JPS6326046B2 - - Google Patents

Info

Publication number
JPS6326046B2
JPS6326046B2 JP6792581A JP6792581A JPS6326046B2 JP S6326046 B2 JPS6326046 B2 JP S6326046B2 JP 6792581 A JP6792581 A JP 6792581A JP 6792581 A JP6792581 A JP 6792581A JP S6326046 B2 JPS6326046 B2 JP S6326046B2
Authority
JP
Japan
Prior art keywords
fluid
tube
pipe
annular slit
blowing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6792581A
Other languages
Japanese (ja)
Other versions
JPS57184026A (en
Inventor
Yoshihiko Takeshita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP6792581A priority Critical patent/JPS57184026A/en
Publication of JPS57184026A publication Critical patent/JPS57184026A/en
Publication of JPS6326046B2 publication Critical patent/JPS6326046B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65GTRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
    • B65G53/00Conveying materials in bulk through troughs, pipes or tubes by floating the materials or by flow of gas, liquid or foam
    • B65G53/34Details
    • B65G53/58Devices for accelerating or decelerating flow of the materials; Use of pressure generators

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Air Transport Of Granular Materials (AREA)
  • Jet Pumps And Other Pumps (AREA)

Description

【発明の詳細な説明】 この発明は流体圧を利用して液体又は固形物を
輸送するに当り、管径を本管内径より小径にする
ことなく、有効な加圧力を得ることを目的とした
流体を用いた固形物の輸送方法および装置に関す
るものである。従来流体(空気又は水)圧を利用
し、液体又は固形物を輸送する装置としてはサン
ドポンプおよびジエツトポンプが知られている
が、サンドポンプは輸送管径に対し、輸送される
固形物は比較的小さい粒子に限られている。また
ジエツトポンプは、通常輸送管の一部を狭搾して
加速しているので、当該狭搾部に固形物が詰り易
いのみならずノズル付近にキヤビテーシヨン現象
を生じ易い問題点があつた。そこで輸送管の一部
を湾曲させ、この湾曲部へ加圧流体吹き込みノズ
ルを開口させると共にノズル端付近へ吸入空気口
を設けてキヤビテーシヨン現象が起らないように
した発明(特公昭53−39699号)が提案されてい
るが、この発明においては輸送管の一部を湾曲さ
せなければならないし、その加圧流体吹き込みノ
ズルによる高圧流体は輸送管の中心線に平行に、
流体の中心部へ吐出させなければならない。また
輸送管の回りに設けたスリツトから加圧空気を吹
き出すようにした空気輸送装置は知られているが
(特開昭49−120376)、斯る装置は単に輸送管内へ
加圧空気を所定角度で吹き込む技術を示したもの
で、空気流動の断面積に変化を与えるものではな
い。従つて加圧空気の吹き込みによる加速効果は
あるとしても、ベンチユリー効果による物品輸送
力の強化を期待することはできない。然るにこの
発明は管体の適所に設けた環状スリツトと、この
環状スリツトの後方直近に設けた複数のノズルか
ら加圧流体を輸送方向に向けて吹き込むようにし
たので、管体径を狭めたり、管体を湾曲させたり
することなく、管体内径と大差のない大きさの固
形物でも容易に輸送できるようになり、前記従来
の問題点を解決したのである。
[Detailed Description of the Invention] This invention aims to obtain an effective pressing force without making the pipe diameter smaller than the main pipe inner diameter when transporting liquids or solids using fluid pressure. The present invention relates to a method and device for transporting solids using fluid. Sand pumps and jet pumps are conventionally known devices for transporting liquids or solids using fluid (air or water) pressure, but sand pumps transport solids relatively easily compared to the transport pipe diameter. limited to small particles. Further, since jet pumps normally accelerate by squeezing a portion of the transport pipe, they not only tend to become clogged with solids in the narrowed portion, but also tend to cause cavitation in the vicinity of the nozzle. Therefore, an invention was developed in which a part of the transport pipe was curved, a pressurized fluid injection nozzle was opened in the curved part, and an intake air port was provided near the nozzle end to prevent the cavitation phenomenon (Japanese Patent Publication No. 53-39699). ) has been proposed, but in this invention, a part of the transport pipe must be curved, and the high pressure fluid from the pressurized fluid injection nozzle is directed parallel to the center line of the transport pipe.
It must be discharged into the center of the fluid. Furthermore, a pneumatic transport device is known in which pressurized air is blown out from a slit provided around a transport pipe (Japanese Unexamined Patent Publication No. 120376/1983), but such a device simply blows pressurized air into a transport pipe at a predetermined angle. This is a technique for blowing air into air, and does not change the cross-sectional area of air flow. Therefore, even if there is an accelerating effect due to the blowing of pressurized air, it cannot be expected that the article transporting capacity will be enhanced due to the Ventury effect. However, in this invention, the pressurized fluid is blown in the transport direction from an annular slit provided at a suitable position in the tube and a plurality of nozzles provided immediately behind the annular slit, so that the diameter of the tube can be narrowed. It is now possible to easily transport even solid objects with a size not much different from the inner diameter of the tube without curving the tube, thus solving the problems of the conventional art.

即ちこの発明を実施例について説明すれば、流
体圧を利用して固形物を輸送する本管1が鉛直方
向に沿つて配置され、この本管1の所定部の外側
壁に環状匣体2,2a,2bを嵌装固着する。こ
の設置間隔は輸送条件によつて異なるが、例えば
10m間隔に設ける。前記各環状匣体2,2a,2
bは、本管1に連結したテーパー管体3,3a,
3bの先端部と本管1の端部の拡開部4とを対向
させて設けた環状スリツト5を覆うように設置さ
れている。また、環状スリツト5の後方(図示上
方)直近であつて、本管1の端部には複数のノズ
ル孔11が対称的に設けられている。前記テーパ
ー管体3,3a,3bの先端部は内側へ湾曲させ
て湾曲部6を形成してある。この場合に湾曲部6
の内径dと本管1の内径口とはほぼ等しくなるよ
うに形成してある。図中7,7a,7bは送気
管、10は圧縮機である。尚前記テーパー管に連
結する本管も若干の距離の間逆テーパーにしてあ
る。前記において、圧縮機10より送気管7,7
aを介して環状匣体2,2a内へ加圧空気を送入
すると、加圧空気は環状スリツト5を通過して本
管内へ吹き込まれる。そこで本管内の流体(例え
ば水)は第2図中矢示8,8のように圧迫されて
恰もベンチユリー管の狭搾部のように湾曲して断
面積を縮小し、流体は高速化されて、吸引力を発
生し、固形物を矢示9の方向、すなわち上方へ引
張ることになる。またノズル孔11からも同様に
加圧空気が噴射され、この加圧空気は環状スリツ
ト5から吹き込まれた加圧空気の外周部に吹き込
まれ、この空間へ渦流が生じるのを防止する。流
体を長大な輸送管内に沿つて流動させると、管壁
の摩擦によつて逐次移送エネルギーが減少するの
であるがこの発明の装置を本管へ一定距離宛に設
置することにより、長大な輸送路においても能率
よく輸送することができる。
That is, to explain this invention with reference to an embodiment, a main pipe 1 for transporting solid materials using fluid pressure is arranged along the vertical direction, and an annular casing 2, 2a and 2b are fitted and fixed. This installation interval varies depending on transportation conditions, but for example
Installed at 10m intervals. Each of the annular boxes 2, 2a, 2
b is the tapered pipe body 3, 3a, connected to the main pipe 1;
It is installed so as to cover an annular slit 5 which is provided so that the tip of the pipe 3b and the enlarged part 4 at the end of the main pipe 1 are opposed to each other. Further, a plurality of nozzle holes 11 are symmetrically provided at the end of the main pipe 1 immediately behind the annular slit 5 (at the top in the figure). The tip portions of the tapered tube bodies 3, 3a, 3b are curved inward to form a curved portion 6. In this case, the curved part 6
The inner diameter d of the main pipe 1 is approximately equal to the inner diameter opening of the main pipe 1. In the figure, 7, 7a, and 7b are air pipes, and 10 is a compressor. The main pipe connected to the tapered pipe is also reversely tapered for a certain distance. In the above, the air supply pipes 7, 7 are connected to the compressor 10.
When pressurized air is introduced into the annular housings 2, 2a through the annular slit 5, the pressurized air is blown into the main pipe through the annular slit 5. Therefore, the fluid (for example, water) in the main pipe is compressed as shown by arrows 8 and 8 in Fig. 2, and the cross-sectional area is reduced by curving like the constricted part of a ventilly pipe, and the fluid is accelerated. A suction force is generated to pull the solid object in the direction of arrow 9, that is, upward. Further, pressurized air is similarly injected from the nozzle hole 11, and this pressurized air is blown into the outer periphery of the pressurized air blown from the annular slit 5, thereby preventing the formation of a vortex in this space. When a fluid is made to flow along a long transport pipe, the transferred energy is gradually reduced due to the friction of the pipe wall. It can also be transported efficiently.

上記は固形物を流体で輸送する場合について説
明したが、例えば油などの液体の輸送にも利用す
ることができる。この発明における使用流体は水
又は空気に限定されることなく、水と水又は水と
空気、或いは空気と空気間においても有効に使用
し得ることは勿論である。然して水と空気におい
ては(空気は吹き込み側)空気を吹き込むことに
よつて本管内壁と水との間に吹き込まれた空気が
空気層を形成することになるので、水の摩擦力は
激減し、これによつて輸送エネルギーの低減率を
少なくさせることができる。通常管体内断面にお
ける流体の速度曲線は砲弾形であるが、空気の吹
き込みによつて空気層を設け、摩擦を低減させる
と、中央部と管壁側との速度差が小さくなり、固
形物の輸送状態を安定かつ円滑にすることができ
る。尚ノズルを設けた場合には複数本を対称的に
することによつて固形物に均等に浮力を与えるこ
とができる。この発明におけるテーパー管体の開
き角(第2図内α)は、5度乃至10度が実用範囲
であるが、5度以下では所定の内径を得るまでに
長い管長を要し、10度以上になると、流体の流動
状態が不安定になるので、好ましくは7度又は8
度位である。次に本管内を流動する流体の圧力
と、吹き込まれる流体の圧力差は、流体の性質に
よつて多少相違があるが、吹き込み流体をほぼ20
%位高位にすることが好ましい。また吹き込み流
体の量についても求める推力によつて異るが、本
管内流体の10%前後が最も普通である。また環状
スリツトから吹き込まれる流体の吹き込み角度
(本管中心線との角度)は、ほぼ20度〜30度位で
ある。この発明における本管内を流動する流体
が、側壁より吹き込まれる流体によつて生じる狭
搾部の直径は、テーパー管の湾曲部の直径、流体
の流速、吹き込み流体の性質、両流体の圧力差お
よび吹き込み量などによつて異るが、一例を示せ
ば次の通りである。本管の内径10cm、テーパー管
の最大内径12cm、本管内の水の流速5m/sec、
圧力10Kg/cm2の場合に、13Kg/cm2の空気を240l/
minスリツト角度30度で吹き込んだ所、水の狭搾
部の直径は8cmとなり、流速は7.8m/secとなつ
た。
Although the above description has been made regarding the case of transporting solid objects using fluid, it can also be used to transport liquids such as oil. The fluid used in this invention is not limited to water or air, and it goes without saying that it can be effectively used between water and water, between water and air, or between air and air. However, in the case of water and air (the air is on the blowing side), the air blown between the inner wall of the main pipe and the water forms an air layer, so the frictional force of the water is drastically reduced. , This makes it possible to reduce the rate of reduction in transport energy. Normally, the velocity curve of the fluid in the cross section inside the tube is bullet-shaped, but if an air layer is created by blowing air to reduce friction, the velocity difference between the center and the tube wall side becomes smaller, and the solid Transport conditions can be made stable and smooth. In addition, when a nozzle is provided, buoyancy can be applied evenly to the solid material by arranging a plurality of nozzles symmetrically. The opening angle (α in Figure 2) of the tapered tube in this invention is within a practical range of 5 degrees to 10 degrees, but if it is less than 5 degrees, a long tube length is required to obtain the specified inner diameter, and if it is 10 degrees or more If this happens, the flow state of the fluid will become unstable, so preferably 7 degrees or 8 degrees
It is a degree. Next, the pressure difference between the pressure of the fluid flowing in the main pipe and the fluid being blown in varies somewhat depending on the properties of the fluid, but
It is preferable to set it as high as %. The amount of blown fluid also varies depending on the thrust required, but it is most commonly around 10% of the fluid in the main pipe. Further, the blowing angle of the fluid blown from the annular slit (angle with the center line of the main pipe) is approximately 20 to 30 degrees. In this invention, the diameter of the constricted part created by the fluid flowing in the main pipe from the side wall is determined by the diameter of the curved part of the tapered pipe, the flow rate of the fluid, the nature of the blown fluid, the pressure difference between both fluids, Although it varies depending on the amount of blowing, an example is as follows. The inner diameter of the main pipe is 10 cm, the maximum inner diameter of the tapered pipe is 12 cm, the flow rate of water in the main pipe is 5 m/sec,
When the pressure is 10Kg/cm 2 , 13Kg/cm 2 of air is 240L/
When the water was blown at a minimum slit angle of 30 degrees, the diameter of the water squeezed portion was 8 cm and the flow rate was 7.8 m/sec.

前記において、環状スリツトの直前にテーパー
管端による湾曲部を設けたので、流体は円滑に流
動方向を変えられ、ついで吹き込み流体によつて
円滑な流線を画いて狭搾部を形成できる効果があ
る。即ちこの発明によれば輸送管の側壁に設けた
環状スリツトおよび複数のノズル孔から加圧流体
を吹き込んで狭搾部を形成するので、流体を加速
し、流体の移動又は流体と固形物の移動に必要な
推力を付与することができると共に、本管内径よ
り若干小径の固形物ならば容易に移動することが
できる。然して狭搾部が流体によつて形成されて
いる為に固形物が詰つたり、固形物の通過によつ
て過度に摩耗するおそれはない。
In the above, since the curved part formed by the tapered pipe end is provided just before the annular slit, the flow direction of the fluid can be smoothly changed, and then the blown fluid can draw a smooth streamline to form a narrowed part. be. That is, according to the present invention, pressurized fluid is blown into the pipe through an annular slit and a plurality of nozzle holes provided in the side wall of the transport pipe to form a constricted portion, thereby accelerating the fluid and preventing the movement of the fluid or the movement of the fluid and solids. It is possible to apply the necessary thrust to the main pipe, and it is also possible to easily move solid objects whose diameter is slightly smaller than the inner diameter of the main pipe. However, since the narrowed portion is formed of fluid, there is no risk of it becoming clogged with solid matter or being excessively abraded due to the passage of solid matter.

次に固形物を運ぶ流体を液体とし、吹き込み流
体を空気とすれば、本管内壁に空気層を生じ、液
体の摩耗を著しく減少させる効果がある。従つて
本管断面における液体の流速曲線が均等化し、輸
送効率を向上させると共に、固形物が大きい場合
においても固形物各部へ均等に推力が掛り、比較
的円滑な輸送ができる効果がある。また管体側壁
に所定吹き込み角度の環状スリツトを設けたの
で、吹き込み流体は本管内壁に沿つて均等に流入
し、断面円形の狭搾部を形成し得る効果がある。
Next, if the fluid that carries the solids is a liquid and the blowing fluid is air, an air layer is created on the inner wall of the main pipe, which has the effect of significantly reducing the abrasion of the liquid. Therefore, the flow velocity curve of the liquid in the cross section of the main pipe is equalized, improving transport efficiency, and even when the solid is large, the thrust is applied equally to each part of the solid, so that the solid can be transported relatively smoothly. Further, since an annular slit having a predetermined blowing angle is provided on the side wall of the tube body, the blowing fluid flows evenly along the inner wall of the main tube, thereby forming a constricted portion having a circular cross section.

また環状スリツトの前部のテーパー管端に内方
への湾曲部を設けて直径を縮小する場合であつて
も、本管内径と同等にすることができる効果があ
る。また、環状スリツトの後方直近に複数のノズ
ル孔を設けて、このノズル孔からも同様に加圧流
体を吹き込むので、環状スリツトからの加圧流体
の吹き込みによる渦流(エツジカレント)の発生
を防止して、流体の高速化を有効に引き出すこと
が可能である。さらにテーパー管体のテーパー角
度を5度〜10度としたので、流体の流動状態を円
滑に保ち得る効果もある。更に油などの液体を輸
送する場合にこの発明を用いれば大型ポンプによ
る強大な圧力をかける必要なく効率よく輸送する
ことができる。
Further, even if the diameter is reduced by providing an inwardly curved portion at the tapered end of the pipe at the front of the annular slit, the inner diameter can be made equal to the inner diameter of the main pipe. In addition, multiple nozzle holes are provided immediately behind the annular slit, and pressurized fluid is similarly blown from these nozzle holes, thereby preventing the generation of eddy currents caused by pressurized fluid being blown from the annular slit. Therefore, it is possible to effectively increase the speed of the fluid. Furthermore, since the taper angle of the tapered tube body is set to 5 degrees to 10 degrees, there is an effect that the fluid flow state can be maintained smoothly. Furthermore, when this invention is used to transport liquids such as oil, it is possible to transport them efficiently without the need to apply enormous pressure using a large pump.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の実施例の一部を省略した正
面図、第2図は同じく一部断面拡大図である。 1……本管、2,2a,2b……環状匣体、
3,3a,3b……テーパー管体、5……環状ス
リツト。
FIG. 1 is a partially omitted front view of an embodiment of the present invention, and FIG. 2 is a partially enlarged sectional view. 1... Main pipe, 2, 2a, 2b... Annular box,
3, 3a, 3b... Tapered tube body, 5... Annular slit.

Claims (1)

【特許請求の範囲】 1 管体内へ流体を流動させることによつて液体
又は固形物を輸送する方法において、前記管体の
適所に環状スリツトと、この環状スリツトの後方
直近に位置する複数のノズルとからなる吹き込み
部を設けておき、この吹き込み部の前方で、前記
流体の流動断面を逐次増大させるとともに、吹き
込み部の直前で管体本体の断面まで減少させ、さ
らに吹き込み部の環状スリツトおよびノズルから
加圧流体を輸送方向に向けて吹き込み、流体の流
動断面を減少させることを特徴とする流体を用い
た輸送方法。 2 管体内を流動する流体を水とし、吹き込む加
圧流体を空気とした特許請求の範囲第1項記載の
流体を用いた輸送方法。 3 加圧流体の吹き込み部を、管体の長尺方向に
おいて一定距離宛に設けた特許請求の範囲第1項
記載の流体を用いた輸送方法。 4 管体の適所に、管体内流体の流動方向に向け
て加圧流体を吹き込んで管体内流体の流動断面を
減少させる流体吹き込み部が設けられ、この吹き
込み部は、環状スリツトと、この環状スリツトの
後方直近に位置する複数のノズルとにより構成さ
れており、上記環状スリツトの上流側管体は、そ
の管径がスリツトに近接する程大きくなる5度乃
至10度のテーパー管体とすると共に、スリツトの
前方直近で輸送本管径まで内側へ絞り込んだこと
を特徴とする流体を用いた輸送装置。 5 流体吹き込み部は、輸送本管へ所定間隔毎に
設けた特許請求の範囲第4項記載の流体を用いた
輸送装置。 6 環状スリツトおよびノズルの傾斜方向は、管
体中心線に対し鋭角とした特許請求の範囲第4項
記載の流体を用いた輸送装置。
[Claims] 1. A method for transporting a liquid or a solid substance by flowing a fluid into a tube, comprising: an annular slit at a suitable position in the tube; and a plurality of nozzles located immediately behind the annular slit. In front of this blowing section, the flow cross section of the fluid is successively increased, and immediately before the blowing section, it is reduced to the cross section of the tube body, and further, the annular slit of the blowing section and the nozzle are A transportation method using a fluid, characterized in that pressurized fluid is blown in the direction of transportation to reduce the flow cross section of the fluid. 2. A transportation method using a fluid according to claim 1, wherein the fluid flowing inside the tube is water and the pressurized fluid blown is air. 3. A transportation method using a fluid according to claim 1, wherein the pressurized fluid blowing portions are provided at a constant distance in the longitudinal direction of the tube. 4. A fluid blowing part is provided at a suitable position in the pipe body to blow pressurized fluid in the flow direction of the fluid in the pipe body to reduce the flow cross section of the fluid in the pipe body, and this blowing part has an annular slit and an annular slit. The pipe on the upstream side of the annular slit has a tapered pipe diameter of 5 degrees to 10 degrees, the diameter of which increases as it approaches the slit. A transportation device using a fluid characterized by narrowing the slit inward to the diameter of the transportation main pipe immediately in front of the slit. 5. The fluid transport device according to claim 4, wherein the fluid blowing portions are provided at predetermined intervals in the transport main pipe. 6. The fluid transport device according to claim 4, wherein the annular slit and the nozzle are inclined at an acute angle with respect to the center line of the tube.
JP6792581A 1981-05-06 1981-05-06 Conveying method and device using fluid Granted JPS57184026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6792581A JPS57184026A (en) 1981-05-06 1981-05-06 Conveying method and device using fluid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6792581A JPS57184026A (en) 1981-05-06 1981-05-06 Conveying method and device using fluid

Publications (2)

Publication Number Publication Date
JPS57184026A JPS57184026A (en) 1982-11-12
JPS6326046B2 true JPS6326046B2 (en) 1988-05-27

Family

ID=13358972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6792581A Granted JPS57184026A (en) 1981-05-06 1981-05-06 Conveying method and device using fluid

Country Status (1)

Country Link
JP (1) JPS57184026A (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63310420A (en) * 1987-06-11 1988-12-19 Sumitomo Sekitan Kogyo Kk Transporting device for air
JPH01220638A (en) * 1988-02-29 1989-09-04 Masaaki Koyama Transporting method and its device
JP2000309424A (en) * 1999-04-23 2000-11-07 Omi Kiko Kk Fluid transport device
JP2003054747A (en) * 2001-08-10 2003-02-26 Maruma Technica Co Ltd Crush chip force-feeding booster device
US9302857B2 (en) * 2012-04-25 2016-04-05 Nordson Corporation Pneumatic solids transfer pump
CN103398031A (en) * 2013-08-20 2013-11-20 重庆中环建设有限公司 Sprayed concrete booster valve
JP7197175B2 (en) * 2017-05-04 2022-12-27 マンカエー ムアンチャート Bladeless fan in the fluid pipe

Also Published As

Publication number Publication date
JPS57184026A (en) 1982-11-12

Similar Documents

Publication Publication Date Title
US11391309B2 (en) Material flow amplifier
EP0080508A1 (en) Short radius, low wear elbow.
US3693329A (en) Hub assembly for in-line centrifugal separator
GB2180957A (en) Fluid flow generator
US3199270A (en) Apparatus for mixing and separating substances of different mass-inertia
US11976678B2 (en) Material flow modifier and apparatus comprising same
JPS6326046B2 (en)
US3655298A (en) Fluid flow transfer device
US3973802A (en) Conveyor line fluidizer
JP2506080B2 (en) Transport method of solid particles
US11739774B1 (en) Flow modifying device with performance enhancing vane structure
JPS62500112A (en) Method and apparatus for dividing and combining streams of high consistency fiber suspensions
KR0165672B1 (en) Method for passing cable or a wire through a passage
JP3342886B2 (en) Coanda bend tube
JP2544372B2 (en) Local dust removal method
JPH082131B2 (en) Coanda flow line device
JP2599133B2 (en) Coanda spiral flow generator
JPS60141548A (en) Jet nozzle
JPS63310420A (en) Transporting device for air
SU1364581A1 (en) Device for transporting cargoes through pipeline counter operating agent flow
JP2643987B2 (en) Fluid transport device
JPS62501143A (en) conveyor equipment
JPH04105694U (en) Low noise pipe
JPH057287B2 (en)