]
本発明は、ガスセンサ素子のガス感度特性の改善をはか
ることを目的としてなされた。[Object of the Invention] The present invention was made for the purpose of improving the gas sensitivity characteristics of a gas sensor element.
[発明の開示]
以上の目的を達成するため、我々は光触媒技術を用いて
、貴金属触媒を担持する方法を検討した。光触媒材料を
用いた金属粒子析出機構について簡単に説明す′る。酸
化インジウム(In2O3)などの半導体に、そのバン
ドギャップ以上のエネルギを持つ光を照射すると、半導
体結晶中に正孔と電子が生成する。ptなどの貴金属イ
オンとアルコール等のガスが半導体の周囲にある状況で
は、半導体内の正孔がアルコールを酸化するので、これ
がラジカル化する。このラジカルはptなどの貴金属イ
オンに対して還元作用を有しているため、それらのイオ
ンを還元し、半導体表面に析出させる。第1図にこの機
構のモデルを示した。[Disclosure of the Invention] In order to achieve the above objectives, we investigated a method of supporting a noble metal catalyst using photocatalytic technology. We will briefly explain the metal particle precipitation mechanism using photocatalytic materials. When a semiconductor such as indium oxide (In2O3) is irradiated with light having an energy greater than its band gap, holes and electrons are generated in the semiconductor crystal. In a situation where noble metal ions such as PT and gas such as alcohol are present around a semiconductor, holes within the semiconductor oxidize the alcohol, which becomes radicals. Since these radicals have a reducing effect on noble metal ions such as pt, these ions are reduced and deposited on the semiconductor surface. Figure 1 shows a model of this mechanism.
このように、光エネルギを利用して金属微粒子を析出さ
せる方法は、光デポジション法と呼ばれ、光触媒材料の
調整などの分」で盛んに研究されている。本発明では、
この光デポジション技術をガスセンサ素子の製造に応用
し、□センサのガス感度特性の改善をはかった。This method of depositing metal particles using light energy is called a photodeposition method, and is being actively researched for purposes such as the preparation of photocatalyst materials. In the present invention,
By applying this optical deposition technology to the production of gas sensor elements, we aimed to improve the gas sensitivity characteristics of the □ sensor.
この発明において対象とされる半導体としては、限定す
るものではないが、たとえばIn2O3、SnO□、Z
nOなどの酸化物半導体の1種または2種以上が使用さ
れる。また貴金属触媒としては限定するものではないが
、たとえばPt、Pd、ロジウム(Rh)などの1種ま
たは2種以上が使用される。これらの触媒金属は塩とし
て溶液の状態で使用される。Semiconductors targeted by this invention include, but are not limited to, In2O3, SnO□, Z
One or more types of oxide semiconductors such as nO are used. Further, the noble metal catalyst may be one or more of Pt, Pd, rhodium (Rh), etc., although it is not limited thereto. These catalytic metals are used as salts in solution.
この発明では、貴金属触媒の塩の溶液の中に、前記酸化
物半導体の粉末を浸漬し、ついで光を照射することによ
って、酸化物粒子表面に触媒金属−4〜
を析出させるのである。このようにして酸化物表面に触
媒金属を析出させることにより、触媒粒子の成長をコン
トロールすることができ、分散を制御することもでき、
ひいてはガスセンサの特性、特に感度特性が改善できた
のである。In this invention, the oxide semiconductor powder is immersed in a solution of a salt of a noble metal catalyst and then irradiated with light to precipitate the catalyst metals -4 to 4 on the surface of the oxide particles. By depositing the catalyst metal on the oxide surface in this way, it is possible to control the growth of catalyst particles and also to control their dispersion.
As a result, the characteristics of the gas sensor, especially the sensitivity characteristics, could be improved.
以下、実施例および比較例に基づいてさらに具。Hereinafter, details will be further explained based on Examples and Comparative Examples.
体的に説明するが、以下においてはInzO+ff膜を
センサの母材料として用い、触媒粒子の添加は、光デポ
ジション法およびおよびスパッタリング法で行い、各々
の添加効果を調べた。To explain concretely, in the following, an InzO+ff film was used as the base material of the sensor, catalyst particles were added by a photodeposition method and a sputtering method, and the effects of each addition were investigated.
〔実施例1〕
実験に使用した1n20ai膜はRFスパ・ツタリング
法により作製した。基板は5mm角のアルミナ(A7!
Z O3)基板を用いた。[Example 1] The 1n20ai film used in the experiment was fabricated by the RF spa tuttering method. The board is 5mm square alumina (A7!
A ZO3) substrate was used.
まずAβ203基板をトリクレン等により充分洗浄し、
スパッタリング用ホルダに装着する。スパッタリングの
条件は以下の通りである。First, the Aβ203 substrate was thoroughly cleaned with Triclean, etc.
Attach it to the sputtering holder. The sputtering conditions are as follows.
ターゲット□−99.99%InzO3ガス圧□→3
X 10−2torr
Ar分圧・・・・・・60%
0□分圧・・・・・・40%
基板温度□−500℃
、2.ハ7タ電カー→1.9kv−160mAなお、I
nzO3の膜厚は約4000人であった。pt触媒の担
持は、InzO3薄膜をHzPtCβ6水溶液とエタノ
ールとの混合溶液中に入れ、In2O3膜上にlkwX
eランプを照射することによって行った。光照射時間約
1時間で微粒子ptがInzOz表面上に析出している
ことがSEMにより確認された。Target□-99.99%InzO3 gas pressure□→3
X 10-2torr Ar partial pressure...60% 0□Partial pressure...40% Substrate temperature□-500℃, 2. Ha7ta electric car → 1.9kv-160mA In addition, I
The film thickness of nzO3 was about 4000. To support the pt catalyst, an InzO3 thin film is placed in a mixed solution of HzPtCβ6 aqueous solution and ethanol, and lkwX is placed on the In2O3 film.
This was done by irradiating with an e-lamp. It was confirmed by SEM that fine particles pt were precipitated on the InzOz surface after about 1 hour of light irradiation.
このようにして作製したセンサ感応膜上に金電極を蒸着
し、ptリード線を取り付け、また裏面にはpt上ヒー
タ取り付けて測定用の試料とした。A gold electrode was vapor-deposited on the sensor sensitive film thus prepared, a PT lead wire was attached, and a PT heater was attached to the back side to prepare a sample for measurement.
ガス感度測定は、20℃−65%RH雰囲気中に素子を
入れ、所定温度になるようにヒータで加熱し、一定濃度
の被験ガスを打ち込んで素子の抵抗値の変化を測定した
。For gas sensitivity measurement, the element was placed in a 20° C.-65% RH atmosphere, heated with a heater to a predetermined temperature, and a test gas of a constant concentration was injected to measure the change in resistance of the element.
〔実施例2〕
実施例1と同様に作製した1nzoI上にpd粗粒子担
持させた。Pdの場合は、PdCj!zを=6一
塩酸水溶液に溶解し、エタノールを加えたものを反応溶
液として、実施例1と同様にした。[Example 2] PD coarse particles were supported on 1nzoI prepared in the same manner as in Example 1. For Pd, PdCj! The same procedure as in Example 1 was carried out except that z was dissolved in an aqueous solution of 6 monohydrochloric acid and ethanol was added thereto to prepare a reaction solution.
〔実施例3〕
実施例1と同様にしてIn2O3上にRh粒子を担持し
た。なお、この場合は、RhC/l!3水溶液にエタノ
ールを加えたものを反応溶液として用いた。[Example 3] Rh particles were supported on In2O3 in the same manner as in Example 1. In this case, RhC/l! 3 aqueous solution to which ethanol was added was used as the reaction solution.
光デポジション法により触媒担持した場合と特性比較す
るために、スパッタリング法により触媒担持した試料を
作製し、ガス感度を測定した。In order to compare the characteristics with those in which the catalyst was supported by the photodeposition method, a sample was prepared in which the catalyst was supported by the sputtering method, and the gas sensitivity was measured.
スパッタリング時の条件は実施例1の場合と同様である
が、ターゲットはIn、、O,、にPt、Pd、Phを
各々混合したものを使用した。The sputtering conditions were the same as in Example 1, but the target used was a mixture of In, O, and Pt, Pd, and Ph.
素子構成、測定条件は実施例1の場合と全く同様である
。The element configuration and measurement conditions are exactly the same as in Example 1.
各実施例及び比較例におけるH2、CO、アルコール(
cz Hs OH)ガス感度(各500ppm濃度)の
測定結果を第1表に示した。なお、他の半導体組成にお
いても、光デポジション法によ=7−
って触媒担持した場合は、スパッタリングによる担持よ
り各ガスに対する感度が高(なっていることが確認され
ている。これは、光デポジション法により、担持触媒が
微粒子、高分散な状態で存在し、高活性な触媒機能が発
現されているためと考えられる。H2, CO, alcohol (
cz Hs OH) gas sensitivity (each 500 ppm concentration) measurement results are shown in Table 1. It has been confirmed that even with other semiconductor compositions, when the catalyst is supported by photodeposition, the sensitivity to each gas is higher than when supported by sputtering. This is thought to be because the supported catalyst exists in the form of fine particles and in a highly dispersed state due to the photodeposition method, and a highly active catalytic function is expressed.
[発明の効果コ
この発明は、金属酸化物半導体に貴金属触媒を1種以上
添加したガスセンサ素子において、金属酸化物表面に、
光デポジション法により触媒金属粒子を析出させる工程
を含ましめたことを特徴とするので、従来の含浸法やス
パッタリング法に比べ、ガス感度が大幅に改良されたセ
ンサ素子の製造が可能となった。[Effects of the Invention] This invention provides a gas sensor element in which one or more noble metal catalysts are added to a metal oxide semiconductor.
This method is characterized by the step of precipitating catalytic metal particles using a photodeposition method, making it possible to manufacture sensor elements with significantly improved gas sensitivity compared to conventional impregnation and sputtering methods. .
[以下、余白コ 第1表[Below is the margin Table 1
第1図は、この発明に係る光デポジション法の機構を説
明するための模式図である。FIG. 1 is a schematic diagram for explaining the mechanism of the optical deposition method according to the present invention.
Claims (1)
たガスセンサ素子の製法において、金属酸化物表面に、
光デポジション法により触媒金属粒子を析出させる工程
を含ましめたことを特徴とするガスセンサ素子の製法。(1) In a method for manufacturing a gas sensor element in which one or more noble metal catalysts are added to a metal oxide semiconductor, on the surface of the metal oxide,
1. A method for producing a gas sensor element, comprising a step of depositing catalytic metal particles by a photodeposition method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9689587A JPS63262548A (en) | 1987-04-20 | 1987-04-20 | Manufacture of gas sensor element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9689587A JPS63262548A (en) | 1987-04-20 | 1987-04-20 | Manufacture of gas sensor element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63262548A true JPS63262548A (en) | 1988-10-28 |
Family
ID=14177110
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9689587A Pending JPS63262548A (en) | 1987-04-20 | 1987-04-20 | Manufacture of gas sensor element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63262548A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5405656A (en) * | 1990-04-02 | 1995-04-11 | Nippondenso Co., Ltd. | Solution for catalytic treatment, method of applying catalyst to substrate and method of forming electrical conductor |
JP2007240462A (en) * | 2006-03-10 | 2007-09-20 | Tokyo Univ Of Science | Gas detecting element, hydrogen sensor, and manufacturing method for gas detecting element |
-
1987
- 1987-04-20 JP JP9689587A patent/JPS63262548A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5405656A (en) * | 1990-04-02 | 1995-04-11 | Nippondenso Co., Ltd. | Solution for catalytic treatment, method of applying catalyst to substrate and method of forming electrical conductor |
JP2007240462A (en) * | 2006-03-10 | 2007-09-20 | Tokyo Univ Of Science | Gas detecting element, hydrogen sensor, and manufacturing method for gas detecting element |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Highly sensitive and selective detection of acetone based on platinum sensitized porous tungsten oxide nanospheres | |
Yang et al. | UV enhancement of the gas sensing properties of nano-TiO2 | |
US5457333A (en) | Gas sensor used in leak detectors or alarm units | |
JP3644968B2 (en) | Sensor for detecting flammable gases | |
Zhang et al. | Highly sensitive hydrogen sensors based on co-sputtered platinum-activated tungsten oxide films | |
JPH0534284B2 (en) | ||
CN109828009B (en) | H based on metal oxide semiconductor thin film material2S gas sensor and preparation method thereof | |
JPH09512632A (en) | Resistance gas detection method | |
JP2002320862A (en) | Photocatalyst thin film in which metal is supported on titanium oxide thin film | |
US3842017A (en) | Process for depositing noble metal catalysts on oxide carriers | |
JPS63262548A (en) | Manufacture of gas sensor element | |
JP4617599B2 (en) | Gas sensor element and manufacturing method thereof | |
JPH06102146B2 (en) | Method for producing metal colloid by photochemical reaction | |
JPH0639285A (en) | Photocatalyst | |
JPS61243189A (en) | Electrolytic cathode and its production | |
EP4237836A1 (en) | A chemiresistive substrate for a hydrogen gas sensor | |
KR102457589B1 (en) | Method for manufacturing a metal nanoparticle-oxide support complex structure based gas sensor using spontaneous phase transition | |
KR870001034B1 (en) | Gas detecting apparatus | |
JP3046387B2 (en) | Gas sensor | |
JP2000087248A (en) | Method for depositing noble metal | |
JP3473322B2 (en) | Manufacturing method of gas sensor element | |
CN114113241B (en) | HMDSO poisoning resistant double-layer structure SnO 2 Methyl hydride sensor and preparation method thereof | |
JP2015213036A (en) | Method for manufacturing catalyst for fuel batteries, catalyst arranged by use thereof, and fuel battery | |
CN115290703B (en) | Preparation method of multi-metal cobalt oxide loaded porous composite nano film | |
CN118387829A (en) | Preparation method of hydrogen sensor based on nickel oxide quantum dot material |