JPS63248587A - Turbine rotor and its build-up welding method - Google Patents
Turbine rotor and its build-up welding methodInfo
- Publication number
- JPS63248587A JPS63248587A JP62081271A JP8127187A JPS63248587A JP S63248587 A JPS63248587 A JP S63248587A JP 62081271 A JP62081271 A JP 62081271A JP 8127187 A JP8127187 A JP 8127187A JP S63248587 A JPS63248587 A JP S63248587A
- Authority
- JP
- Japan
- Prior art keywords
- overlay
- metal
- turbine rotor
- build
- welding
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003466 welding Methods 0.000 title claims abstract description 69
- 238000000034 method Methods 0.000 title claims description 23
- 229910052751 metal Inorganic materials 0.000 claims abstract description 52
- 239000002184 metal Substances 0.000 claims abstract description 52
- 229910052804 chromium Inorganic materials 0.000 claims abstract description 5
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 3
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 3
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 3
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 3
- 239000000463 material Substances 0.000 claims description 10
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 4
- 239000011651 chromium Substances 0.000 claims description 4
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 229910001220 stainless steel Inorganic materials 0.000 claims description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- 239000012255 powdered metal Substances 0.000 claims description 2
- 239000010703 silicon Substances 0.000 claims description 2
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims description 2
- 239000010953 base metal Substances 0.000 abstract description 7
- 229910000669 Chrome steel Inorganic materials 0.000 abstract 1
- 229910052748 manganese Inorganic materials 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000000843 powder Substances 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- 238000005299 abrasion Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- VNTLIPZTSJSULJ-UHFFFAOYSA-N chromium molybdenum Chemical compound [Cr].[Mo] VNTLIPZTSJSULJ-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- VGIPUQAQWWHEMC-UHFFFAOYSA-N [V].[Mo].[Cr] Chemical compound [V].[Mo].[Cr] VGIPUQAQWWHEMC-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 239000011324 bead Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- WUJISAYEUPRJOG-UHFFFAOYSA-N molybdenum vanadium Chemical compound [V].[Mo] WUJISAYEUPRJOG-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Landscapes
- Laser Beam Processing (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の目的〕
(産業上の利用分野)
本発明は、蒸気タービン等のタービンロータおよびその
肉盛溶接方法に係り、特に肉盛溶接部における残留応力
および熱影響が少なく、軸受特性を改良し得るタービン
ロータおよびその肉盛溶接方法に関する。[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a turbine rotor of a steam turbine or the like and an overlay welding method for the same, and particularly to a method for overlay welding that reduces residual stress and thermal effects in the overlay weld. The present invention relates to a turbine rotor that can improve bearing characteristics and a method for overlay welding thereof.
(従来の技術)
一般に、12%クロム鋼タービンロータなど、耐食性金
属であるクロム等を比較的多く含有する鋼材で形成した
タービンロータは、長時間の運転に伴って軸受特性が低
下する。(Prior Art) Generally, a turbine rotor made of a steel material containing a relatively large amount of chromium, which is a corrosion-resistant metal, such as a 12% chromium steel turbine rotor, deteriorates in bearing characteristics with long-term operation.
この軸受特性の低下は、ロータ本体部材からクロム等が
析出し、軸受部に焼付き現象を生じたり、軸受内に異物
が混入してロータのジャーナル部および軸受面が異常摩
耗して損傷するゴーリング現象を発生することに起因す
る。This deterioration of bearing characteristics is caused by the precipitation of chromium etc. from the rotor body parts, which causes a seizure phenomenon in the bearing, or by foreign matter getting into the bearing, causing abnormal wear and damage to the rotor's journal part and bearing surface. Caused by the occurrence of a phenomenon.
従来、このゴーリング現象を防止するために、例えばク
ロムモリブデン鋼あるいはモリブデンバナジウム鋼など
、焼付きが発生しにくく、耐摩耗性に優れた鋼材で形成
したスリーブをタービンロータのジャーナル部に焼きば
めによって嵌装している。Conventionally, in order to prevent this galling phenomenon, a sleeve made of a steel material that is resistant to seizure and has excellent wear resistance, such as chromium-molybdenum steel or molybdenum-vanadium steel, is shrink-fitted onto the journal of the turbine rotor. It is fitted.
一方、近年上記のような軸受特性が優れた炭素鋼または
低合金鋼をジャーナル部表面に肉盛溶接することによっ
てゴーリング現象の防止対策とする試みもなされている
。On the other hand, in recent years, attempts have been made to prevent the galling phenomenon by overlaying carbon steel or low alloy steel, which has excellent bearing properties as described above, on the surface of the journal portion.
(発明が解決しようとする問題点)
しかしながら、ターごンロータのジャーナル部にスリー
ブを焼きばめによって嵌装する場合においては、スリー
ブの端面において、相接触するスリーブとタービンロー
タとが、回転振動により相対的に微小滑りを繰り返して
摩耗を生起し、いわゆるフレッティング疲労によって部
拐強度の著しい低下を発生する場合がある。(Problem to be Solved by the Invention) However, when the sleeve is fitted to the journal portion of the turbine rotor by shrink fitting, the sleeve and the turbine rotor, which are in contact with each other at the end surface of the sleeve, may be damaged due to rotational vibration. Abrasion occurs due to repeated relatively small slippage, and so-called fretting fatigue may cause a significant decrease in fracture strength.
また、アーク溶接等による肉盛溶接をタービンロータの
軸受部に施工して防護層を形成する場合においては、溶
接による入熱量が大きいため、ロータ本体部材が広範囲
に渡って変性を起し、強度が低下した熱影響部が形成さ
れるとともに、肉盛溶接部において熱による残留応力が
発生し、部材強度が低下する問題点がある。In addition, when overlay welding by arc welding etc. is performed on the bearing part of the turbine rotor to form a protective layer, the heat input due to welding is large, so the rotor body parts are denatured over a wide range and the strength is increased. There is a problem in that a heat-affected zone is formed with reduced heat resistance, and residual stress due to heat is generated in the overlay weld, resulting in a reduction in the strength of the member.
ちなみに、従来の肉盛溶接方法による肉盛溶接部表面に
おける引張残留応力は、30〜40 Ky f/−に及
ぶ場合があることが実験的に確認されている。この残留
応力は通常の焼鈍操作では容易に軽減しないことが判明
しており、この残留応力はタービンロータの応力腐食を
促進したり、脆性強度を低下させる要因ともなっている
。Incidentally, it has been experimentally confirmed that the tensile residual stress on the surface of an overlay welded part by the conventional overlay welding method may reach 30 to 40 Ky f/-. It has been found that this residual stress cannot be easily alleviated by normal annealing operations, and this residual stress is a factor that promotes stress corrosion and reduces brittle strength of the turbine rotor.
また、アーク溶接等のエレクトロビーム溶接においては
、溶接電流がアークの周囲に磁場を形成し、その磁場に
よってアークが正規の方向から側方に偏向して均一なビ
ードが形成されず溶接品質を低下させ、その補修に多大
な労力を要する場合がある。In addition, in electro beam welding such as arc welding, the welding current forms a magnetic field around the arc, and this magnetic field deflects the arc from its normal direction to the side, preventing a uniform bead from being formed and reducing welding quality. This may require a great deal of effort to repair.
本発明は上記の問題点を解決するためになされたもので
あり、肉盛溶接部にお(プる残留応力および部材に対す
る熱影響が少なく、また溶接施工が容易なタービンロー
タおにびその肉盛溶接方法を提供することを目的とする
。The present invention has been made in order to solve the above-mentioned problems, and the present invention has been made in order to solve the above-mentioned problems. The purpose is to provide a welding method.
(問題点を解決するための手段)
本発明に係るタービンロータおよびその肉盛溶接方法は
、タービンロータの肉盛対象部に耐熱性および耐摩耗性
を有する肉盛金属を付着せしめ、上記肉盛対象部に肉盛
金属をレーザ光の照射により肉盛溶接して一体成形した
ことを特徴とする。(Means for Solving the Problems) A turbine rotor and an overlay welding method thereof according to the present invention attach an overlay metal having heat resistance and abrasion resistance to an overlay target portion of a turbine rotor, and It is characterized by being integrally formed by welding overlay metal to the target part by irradiating it with laser light.
(作用)
上記構成のタービンロータおよびその肉盛溶接方法によ
れば、まずタービンロータの肉盛対象部に肉盛金属が付
着される。肉盛金属としては、耐熱性および耐摩耗性に
優れた金属部材が薄板状、棒状に成形されて使用される
。(Function) According to the turbine rotor having the above configuration and the overlay welding method thereof, the overlay metal is first attached to the overlay target portion of the turbine rotor. As the overlay metal, a metal member having excellent heat resistance and wear resistance is formed into a thin plate shape or rod shape and used.
一方、レーザ光発振装置から発振されたレーザ光が集光
レンズ等で集束された後に肉盛金属に照射される。On the other hand, a laser beam oscillated from a laser beam oscillation device is focused by a condenser lens or the like and then irradiated onto the overlay metal.
レーザ光の照射を受けた肉盛金属は溶融し、タービンロ
ータ母材と一体に接合され、肉盛溶接が完了覆る。The overlay metal irradiated with laser light melts and is integrally joined to the turbine rotor base material, completing overlay welding.
上記のレーザ光によれば、大容量の熱を肉盛対象部に局
部的に限定して照射することが可能となるため、溶接熱
による母材の熱影響部の幅および深さを極めて小さくす
ることができる。According to the above laser beam, it is possible to irradiate a large amount of heat locally to the part to be overlaid, so the width and depth of the heat affected zone of the base metal due to welding heat can be extremely minimized. can do.
また、レーザ光によれば、照射範囲の広狭、照射形状も
適宜変えて使用することが可能である。Furthermore, laser light can be used by appropriately changing the width of the irradiation range and the shape of the irradiation.
そのため、1回のパス(層)当りの肉盛厚さを極力低減
して、複数回のパスによって所定厚さの肉盛溶接部を形
成することもできる。このいわゆる多層盛りによって溶
接施工を行なうと、各層毎に局部的に溶融、凝固を繰り
返すことにな°す、溶接熱の移動量も少なく、母材への
緯入熱量を分散することが可能となる。Therefore, it is also possible to reduce the build-up thickness per pass (layer) as much as possible and form a build-up welded portion with a predetermined thickness by multiple passes. When welding is carried out using this so-called multilayer welding, each layer undergoes repeated local melting and solidification, and the amount of welding heat transferred is small, making it possible to disperse the weft heat input to the base metal. Become.
したがって、肉盛溶接部における残留応力の発生が抑制
されるとともに、熱影響部の発生が極めて狭い部位に限
定される。Therefore, the generation of residual stress in the overlay weld is suppressed, and the generation of a heat affected zone is limited to an extremely narrow area.
さらに、レーザ光を使用した場合は、従来のエレクトロ
ビーム溶接とは異なり、いわゆる磁気吹きによる溶接品
質の低下がない。したがって、磁化する可能性のある部
材に対する肉盛溶接方法として最適であり、タービンロ
ータの品質および信頼性の向上に資する。Furthermore, when laser light is used, unlike conventional electrobeam welding, there is no deterioration in welding quality due to so-called magnetic blowing. Therefore, this method is most suitable as an overlay welding method for members that may become magnetized, and contributes to improving the quality and reliability of turbine rotors.
(実施例)
次に、本発明の一実施例について添付図面を参照して説
明する。(Example) Next, an example of the present invention will be described with reference to the accompanying drawings.
第1図(A)、(B)は本発明に係るタービンロータの
肉盛溶接方法を実施している状態を示す斜視図である。FIGS. 1A and 1B are perspective views showing a state in which the overlay welding method for a turbine rotor according to the present invention is being carried out.
この肉盛方法を実施する場合は、まずタービンロータ1
外周面の肉盛対象部に肉盛金属2が付着される。ここで
、肉盛金属2としては、例えば炭素鋼、クロムモリブデ
ン鋼、あるいは、クロムモリブデンバナジウム鋼など耐
熱性および耐摩耗性に優れた部材が採用される。肉盛金
属2は第1図(A)で例示するように、予め薄板状に形
成した薄板状金属2aとして肉盛対象部に巻き付けたり
、または第1図(B)で例示するように粉沫状金属2b
として、肉盛対象部に供給される。When implementing this overlay method, first the turbine rotor 1
Overlay metal 2 is attached to the area to be overlaid on the outer peripheral surface. Here, as the overlay metal 2, a member having excellent heat resistance and wear resistance, such as carbon steel, chromium molybdenum steel, or chromium molybdenum vanadium steel, is used. The overlay metal 2 may be formed into a thin plate in advance and wrapped around the overlay target part as a thin plate metal 2a, as illustrated in FIG. 1(A), or as a powder as illustrated in FIG. shaped metal 2b
It is supplied to the part to be overlaid.
一方、図示しないレーザ光発振装置から発振されたレー
ザ光3は集光レンズ等で集束された後にレーザガン4の
先端部から肉盛金属2としての薄板状金属2aに照射さ
れる。レーザ光3の照射を受けた薄板状金属29は溶融
し、タービンロータ1と一体に接合され肉盛溶接部5を
形成する。On the other hand, a laser beam 3 oscillated from a laser beam oscillation device (not shown) is focused by a condensing lens or the like, and then is irradiated from the tip of a laser gun 4 onto a thin metal plate 2a serving as a build-up metal 2. The thin metal plate 29 irradiated with the laser beam 3 is melted and joined integrally with the turbine rotor 1 to form the overlay weld portion 5 .
また、第1図(B)は、肉盛金属2として粉沫状金属2
bを使用した例を示している。すなわち、貯留槽6内に
貯留した粉沫状金属2bをアルゴンまたはヘリウム等の
不活性ガスに同伴させて肉盛対象部に送供し、同時にレ
ーザ光3によって付着、溶融せしめ、肉盛溶接部5を形
成することもできる。In addition, FIG. 1(B) shows powder metal 2 as overlay metal 2.
An example using b is shown. That is, the powdered metal 2b stored in the storage tank 6 is accompanied by an inert gas such as argon or helium, and delivered to the part to be overlaid, and at the same time, it is adhered and melted by the laser beam 3, and the overlay welding part 5 is deposited and melted by the laser beam 3. can also be formed.
さらに図示しないが、肉盛金属2を細い棒状に成形した
ものを肉盛対象部に巻回する操作と、巻回した棒状の肉
盛金属2にレーザ光3を照射して溶融する操作を繰り返
して所定厚さの肉盛溶接部を形成することもできる。Furthermore, although not shown, the operation of winding the overlay metal 2 formed into a thin rod shape around the overlay target part and the operation of irradiating the rolled overlay metal 2 with a laser beam 3 and melting it are repeated. It is also possible to form an overlay welded portion with a predetermined thickness.
第2図(A)、(B)は、本実施例による肉盛溶接方法
によってタービンロータに肉盛溶接部5を形成した状態
を示す断面図であり、第2図(A)はタービンロータ1
のジャーナル部に予め溶接用満7を形成し、その内部に
肉盛溶接部5を形成し、ジャーナル部と同一平面に仕上
げたものである。FIGS. 2(A) and 2(B) are cross-sectional views showing the overlay welded portion 5 formed on the turbine rotor by the overlay welding method according to the present embodiment, and FIG.
A welding hole 7 is formed in advance on the journal portion of the holder, and an overlay welding portion 5 is formed inside the welding portion 5, which is finished flush with the journal portion.
一方、第2図<8)は、溝加工を行なわずにタービンロ
ータ1の軸受部外周面に突出するように肉盛溶接部5を
形成した状態を示す。On the other hand, FIG. 2<8) shows a state in which the overlay welded portion 5 is formed so as to protrude from the outer circumferential surface of the bearing portion of the turbine rotor 1 without performing groove processing.
従来のアーク溶接等による肉盛溶接を行なう場合は、溶
融池が大きく溶融部に多大な溶接入熱が付加され、同時
にその周辺部にも熱影響部が広く形成される。しかし、
本実施例のようにレーザ光を使用した肉盛溶接において
は熱源となるレーザ光を照射する範囲、深さ、形状を集
光レンズまたは反射鏡等によって任意に調整することが
可能であり、その寸法精度は一般に0.1#程度まで厳
密に設定づることができる。When overlay welding is performed using conventional arc welding or the like, the molten pool is large and a large amount of welding heat input is added to the molten zone, and at the same time, a large heat-affected zone is formed in the periphery of the molten zone. but,
In overlay welding using a laser beam as in this example, it is possible to arbitrarily adjust the range, depth, and shape of the irradiation of the laser beam, which serves as a heat source, using a condenser lens or a reflecting mirror. Generally, the dimensional accuracy can be set strictly to about 0.1#.
したがって、肉盛対象部の形状に合わせて、寸法精度の
高い肉盛溶接作業が可能となる。また、薄板状金属2a
、粉沫状金属2b、または棒状金属の中から、施工が容
易となる肉盛金属2を適宜選択し、溶接施工の簡易化を
図ることができる。Therefore, it is possible to perform overlay welding work with high dimensional accuracy in accordance with the shape of the overlay target part. In addition, the thin metal plate 2a
, powder metal 2b, or rod-shaped metal, the build-up metal 2 that can be easily applied can be appropriately selected to simplify the welding process.
また人熱聞も局部的に限定されるため、肉盛溶接部の残
留比ノjが大幅に軽減されるとともに、熱影響部も極め
て狭い範囲に限定される。Furthermore, since the human heat wave is locally limited, the residual ratio no.j of the build-up weld is significantly reduced, and the heat-affected zone is also limited to an extremely narrow range.
また、本実施例のタービンロータおよびその肉盛溶接方
法によれば、加熱源として溶接電流を使用せずにレーザ
光を使用しているため、従来法において発生した磁気吹
き現象による溶接品質の低下はない。したがって、補修
作業が無用となる上に肉盛操作が簡易となり、溶接作業
効率が向上する。In addition, according to the turbine rotor and its overlay welding method of this embodiment, since a laser beam is used as a heating source instead of a welding current, welding quality deteriorates due to the magnetic blow phenomenon that occurs in the conventional method. There isn't. Therefore, repair work becomes unnecessary, and the build-up operation becomes simple, improving welding work efficiency.
次に、本実施例の肉盛溶接方法によって肉盛溶接を行な
った場合の効果について第3図および第4図のグラフに
従って説明する。Next, the effect of overlay welding performed by the overlay welding method of this embodiment will be explained with reference to the graphs of FIGS. 3 and 4.
第3図は一層(パス)当りの肉盛厚さtを種々変化させ
て、所定厚さの肉盛溶接を実施した後の肉盛溶接部表面
における残留応力を従来の肉盛溶接方法と比較して示し
ている。Figure 3 shows a comparison of the residual stress on the surface of the overlay weld after performing overlay welding to a predetermined thickness by varying the overlay thickness t per layer (pass) and with the conventional overlay welding method. It is shown as follows.
本実施例では12%クロム鋼を母材にしたタービンロー
タ1に、例えば第1表に示すように各種の化学成分を含
有する肉盛金属I〜Vlを第1図(B)で示ずように粉
床状態で肉盛対象部に供給し、出力3kwの炭酸ガス(
co2)レーザを照射して肉盛溶接を行なった。なお、
タービンロータ1の母材および肉盛金属■〜■の化学成
分は下記の第1表に示す。In this example, the turbine rotor 1 is made of 12% chromium steel as a base material, and overlay metals I to Vl containing various chemical components as shown in Table 1 are shown in FIG. 1(B). Carbon dioxide gas (with an output of 3 kW) is supplied to the part to be overlaid in powder bed state.
CO2) Laser irradiation was performed to perform overlay welding. In addition,
The chemical components of the base material and overlay metals (1) to (2) of the turbine rotor 1 are shown in Table 1 below.
また、1回当りの肉盛厚さtは3M以下の1t5FHJ
内で変化させ、全肉盛厚さは25mとし、肉盛金属とし
てはM1表に示す肉盛金属■を粉床状態で使用し、その
肉盛金属■の供給速度は20 g/minに設定してい
る。さらに肉盛溶接前に、肉盛対象部を予め温度150
〜300℃にて予熱する一方、肉盛溶接後は、640℃
で約1時間の焼鈍操作を実施している。In addition, the build-up thickness t per time is 1t5FHJ of 3M or less.
The total build-up thickness was 25 m, and the build-up metal ■ shown in the M1 table was used in a powder bed state, and the supply rate of the build-up metal ■ was set to 20 g/min. are doing. Furthermore, before overlay welding, the area to be overlaid is heated to 150°C.
Preheat at ~300℃, while after overlay welding, heat at 640℃
The annealing operation was carried out for about 1 hour.
この結果、第3図において実線で示すように、一層当り
の肉盛厚さtが1M以下において、肉盛溶接部表面にお
ける残留応力σは大幅に減少し、破線で示す従来法の場
合と比較して10分の1程度まで減少することが確認さ
れた。As a result, as shown by the solid line in Figure 3, when the build-up thickness t per layer is 1M or less, the residual stress σ on the surface of the build-up weld is significantly reduced, compared to the case of the conventional method shown by the broken line. It was confirmed that the amount decreased to about 1/10.
また、レーザ光の照射による熱影響は第4図に示ずよう
に少ない。すなわち第4図は、肉盛溶接部とその周辺部
における熱の影響度を部材の硬さくHv)の変化として
把え、その分布を示したものである。第4図の結果より
、母材側であるタービンロータが溶接入熱によって硬化
した部位は、母材と肉盛溶接部との境界部から0.3#
以下であり、従来法による熱影響部が数Mから10数M
に及ぶことと比較して、本実施例によれば、1に対する
熱影響を大幅に低減することができる。Further, the thermal influence due to laser beam irradiation is small as shown in FIG. That is, FIG. 4 shows the distribution of the degree of influence of heat in the overlay weld and its surrounding area, understood as a change in the hardness (Hv) of the member. From the results shown in Figure 4, the part of the turbine rotor on the base metal side that is hardened due to welding heat input is 0.3# from the boundary between the base metal and the overlay weld.
The heat affected zone by the conventional method is from several M to several tens of M.
According to this embodiment, the thermal influence on 1 can be significantly reduced.
さらに第1表に示す他の肉盛金属I、 I[、IV。Furthermore, other overlay metals I, I[, IV shown in Table 1.
V、Vlについても、1層当りの肉盛厚さtを0゜5#
III+に設定し、同様に肉盛溶接を実施して、残留応
力および硬度の変化を測定した結果、重量%において、
0.5%以下の炭素、2%以下のマンガン、3%以下の
クロム、1.0%以下のシリコン、2.0%以下のモリ
ブデン、0.5%以下のバナジウムを含有する肉盛金属
I、 Il、 IV、 V、 Vlのいずれにおいても
残留応力σは10Kyf/−以下であり、また熱影響に
よる部材硬化層の厚さも、最大0.5#と非常に小さく
、母材となるタービンロータの健全性が充分維持される
ことが確認された。For V and Vl, the overlay thickness t per layer is 0°5#
III+, overlay welding was carried out in the same way, and changes in residual stress and hardness were measured. As a result, in weight %,
Overlay metal I containing up to 0.5% carbon, up to 2% manganese, up to 3% chromium, up to 1.0% silicon, up to 2.0% molybdenum, up to 0.5% vanadium , Il, IV, V, and Vl, the residual stress σ is 10Kyf/- or less, and the thickness of the hardened layer due to heat influence is extremely small, at maximum 0.5#, and the thickness of the hardened layer due to heat influence is extremely small, which is less than the base material of the turbine rotor. It was confirmed that the soundness of the plant was sufficiently maintained.
本発明に係るタービンロータおよびその肉盛溶接方法に
よれば、肉盛金属にレーザ光を照射して肉盛金属を溶融
せしめ、母材であるタービンロータに肉盛溶接部を形成
しており、大容量の熱をレーザ光によって局部的に限定
して付与することができるため、溶接熱による母材の熱
影響部を極めて小さくすることができる上に、肉盛溶接
部における残留応力を大幅に低減することができる。According to the turbine rotor and the overlay welding method thereof according to the present invention, the overlay metal is irradiated with a laser beam to melt the overlay metal to form an overlay welded portion on the turbine rotor that is the base material, Since a large amount of heat can be applied locally using a laser beam, the heat-affected zone of the base metal due to welding heat can be made extremely small, and the residual stress in the overlay weld can be greatly reduced. can be reduced.
またレーザ光は、照射範囲、照射形状を適宜調整して使
用することができるため、肉盛対象部の寸法、形状に合
わせて、高い寸法精度で肉盛溶接することが可能となる
。特に、1層当りの肉盛厚さを小ざく設定し、多層盛り
によって所定厚さの肉盛溶接を実施すれば肉盛対象部へ
の絶大熱量が分散され、残留応力および熱影響部を少な
くすることができる。Further, since the laser beam can be used by adjusting the irradiation range and the irradiation shape as appropriate, it is possible to perform overlay welding with high dimensional accuracy according to the dimensions and shape of the overlay target part. In particular, by setting the overlay thickness per layer small and performing overlay welding to a predetermined thickness using multiple layers, the enormous amount of heat to the overlay target area will be dispersed, reducing residual stress and heat-affected zone. can do.
さらに本発明によれば、焼きばめスリーブを無用とでき
るためフレッティング疲労による腐食、摩耗問題が解決
し、また従来の肉盛溶接において発生する残留応力が大
幅に低減できるため、機械強度に優れた信頼性の高いタ
ービンロータを提供することができる。Furthermore, according to the present invention, since the shrink-fit sleeve can be made unnecessary, corrosion and wear problems caused by fretting fatigue can be solved, and the residual stress generated in conventional overlay welding can be significantly reduced, resulting in excellent mechanical strength. A highly reliable turbine rotor can be provided.
第1図(A>、(B)は本発明法によって肉盛溶接を施
工している状態を示す斜視図、第2図(A)、(B)は
本発明によるタービンロータの肉盛溶接部を示す断面図
、第3図は一層当りの肉盛厚さと肉盛溶接部表面の残留
応力との関係を示すグラフ、第4図は肉盛溶接部周辺の
部材硬さの分布を示すグラフである。
1・・・タービンロータ、2・・・肉盛金属、2a・・
・薄板状金属、2b・・・粉末状金属、3・・・レーザ
光、4・・・レーザガン、5・・・肉盛溶接部、6・・
・貯留槽、7・・・溶接用溝、t・・・1回当りの肉盛
厚さ、σ・・・残留応力。
出願人代理人 波 多 野 久−16=
第1図
第3図
母材と肉堅j容接@iとの境界1す・らの!巨財、d
(rnnl)第4図Fig. 1 (A>, (B) is a perspective view showing a state in which overlay welding is being performed by the method of the present invention, and Fig. 2 (A), (B) is an overlay welded part of a turbine rotor according to the present invention. Figure 3 is a graph showing the relationship between the overlay thickness per layer and the residual stress on the surface of the overlay weld, and Figure 4 is a graph showing the distribution of member hardness around the overlay weld. Yes. 1... Turbine rotor, 2... Overlay metal, 2a...
- Thin plate metal, 2b... Powder metal, 3... Laser light, 4... Laser gun, 5... Overlay welding part, 6...
・Storage tank, 7... Welding groove, t... Thickness of build-up per one time, σ... Residual stress. Applicant's agent Hisashi Hatano - 16 = Figure 1 Figure 3 Boundary between the base material and the physical contact @i 1 S Lano! great fortune, d
(rnnl)Figure 4
Claims (1)
摩耗性を有する肉盛金属を付着させ、上記肉盛対象部に
肉盛金属をレーザ光の照射により肉盛溶接して一体成形
したことを特徴とするタービンロータ。 2、タービンロータ母材は、12%クロム鋼である特許
請求の範囲第1項記載のタービンロータ。 3、肉盛金属は、予め薄板状または棒状に成形してなる
特許請求の範囲第1項記載のタービンロータ。 4、肉盛金属は、粉沫状金属である特許請求の範囲第1
項記載のタービンロータ。 5、肉盛金属は、重量%において0.5%以下の炭素、
2%以下のマンガン、3%以下のクロム、1.0%以下
のシリコン、2.0%以下のモリブデン、0.5%以下
のバナジウムを含有する金属部材から成る特許請求の範
囲第1項記載のタービンロータ。 6、タービンロータの肉盛対象部に耐熱性および耐摩耗
性を有する肉盛金属を付着せしめ、肉盛金属にレーザ光
を集束照射して肉盛溶接を行なうことを特徴とするター
ビンロータの肉盛溶接方法。 7、タービンロータの肉盛対象部は、肉盛溶接前に温度
150〜300℃にて所定時間、予熱を行なう特許請求
の範囲第6項記載のタービンロータの肉盛溶接方法。 8、肉盛溶接は、多層盛りで施工する特許請求の範囲第
6項記載のタービンロータの肉盛溶接方法。 9、タービンロータの肉盛対象部は、肉盛溶接後に温度
500℃以上にて焼鈍を行なう特許請求の範囲第6項記
載のタービンロータの肉盛溶接方法。[Scope of Claims] 1. A build-up metal having heat resistance and wear resistance is attached to the part to be built up of the turbine rotor base material, and the build-up metal is built up to the part to be built up by laser beam irradiation. A turbine rotor characterized by being integrally welded. 2. The turbine rotor according to claim 1, wherein the turbine rotor base material is 12% chromium steel. 3. The turbine rotor according to claim 1, wherein the overlay metal is formed in advance into a thin plate shape or a rod shape. 4. Claim 1 in which the overlay metal is a powdered metal
Turbine rotor as described in section. 5. The overlay metal contains 0.5% or less carbon by weight,
Claim 1 comprising a metal member containing 2% or less manganese, 3% or less chromium, 1.0% or less silicon, 2.0% or less molybdenum, and 0.5% or less vanadium. turbine rotor. 6. Welding of a turbine rotor characterized by attaching a heat-resistant and wear-resistant overlay metal to the overlay target part of the turbine rotor, and performing overlay welding by irradiating the overlay metal with focused laser light. Mold welding method. 7. The overlay welding method for a turbine rotor according to claim 6, wherein the overlay target portion of the turbine rotor is preheated at a temperature of 150 to 300° C. for a predetermined period of time before overlay welding. 8. The overlay welding method for a turbine rotor according to claim 6, wherein the overlay welding is performed in a multi-layered overlay. 9. The overlay welding method for a turbine rotor according to claim 6, wherein the overlay target portion of the turbine rotor is annealed at a temperature of 500° C. or higher after overlay welding.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62081271A JPS63248587A (en) | 1987-04-03 | 1987-04-03 | Turbine rotor and its build-up welding method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62081271A JPS63248587A (en) | 1987-04-03 | 1987-04-03 | Turbine rotor and its build-up welding method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS63248587A true JPS63248587A (en) | 1988-10-14 |
Family
ID=13741701
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62081271A Pending JPS63248587A (en) | 1987-04-03 | 1987-04-03 | Turbine rotor and its build-up welding method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63248587A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02251389A (en) * | 1989-02-08 | 1990-10-09 | General Electric Co <Ge> | Parts manufacturing by lamination |
JP2007537877A (en) * | 2003-05-17 | 2007-12-27 | エムテーウー・アエロ・エンジンズ・ゲーエムベーハー | Heating method of parts |
US9976197B2 (en) | 2014-11-24 | 2018-05-22 | Japan Casting & Forging Corporation | Method for producing journal part of 9 to 12% Cr steel turbine rotor, and journal part produced by the method |
CN108620809A (en) * | 2018-05-11 | 2018-10-09 | 岳阳大陆激光技术有限公司 | The online restorative procedure of 1000MW generating set turbine rotor packing axle journals |
-
1987
- 1987-04-03 JP JP62081271A patent/JPS63248587A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH02251389A (en) * | 1989-02-08 | 1990-10-09 | General Electric Co <Ge> | Parts manufacturing by lamination |
JP2007537877A (en) * | 2003-05-17 | 2007-12-27 | エムテーウー・アエロ・エンジンズ・ゲーエムベーハー | Heating method of parts |
US9976197B2 (en) | 2014-11-24 | 2018-05-22 | Japan Casting & Forging Corporation | Method for producing journal part of 9 to 12% Cr steel turbine rotor, and journal part produced by the method |
CN108620809A (en) * | 2018-05-11 | 2018-10-09 | 岳阳大陆激光技术有限公司 | The online restorative procedure of 1000MW generating set turbine rotor packing axle journals |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1319462B1 (en) | Method of electron beam welding of single-crystal superalloys | |
Yellup | Laser cladding using the powder blowing technique | |
RU2624884C2 (en) | Localized repair of the component from superalloy | |
WO2015037731A1 (en) | Brake disc and method for producing same | |
KR890017029A (en) | How to repair worn surfaces of iron-containing steam turbine parts containing Cr, Mo and V alloys | |
JP2007508145A (en) | Method for welding by plasma, laser or electron beam by using copper or copper alloy as filler material between the same materials which tend to cause excessive curing or different materials | |
US20210107087A1 (en) | Metal material solid-phase bonding method and solid-phase bonding device | |
JP5101601B2 (en) | Valve device | |
JP2011161459A (en) | Method of welding material with high-corrosion resistance | |
JP2011136344A (en) | Method of repairing gas turbine member and the gas turbine member | |
EP2703112B1 (en) | Method for producing laser welded steel pipe | |
JPH09314364A (en) | Build up welding method for member | |
CN104511702A (en) | Welding material for welding of superalloys | |
JPS63248587A (en) | Turbine rotor and its build-up welding method | |
JP2019137880A (en) | Tool regeneration method | |
US20120261459A1 (en) | Laser metalworking using reactive gas | |
JP2005254317A (en) | Coating method and apparatus for self-fluxing alloy, and continuous casting mold using the same, and manufacturing method for mold | |
JP2005081441A (en) | Weld penetration strengthening method for surface oxide, and article | |
US4424436A (en) | Method of forming crucibles for molten magnesium | |
JPS63224890A (en) | Laser build-up welding method | |
US11707802B2 (en) | Method of forming a single, angled and hourglass shaped weld | |
JPH04289154A (en) | Turbine blade made of ti alloy and surface modifying method therefor | |
JP3682599B2 (en) | Surface treatment method for welded structure in reactor | |
JP3767359B2 (en) | Butt welding method and welded thin steel plate | |
JPH0280188A (en) | Manufacture of control parts of turbine or the like |