JPS6323808B2 - - Google Patents

Info

Publication number
JPS6323808B2
JPS6323808B2 JP56071182A JP7118281A JPS6323808B2 JP S6323808 B2 JPS6323808 B2 JP S6323808B2 JP 56071182 A JP56071182 A JP 56071182A JP 7118281 A JP7118281 A JP 7118281A JP S6323808 B2 JPS6323808 B2 JP S6323808B2
Authority
JP
Japan
Prior art keywords
aqueous solution
water
dehydrating agent
polyacrylate
dehydrating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56071182A
Other languages
Japanese (ja)
Other versions
JPS57187002A (en
Inventor
Masao Kawamura
Seiichi Akutsu
Morio Nakamura
Hirosuke Fukuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Seika Chemicals Co Ltd
Original Assignee
Seitetsu Kagaku Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seitetsu Kagaku Co Ltd filed Critical Seitetsu Kagaku Co Ltd
Priority to JP7118281A priority Critical patent/JPS57187002A/en
Publication of JPS57187002A publication Critical patent/JPS57187002A/en
Publication of JPS6323808B2 publication Critical patent/JPS6323808B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は有機または無機溶質を含む水溶液から
水分を除去する方法に関する。さらに詳しくは吸
水性樹脂を用いて水溶液を脱水、濃縮する方法に
関するものである。 酵素蛋白をはじめとする蛋白質や、核酸、多糖
類等生体高分子の抽出、精製にあたつては、これ
らの物質を含んだ水溶液の水分を除去しなければ
ならない。一般にこのような場合減圧下に加熱す
る方法が用いられるが、低濃度の場合には多量の
水分を除去する必要が生じるので、通常の減圧下
に加熱する方法では時間がかかり、経費も高くな
る。とくに酵素のような変性、失活を起しやすい
高分子物質の場合には加熱する方法は好ましくな
く、希薄水溶液を濃縮する方法としては、一般的
に各種の限外過膜による分子篩方法が知られて
いる。しかしながらこの方法は過膜の寿命や経
費の面で実用的ではなく、また過膜の材質によ
つては膜に対する試料の非特異的吸着が生じ、失
活や下可逆的な変性を引き起すなどの欠点があ
る。また別法として硝酸セルローズの膜を用いて
吸引過する方法もあるが、脱水速度が遅く、処
理量が制限される欠点がある。 一方ポリエチレングリコール粉末やセフアデツ
クスのようなデキストラン樹脂を脱水剤として使
用する方法も知られているが、経済的ではなく、
脱水速度が遅くて時間がかかる等の点から必ずし
も有効な方法とはいえない。 本発明者らは上記従来法における欠点を改良す
べく鋭意検討を重ねた結果、高吸水能を有する吸
水性樹脂を半透膜を介して水溶液と接触させるこ
とにより極めて迅速に脱水、濃縮ができることを
見出し本発明に到達した。 すなわち本発明の要旨は、蛋白質や酵素などの
高分子溶質を含む水溶液あるいは尿、髄液、血清
のごとき無機物または有機物あるいはこれらの混
合物を含む生体液を半透膜を介して高性能の吸水
性樹脂と接触させる即ち半透膜袋内に水溶液を封
入し吸水性樹脂と接触させるか、或いは半透膜袋
内に吸水性樹脂を封入し、水溶液中に浸漬するこ
とを特徴とする水溶液の脱水、濃縮方法である。 本発明で脱水剤として用いる高吸水性樹脂と
は、ポリアクリル酸塩、澱粉−アクリルニトリル
グラフト共重合体およびその加水分解物、ポリビ
ニルアルコール、メチル(メタ)アクリレート−
酢酸ビニル共重合体の加水分解物、澱粉−アクリ
ル酸ソーダーグラフト共重合体、セルローズ−ア
クリル酸ソーダグラフト共重合体等の架橋物であ
る。中でもポリアクリル酸塩の架橋物を使用すれ
ば優れた効果を発揮する。これらの高吸水性樹脂
は通常400倍〜500倍程度の吸収能を有しているも
のを言う。 本発明に脱水剤として用いる高吸水性ポリアク
リル酸塩架橋物とはアクリル酸アルカリ塩をラジ
カル開始剤存在下に部分的に架橋構造を与えるよ
うな特殊な条件下で重合せしめるか、アクリル酸
アルカリ塩とジビニルあるいはジアリル化合物の
ごとき架橋性モノマーとをラジカル共重合せしめ
るか、アクリル酸アルカリ金属塩の重合中、また
は重合後に、多価金属イオン、エポキシ化合物の
ごとき、カルボキシル基との反応性の高い化合物
を加えて架橋反応せしめるかあるいはまた予じめ
製造された水溶性ポリアクリル酸塩に放射線を照
射して架橋せしめる等の方法によつて製造したも
のである。 さらに本発明で脱水剤として用いるものは上記
のポリアクリル酸塩以外に、アクリル酸塩と共重
合させ、必要に応じて加水分解することによつて
得られる吸水性ポリアクリル酸塩共重合体をも含
む。共重合させうるモノマーとしては、メタアク
リル酸およびその塩などのカルボキシル基を有す
るモノマー、ビニルスルホン酸およびその塩また
はビニルトルエンスルホン酸およびその塩の如き
スルホン酸基を有するモノマー、メタアクリル酸
ヒドロキシエチル、メタアクリル酸ヒドロキシプ
ロピルなどの水酸基を有するモノマー、アクリル
アミド、N−ビニルピロリドンなどのアミド基を
有するモノマー、酢酸ビニルのごとき加水分解を
経て水酸基に変換しうるモノマー等を挙げること
ができる。しかしながら、工業的には安価で、且
つ低毒性である吸水性ポリアクリル酸塩が最も有
利に使用しうる。 特に本発明で脱水剤として使用するに適してい
る高吸水性ポリアクリル酸塩架橋物の製造につい
て、さらに詳述すれば、本出願人が先に出願した
特願昭55−34967号に記載のように例えば吸水性
ポリアクリル酸塩はアクリル酸およびアクリル酸
アルカリ塩水溶液をHLB8〜12の界面活性剤を共
存する脂環族または脂肪族炭化水素溶媒中に懸濁
させ、水溶性ラジカル重合開始剤の存在下に逆相
懸濁重合せしめ、そののち架橋剤を加えて架橋反
応を行ない、さらに溶媒と水とを留去し、引続き
乾燥することによつて吸収能800倍以上の高吸水
性樹脂を得ることができる。 次に吸水性ポリアクリル酸塩としては、アルカ
リ金属塩、アンモニウム塩等のものが使用しうる
が、取り扱い易さからいえばアルカリ金属塩を用
いるのが好ましい。アルカリ金属塩としてはリチ
ウム、ナトリウム、カリウム等の塩が使用しうる
が、ナトリウム塩が価格上からも有利に使用でき
る。このように本発明においては通常吸収能400
倍〜500倍程度の高吸水性樹脂を、好ましくは吸
収能800倍以上の高吸水性樹脂を用いる。 本発明で用いる限外過性を有した半透膜と
は、通常の過法ではこし分けることが困難なコ
ロイド粒子を分散媒から別することができる
過膜であり、その具体例はポリエレクトライト、
ポリスルフオネート、アクリル系ポリマー、ポリ
アクリロニトリル重合体、硝酸セルローズなどを
フイルム状に成形したもの、セロフアンチユーブ
などである。また水分除去の対象となる水溶液と
は、蛋白質、酵素、核酸、多糖類、ウイルス、
尿、髄液、ガラス体液、血清などを含むものであ
る。 例えば高分子溶質を含んだ水溶液を半透膜を介
して脱水剤と接触せしめる方法としては、上記半
透膜材料で成形したチユーブの中に水溶液を封入
したものを粉状体からなる脱水剤の中に埋没させ
る方法。逆に該チユーブの中に脱水剤を封入した
ものを希薄水溶液中に浸漬する方法も可能であ
る。 本発明では脱水剤として吸水能のすぐれたアク
リル酸およびアクリル酸塩重合体、またはアクリ
ル酸塩を含む重合体を使用することにより、高分
子物質を溶質として含有する水溶液を効率よく迅
速に脱水、濃縮することができる。 以下実施例によつて本発明の方法を具体的に説
明するが、本発明がこれら実施態様によつて限定
されるものではない。 実施例 1 牛血清アルブミン(分子量67000)の0.1%水溶
液100mlを透折用セロフアンチユーブに入れたも
のを吸水性ポリアクリル酸ナトリウム粉末(製鉄
化学(株)製、商品名;アクアキープ10SH)中に浸
漬し、4℃の温度に保持して脱水を行なつた。脱
水に要した時間は9時間であり、脱水終了後、濃
縮液中の蛋白質量を定量した結果を第1表に示し
た。
The present invention relates to a method for removing water from an aqueous solution containing organic or inorganic solutes. More specifically, the present invention relates to a method of dehydrating and concentrating an aqueous solution using a water-absorbing resin. When extracting and purifying proteins such as enzyme proteins, nucleic acids, and biopolymers such as polysaccharides, it is necessary to remove water from aqueous solutions containing these substances. In such cases, a method of heating under reduced pressure is generally used, but in the case of low concentrations, it is necessary to remove a large amount of water, so the usual method of heating under reduced pressure is time consuming and expensive. . Heating is particularly undesirable for polymeric substances such as enzymes that are prone to denaturation and deactivation, and molecular sieving methods using various ultrafiltration membranes are generally known methods for concentrating dilute aqueous solutions. It is being However, this method is not practical in terms of membrane life and cost, and depending on the membrane material, non-specific adsorption of the sample to the membrane may occur, causing deactivation and reversible denaturation. There are drawbacks. Another method is to use a membrane of cellulose nitrate to filter the water by suction, but this method has the disadvantage that the dehydration rate is slow and the throughput is limited. On the other hand, methods of using polyethylene glycol powder or dextran resins such as Cephadex as dehydrating agents are also known, but they are not economical and
This method cannot necessarily be said to be effective because the dehydration rate is slow and it takes time. The inventors of the present invention have conducted intensive studies to improve the drawbacks of the conventional methods described above, and have discovered that extremely rapid dehydration and concentration can be achieved by bringing a water-absorbent resin with high water-absorbing capacity into contact with an aqueous solution through a semi-permeable membrane. This discovery led to the present invention. In other words, the gist of the present invention is to absorb aqueous solutions containing polymeric solutes such as proteins and enzymes, or biological fluids containing inorganic or organic substances such as urine, cerebrospinal fluid, and serum, or mixtures thereof, through a semipermeable membrane with high water absorption properties. Dehydration of an aqueous solution characterized by contacting with a resin, that is, enclosing an aqueous solution in a semipermeable membrane bag and bringing it into contact with a water absorbent resin, or enclosing a water absorbent resin in a semipermeable membrane bag and immersing it in an aqueous solution. , is a concentration method. The superabsorbent resin used as a dehydrating agent in the present invention includes polyacrylate, starch-acrylonitrile graft copolymer and its hydrolyzate, polyvinyl alcohol, methyl (meth)acrylate-
These are crosslinked products such as a hydrolyzate of vinyl acetate copolymer, a starch-sodium acrylate graft copolymer, and a cellulose-sodium acrylate graft copolymer. Among these, the use of crosslinked polyacrylates provides excellent effects. These super absorbent resins usually have an absorption capacity of about 400 to 500 times. The highly water-absorbent cross-linked polyacrylate used as a dehydrating agent in the present invention is produced by polymerizing an alkali acrylate under special conditions that partially give a cross-linked structure in the presence of a radical initiator, or Either by radical copolymerization of the salt and a crosslinking monomer such as a divinyl or diallyl compound, or during or after the polymerization of an alkali metal acrylic acid salt, a highly reactive compound with a carboxyl group such as a polyvalent metal ion or an epoxy compound can be used. It is produced by adding a compound to cause a crosslinking reaction, or by irradiating a previously produced water-soluble polyacrylate with radiation to cause crosslinking. Furthermore, in addition to the above-mentioned polyacrylates, the dehydrating agent used in the present invention is a water-absorbing polyacrylate copolymer obtained by copolymerizing with an acrylate and hydrolyzing it if necessary. Also included. Monomers that can be copolymerized include monomers having a carboxyl group such as methacrylic acid and its salts, monomers having a sulfonic acid group such as vinylsulfonic acid and its salts or vinyltoluenesulfonic acid and its salts, and hydroxyethyl methacrylate. Examples include monomers having a hydroxyl group such as hydroxypropyl methacrylate, monomers having an amide group such as acrylamide and N-vinylpyrrolidone, and monomers that can be converted into a hydroxyl group through hydrolysis such as vinyl acetate. However, industrially, water-absorbing polyacrylates can be most advantageously used because they are inexpensive and have low toxicity. In particular, regarding the production of a highly water-absorbent cross-linked polyacrylate material suitable for use as a dehydrating agent in the present invention, the method described in Japanese Patent Application No. 1983-34967 previously filed by the present applicant will be described in more detail. For example, water-absorbing polyacrylates are produced by suspending acrylic acid and an aqueous solution of alkali acrylic salts in an alicyclic or aliphatic hydrocarbon solvent in which a surfactant with HLB 8 to 12 coexists. A super absorbent resin with an absorption capacity of 800 times or more is produced by carrying out reverse phase suspension polymerization in the presence of water, then adding a crosslinking agent to carry out a crosslinking reaction, distilling off the solvent and water, and then drying. can be obtained. Next, as the water-absorbing polyacrylate, alkali metal salts, ammonium salts, etc. can be used, but from the viewpoint of ease of handling, it is preferable to use alkali metal salts. As the alkali metal salt, salts of lithium, sodium, potassium, etc. can be used, and sodium salt can be used advantageously from the viewpoint of cost. In this way, in the present invention, the normal absorption capacity is 400
A super absorbent resin with an absorption capacity of about 500 times to 500 times is used, preferably a super absorbent resin with an absorption capacity of 800 times or more. The semi-permeable membrane with ultraviolet properties used in the present invention is a membrane that can separate colloidal particles, which are difficult to separate by ordinary filtration methods, from a dispersion medium. light,
These include polysulfonate, acrylic polymer, polyacrylonitrile polymer, cellulose nitrate, etc., molded into a film, and cellophonite. The aqueous solution that is subject to water removal includes proteins, enzymes, nucleic acids, polysaccharides, viruses,
This includes urine, cerebrospinal fluid, vitreous humor, serum, etc. For example, as a method of bringing an aqueous solution containing a polymer solute into contact with a dehydrating agent through a semipermeable membrane, the aqueous solution is sealed in a tube made of the above-mentioned semipermeable membrane material. How to bury it inside. Conversely, it is also possible to immerse a tube in which a dehydrating agent is enclosed in a dilute aqueous solution. In the present invention, by using acrylic acid and acrylate polymers with excellent water absorption ability, or polymers containing acrylates as dehydrating agents, aqueous solutions containing polymeric substances as solutes can be efficiently and rapidly dehydrated. Can be concentrated. The method of the present invention will be specifically explained below with reference to Examples, but the present invention is not limited to these embodiments. Example 1 100 ml of a 0.1% aqueous solution of bovine serum albumin (molecular weight 67000) was placed in a cellophane tube for diafiltration, and the mixture was poured into water-absorbing sodium polyacrylate powder (manufactured by Tetsu Seikagaku Co., Ltd., product name: Aqua Keep 10SH). The sample was immersed in water and maintained at a temperature of 4°C to perform dehydration. The time required for dehydration was 9 hours, and after completion of dehydration, the amount of protein in the concentrate was quantified and the results are shown in Table 1.

【表】 実施例 2 乳酸脱水素酵素36ユニツトを含む10mMのリン
酸緩衝液(PH7.0)100mlを実施例1と同様に処理
して濃縮液の酵素活性および回収率を測定した。 その結果を第2表に示した。
[Table] Example 2 100 ml of 10 mM phosphate buffer (PH7.0) containing 36 units of lactate dehydrogenase was treated in the same manner as in Example 1, and the enzyme activity and recovery rate of the concentrated solution were measured. The results are shown in Table 2.

【表】 実施例 3〜6 ヘキソキナーゼを50mMトリエタノールアミン
緩衝液(PH7.6)に溶解した酵素溶液10mlをセロ
フアンチユーブに封入したものを、種々の吸水性
樹脂の中に埋没させた状態で16時間濃縮した。ま
た比較としてセフアデツクスG−25を用いて同じ
操作を行なつた。それらの結果を後の第3表に示
した。 その結果から、実施例3と比較例1とを比較す
れば、同じ時間濃縮して本発明の脱水剤を用いた
場合には約1/14の容積にまで濃縮できることがわ
かる。
[Table] Examples 3 to 6 10ml of an enzyme solution in which hexokinase was dissolved in 50mM triethanolamine buffer (PH7.6) was sealed in a cellophane tube, and the mixture was immersed in various water-absorbing resins. Concentrated for 16 hours. For comparison, the same operation was carried out using Cephadex G-25. The results are shown in Table 3 below. From the results, when Example 3 and Comparative Example 1 are compared, it can be seen that when the dehydrating agent of the present invention is used for the same concentration time, the volume can be reduced to about 1/14.

【表】【table】

Claims (1)

【特許請求の範囲】 1 蛋白質や酵素などの高分子溶質を含む水溶
液、あるいは尿、髄液、血清のごとき有機または
無機溶質またはこれらの混合物を含む生体水溶液
を半透膜を介して脱水剤と接触させ、水分を除去
するにあたり、半透膜袋内に水溶液を封入し脱水
剤と接触させるか、あるいは半透膜袋内に脱水剤
をを封入し、水溶液中に浸漬すること、脱水剤と
してポリアクリル酸塩、澱粉−アクリロニトリル
共重合体、およびその加水分解物、ポリビニルア
ルコール変成物、メチル(メタ)アクリレート−
酢酸ビニル共重合体の加水分解物、澱粉−アクリ
ル酸ソーダグラフト共重合体、セルローズアクリ
ル酸ソーダグラフト共重合体よりなる群より選ば
れたポリマーの架橋物からなる高吸水性樹脂を用
いることを特徴とする水溶液の脱水濃縮方法。 2 高吸水性樹脂が吸収能800倍以上のポリアク
リル酸塩架橋物である特許請求の範囲1記載の方
法。 3 ポリアクリル酸塩架橋物がアクリル酸および
アクリル酸アルカリ塩水溶液をHLB8〜12の界面
活性剤を共存する脂環族または脂肪族炭化水素溶
媒中に懸濁させ、水溶性ラジカル重合開始剤の存
在下に逆相懸濁重合せしめ、そののち架橋剤を加
えて架橋反応を行い、さらに溶媒と水とを留去し
引続き乾燥することによつて得られるものである
特許請求の範囲2記載の方法。 4 水溶液が蛋白質、酵素、核酸、多糖類などの
生体高分子物質を含む希薄水溶液である特許請求
の範囲1記載の方法。 5 半透膜が限外濾過性を有した濾過膜である特
許請求の範囲1記載の方法。
[Claims] 1. An aqueous solution containing polymeric solutes such as proteins and enzymes, or a biological aqueous solution containing organic or inorganic solutes such as urine, spinal fluid, and serum, or a mixture thereof, with a dehydrating agent through a semipermeable membrane. When contacting and removing water, an aqueous solution is sealed in a semi-permeable membrane bag and brought into contact with a dehydrating agent, or a dehydrating agent is sealed in a semi-permeable membrane bag and immersed in an aqueous solution, or as a dehydrating agent. Polyacrylate, starch-acrylonitrile copolymer, and its hydrolyzate, polyvinyl alcohol modified product, methyl (meth)acrylate
It is characterized by using a super absorbent resin made of a crosslinked product of a polymer selected from the group consisting of a hydrolyzate of vinyl acetate copolymer, a starch-sodium acrylate graft copolymer, and a cellulose-sodium acrylate graft copolymer. A method for dehydrating and concentrating an aqueous solution. 2. The method according to claim 1, wherein the super absorbent resin is a crosslinked polyacrylate with an absorption capacity of 800 times or more. 3 The polyacrylate crosslinked product suspends acrylic acid and an aqueous acrylic acid salt aqueous solution in an alicyclic or aliphatic hydrocarbon solvent in which a surfactant with HLB 8 to 12 coexists, and the presence of a water-soluble radical polymerization initiator The method according to claim 2, which is obtained by carrying out reverse phase suspension polymerization, then adding a crosslinking agent to carry out a crosslinking reaction, and further distilling off the solvent and water and subsequently drying. . 4. The method according to claim 1, wherein the aqueous solution is a dilute aqueous solution containing biopolymer substances such as proteins, enzymes, nucleic acids, and polysaccharides. 5. The method according to claim 1, wherein the semipermeable membrane is a filtration membrane having ultrafiltration properties.
JP7118281A 1981-05-11 1981-05-11 Dehydrating and concentrating method for aqueous solution Granted JPS57187002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7118281A JPS57187002A (en) 1981-05-11 1981-05-11 Dehydrating and concentrating method for aqueous solution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7118281A JPS57187002A (en) 1981-05-11 1981-05-11 Dehydrating and concentrating method for aqueous solution

Publications (2)

Publication Number Publication Date
JPS57187002A JPS57187002A (en) 1982-11-17
JPS6323808B2 true JPS6323808B2 (en) 1988-05-18

Family

ID=13453251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7118281A Granted JPS57187002A (en) 1981-05-11 1981-05-11 Dehydrating and concentrating method for aqueous solution

Country Status (1)

Country Link
JP (1) JPS57187002A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102305925B1 (en) * 2020-10-16 2021-09-28 강원대학교산학협력단 Water removing unit and method for purifying biological samples

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6211768U (en) * 1985-07-09 1987-01-24
JPS6384700A (en) * 1986-09-26 1988-04-15 Agency Of Ind Science & Technol Thickening method for slurry
JP5463506B2 (en) 2005-03-16 2014-04-09 国立大学法人山口大学 Graft polymer, polymer electrolyte membrane, production method thereof, and fuel cell using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5843922Y2 (en) * 1979-12-04 1983-10-05 嘉雄 倉掛 Semipermeable membrane contact dehydration film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102305925B1 (en) * 2020-10-16 2021-09-28 강원대학교산학협력단 Water removing unit and method for purifying biological samples

Also Published As

Publication number Publication date
JPS57187002A (en) 1982-11-17

Similar Documents

Publication Publication Date Title
US4828710A (en) Method for the extraction of water from macromolecular solutions
CA1202748A (en) Hydrophilic polymer carrier for proteins
CA1134977A (en) Method for preparing highly absorbent polymers
JPH0339087B2 (en)
JPH0577453B2 (en)
US5039420A (en) Hydrophilic semipermeable membranes based on copolymers of acrylonitrile and hydroxyalkyl esters of (meth) acrylic acid
Turková [6] Immobilization of enzymes on hydroxyalkyl methacrylate gel
KR920006761B1 (en) A process for preparing crosslinked polymers
US4542069A (en) Vinylene carbonate polymers, a process for their preparation and their use
US7011963B1 (en) Process for synthesis of bead-shaped cross-linked hydrophilic support polymer
EP0217791B1 (en) A process for absorbing water having a ph less than four
EP1310465A1 (en) Process for producing high-purity vinylpyrrolidone polymer
CA1330140C (en) Crosslinked polymers and a process for their preparation
JPS6323808B2 (en)
US4794166A (en) Process for the preparation of a hydrogel which is largely free from monomers
JPS60250015A (en) Permselective resin
JPS6133846B2 (en)
USRE26934E (en) Chromatographic separation of substances of different molec- ular weight
CA1251631A (en) Water-absorbent agents for low ph applications
JPH0623258B2 (en) Hydrophilic porous particles
JP2006095470A (en) Water-absorbing medium, and method for concentrating suspension using it
AU590515B2 (en) A process for absorbing water having a ph less than four
JPS6143092B2 (en)
JP3232614B2 (en) Ion exchange resin and method for producing the same
JPS60250019A (en) Resin for hydrogel