JPS6323248B2 - - Google Patents
Info
- Publication number
- JPS6323248B2 JPS6323248B2 JP55172776A JP17277680A JPS6323248B2 JP S6323248 B2 JPS6323248 B2 JP S6323248B2 JP 55172776 A JP55172776 A JP 55172776A JP 17277680 A JP17277680 A JP 17277680A JP S6323248 B2 JPS6323248 B2 JP S6323248B2
- Authority
- JP
- Japan
- Prior art keywords
- value
- temperature
- steel
- present
- tensile strength
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000831 Steel Inorganic materials 0.000 claims description 43
- 239000010959 steel Substances 0.000 claims description 43
- 238000000137 annealing Methods 0.000 claims description 26
- 239000010960 cold rolled steel Substances 0.000 claims description 14
- 238000000034 method Methods 0.000 claims description 14
- 229910052710 silicon Inorganic materials 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000005097 cold rolling Methods 0.000 claims description 5
- 238000005098 hot rolling Methods 0.000 claims description 5
- 238000010438 heat treatment Methods 0.000 claims description 2
- 239000012535 impurity Substances 0.000 claims description 2
- 239000000203 mixture Substances 0.000 description 17
- 230000032683 aging Effects 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 230000003679 aging effect Effects 0.000 description 5
- 238000002474 experimental method Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 3
- 229910000655 Killed steel Inorganic materials 0.000 description 2
- 238000007664 blowing Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000001953 recrystallisation Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Description
本発明は高い値と焼き付け硬化性を有する高
張力冷延鋼板の製造方法に係り、特に引張強さが
50〜60Kg/mm2級の値が高い高張力冷延鋼板の製
造方法に関する。
最近、自動車部品は軽量化のため高張力鋼を使
用する傾向が益々強くなり、外板関係は引張強さ
40Kg/mm2級まで内板関係はそれ以上の高張力鋼板
を使用するまでに至つている。そのため値が
1.3以上の加工性にすぐれ、かつ引張強さが50
Kg/mm2級以上の高張力鋼板が要求されるものと考
えられるが、現在のところこれに該当する鋼板は
なく、更に上記用途に対しては常温遅時効性で、
かつ焼き付け硬化性が2Kg/mm2以上であることも
望まれている。
従来、値を高くするには鋼組成としてC量を
少くすることが有効であるとされて来た。しかし
高張力冷延鋼板においては、コストの上昇を避け
て強度を高くすることが必要であるので従来は
C:0.03%以上とすることが多かつた。
一方、値の高い鋼板を得るには、バツチ焼鈍
によつて徐々に加熱するのが最も良い方法として
知られているが、この場合には50Kg/mm2以上の引
張強さを得難く、さりとて強度を上げるために
MnやSi特にSiを0.5%以上添加した場合にはテン
パーカラーが発生し易く、実用上好ましくないと
いう未解決の問題があつた。
本発明の目的は、値の高い鋼板を得るための
前記従来技術の欠点を解消し、値が1.3以上で
あつて、しかも引張強さが50Kg/mm2以上であり、
更に常温遅時効性で、かつ焼き付け硬化性が2
Kg/mm2以上である高張力冷延鋼板の製造方法を提
供するにある。
本発明の要旨とするところは次の如くである。
すなわち、重量比にてC:0.01〜0.029%、Si:
0.3〜1.8%、Mn:0.1〜1.0%、P:0.04〜0.20%
およびsolAl:0.01〜0.20%を含有し、かつ(Si+
4P)/Mnにて表わされる値が1〜13の範囲にあ
り、残部がFeおよび不可避的不純物より成る鋼
を熱間圧延工程と冷間圧延工程を経た後連続焼鈍
ラインにより650〜900℃の温度範囲にて2〜150
秒焼鈍し、冷却したコイルをベル型焼鈍炉により
250〜500℃の温度範囲にて0.5〜10時間加熱する
過時効処理を施す工程を有することを特徴とする
高い値と焼き付け硬化性を有する高張力冷延鋼
板の製造方法である。
本発明者らが本発明を得るに至るまでの数多く
の実験と、これより得た本発明の必須要件となる
重要な知見について説明する。
先づ値を高くする一つの手段としてのCの低
減については、最近では底吹き転炉の使用によつ
て溶鋼中のCは0.01%程度まで比較的容易に下げ
ることが可能となり、Cを低減するために著しく
製造コストが高くなるという不利が解消されつつ
あり、更にテンパーカラーの発生の問題も連続焼
鈍法を採用することによりSiを1%以上添加して
もテンパーカラーが発生しにくく、引張強度をも
阻害することがなくなつた。かくの如く最近の製
鋼技術の進歩によつて従来の問題の一部が解消さ
れたので本発明の目的達成にもこれらの利点を十
分に活用することとした。
そこでC量を0.01〜0.029%の範囲として値
が高くなることを第1の目標としてC量が少い代
りにMn,PおよびSiを添加または増量すること
によつて引張強さを確保することを狙つて実験し
た。
先づCを0.01〜0.03%とし、P,MnおよびSi
量をそれぞれ0.25%以下、0.1〜1.5%および2.0%
以下の範囲で種々変えたアルミキルド鋼を溶製
し、得られた鋼塊を熱延後冷延によつて0.8mm厚
に仕上げた。この冷延板を800℃で1分間連続焼
鈍し、室温までほぼ50℃/secの冷却速度で冷却
した場合の機械的性質に及ぼす各元素の影響を調
査した。その結果得た知見は次のとおりである。
(イ) Siを添加せず、Mnを約0.5%と一定にしてP
含有量の影響を調べると、Pを約0.20%添加し
ても50Kg/mm2以上の引張強さが得られず、延性
の低下が激しいので、これ以上のPの増量は無
意味である。しかし値はP含有量が増加する
に従つて高くなるので0.20%以下の適量のPを
添加することは本発明の必須要件の一つであ
る。
(ロ) Siを添加せず、Pを約0.10%と一定にして
Mn量の影響を調べると、Mn量が1.0%を越え
る場合には引張強さが50Kg/mm2以上になるが、
r値が低くなり好ましくないのでMnの上限を
1.0%とすべきである。しかしMn量が0.1%以
下では50Kg/mm2以上の引張強さが得難いので、
Mn量は値をあまり低下させない範囲の1.0%
以下の適量に止め、引張強さの不足は第3の元
素により解決すべきである。第3の元素として
Siが好適である。
(ハ) Pを約0.10%、Mnを約0.5%と一定にしてSi
添加の影響を調べた結果、Si含有量が増加する
に従い値と伸びが低下するが、その低下の度
合が小さく、また少くとも0.3%のSi量で引張
強さ50Kg/mm2以上が確保できる。従つて少くと
も0.3%のSiは本発明の必須要件の一つである。
しかしSiが1.8%を越えると値の劣化が大と
なるのでその上限を1.8%とすべきである。
(ニ) 更に多くの実験を重ねた結果、高値、高延
性および引張強さ50Kg/mm2以上の高強度のすべ
てを満足するには
C:0.01〜0.029%
Si:0.3〜1.8%
Mn:0.1〜1.0%
P:0.04〜0.20%
を含有するアルミキルド鋼が本発明における必
須の組成であることが判明した。
上記(イ),(ロ),(ハ),(ニ)の知見に基き上記組成の
鋼
を溶製し、熱延、冷延を経て連続焼鈍ラインで短
時間焼鈍した鋼板は機械的性質は満足できるもの
の、時効性が極めて悪く、熱延、冷延条件および
過時効処理を含む連続焼鈍条件を如何に変えても
時効指数(以下A,Iと略称する)が4Kg/mm2以
下に低下しなかつた。従つてこのような鋼板は常
温時効するのでプレス加工時にストレツチヤース
トレーンが発生し、機械的性質がすぐれていても
本発明の目的に副うことはできない。
更に他の一つの問題点は降伏点が高く、降伏比
が80〜90%にも達するので加工硬化指数n値が低
いことである。
上記2つの問題点を解決するため、前記組成の
範囲で異なる種々の鋼を溶製し実験を繰返した結
果次の要件を満足することによつて上記2つの問
題点を同時に解決することができた。
(a) 鋼の成分組成としては上記必須要件を満足す
るほかにSi+4P/Mn=Aにて表わされるA値
が1〜13、好ましくは1.5〜8の範囲にあるよ
うにSi,P,Mnを調整する。
(b) 連続焼鈍後の鋼板もしくは鋼帯(以下鋼板と
総称する)をベル型焼鈍炉によつて過時効処理
し、その処理条件を250〜500℃の温度範囲に
0.5〜10時間保持することとし、前記A値が大
きい組成のものほど高温かつ、長時間もしくは
何れか一方の高温もしくは長時間保持するよう
に制御する。焼鈍をベル型焼鈍炉としたのは
0.5〜10時間という長時間の処理を行うのに、
連続焼鈍炉では不向きであるためである。
上記(a),(b)の2要件も本発明の必須要件であ
る。なお、本発明による高張力冷延鋼板の組成に
ついては前記C,Si,Mn,Pの限定量のほかに
solAlが0.01〜0.20%であることを要し、これらの
化学成分の限定理由は次の如くである。
C:
Cは低いほど値が高くなることは周知のと
おりであが、本発明の目的から少くとも0.029
%以下にすべきである。しかし0.01%未満にす
るには脱ガス処理などを必要とし製造コストが
高くなるので0.01〜0.029%とする。
Si:
先に述べた如くSiは高強度と高延性を併せ得
るために必要な元素であつて、そのために少く
とも0.3%が必要であるが、1.8%を越えると
値の劣化が大きいので0.3〜1.8%の範囲に限定
した。
Mn:
Mnは脱硫のため少くとも0.1%以上を必要と
し、かつ強度を高くするのに有効な元素である
が、1.0%を越えると値が低下するので0.1〜
1.0%の範囲に限定した。
P:
Pは高い値と高強度を得るために少くとも
0.04%以上含有させることが必要であるが、延
性を低下する欠点があるのでその上限を0.20%
とし、0.04〜0.20%の範囲とした。
sol,Al:
Alは鋼中のNをAlNとして固定しN時効を
防止し、かつ脱酸のため不可欠の元素であつ
て、そのために少くともsol,Alとして0.01%
以上を必要とするが、0.20%を越すとアルミナ
クラスターを形成して表面性状を劣化するので
0.01〜0.20%の範囲に限定した。
上記限定成分のほかにSi,Mn,Pの間には
Si+4P/Mn=A ……(1)
(1)式にて表わすAの値が1〜13、好ましくは
1.5〜8であることが必須要件であることは既に
記載のとおりである。
上記限定組成を有する鋼の製造は造塊法によつ
てもよく、また連続鋳造法によつてもよい。
熱間圧延条件は高張力冷延鋼板を圧延する通常
の条件で行つてよいが、熱延後の巻取温度は高い
方が良く通常の500〜600℃よりも650〜750℃の方
が好ましい。
次に冷間圧延条件も特に限定する必要がない
が、冷間圧延率を80%程度に高くした方が高い
値を得るために有効である。
次に焼鈍工程の限定理由について説明する。連
続焼鈍工程では、再結晶と十分な結晶粒の成長を
短時間に行なうことが必要である。そのためには
650〜900℃の温度範囲が必須要件であつて、650
℃未満では結晶粒の成長が不十分で値が低く、
また900℃を越えると却つて値が低下するので
650〜900℃の温度範囲に限定した。また均熱時間
も上記と同様の理由により2〜150秒とする。
連続焼鈍後の鋼板の冷却速度は、高い値を確
保するため、フエライトとマルテンサイトの混合
組織にならない範囲で、経済的にはなるべく速い
速度で冷却することが望ましい。冷却された鋼板
は巻き取られて、必須の要件であるところのベル
炉による過時効処理に移されるのであるが、この
とき連続焼鈍ライン内の過時効帯を通過させる必
要はなく、また、もともと過時効帯のない単純な
連続焼鈍ラインを用いてもよい。
過時効処理と連続焼鈍のヒートパターンは第1
図に示すような相異点がある。すなわち、連続焼
鈍は高温で短時間の焼鈍であり、冷却速度が大き
いが、過時効処理は250〜500℃の低温で0.5時間
以上10時間以下の長時間処理であり、冷却速度は
小さい。
過時効処理の目的はA.I.を4Kg/mm2以下とし、
2.0Kg/mm2以上の焼き付け硬化性を付与するにあ
る。そのために過時効処理における保持温度が
250℃未満の場合には温度が低きに過ぎて過時効
が進行せず、また保持温度が500℃を越しても500
℃の場合とほぼ同一のA.I.しか得られないのでエ
ネルギー節減のため上限を500℃とした。
また、上記温度範囲における保持時間として
は、過時効が最も進行し易い400〜500℃の温度に
おいて、A.I.を4Kg/mm2以下とするために少くと
も0.5時間を必要とし、また10時間を越して保持
すると焼き付け硬化性を失つてしまうか、A.I.の
低下の度合が極めて小さくなつてしまうので経済
性を考慮し0.5〜10時間の時間範囲に限定した。
ここで本発明者らは、A.I.および焼き付け硬化
性と過時効処理における保持温度および保持時間
の関係は成分組成によつて影響があり、特に先に
示したSi+4P/Mn=Aにて表わされるA値と密
接な関係があることを見出した。すなわち、Si+
4P/Mn=Aにて表わされるA値と、A.I.および
焼き付け硬化量との関係は、第2図に示す如く過
時効処理条件をパラメーターとしてそれぞれP1,
P2およびQ1,Q2曲線にて示される如き関係が存
在する。前記P1,P2およびQ1,Q2の4本の曲線
は過時効処理条件の範囲内におけるそれぞれ250
℃×0.5hの低温、短時間と、500℃×10hの高温・
長時間の限界線を示すものである。
本発明の鋼板の特性としてA.I.が4Kg/mm2以
下、焼き付け硬化量が2Kg/mm2以上であることが
要請されるので過時効処理工程では第2図より明
らかな如く、前記A値が1〜13、特に好ましくは
1.5〜8の範囲内にあることが必須の要件となる。
而して実際操業においては、A値の大きい組成
の場合には過時効処理を高温・長時間側で行い、
A値の小さい場合には低温、短時間の処理も可能
である。
かくの如く、本発明の組成を有する鋼板が連続
焼鈍ラインにおける短時間の過時効処理では時効
性がほとんど改良することができず、ベル炉によ
る過時効処理によつて初めて時効性が改良され
る。その理由は未だ解明されていないが、次の如
くであると考えられる。
すなわち、過時効の進行速度は一般にCの過飽
和度や析出サイトの数によつて変化する。ところ
が本発明のC量の0.01〜0.029%の範囲では、析
出サイトとなるセメンタイト量が少く、元来過時
効が進行しにくいが、SiやPが少い場合には従来
公知の如く過時効が進行する。ところが、本発明
ではSiおよびPが多量に含まれており、特に前記
A値が1以上の場合には、フエライト中へのCの
固溶限度が高く、Cの過飽和度がより低くなる関
係上、Cの拡散と析出に長時間を要することによ
るものと考えられる。
実施例
底吹き転炉で溶製した第1表左に示す組成を有
する12種の鋼を熱延仕上温度890℃、巻き取り温
The present invention relates to a method for producing high-strength cold-rolled steel sheets having high tensile strength and bake hardenability.
This invention relates to a method for manufacturing high-strength cold-rolled steel sheets with a high grade 2 value of 50 to 60 Kg/mm. Recently, there has been a growing trend to use high-strength steel for automobile parts to reduce weight, and tensile strength steel is used for outer panels.
High tensile strength steel plates of up to 40Kg/mm class 2 and higher are now used for inner plates. Therefore, the value
Excellent workability of 1.3 or higher and tensile strength of 50
Although it is thought that a high tensile strength steel plate of Kg/mm class 2 or above is required, there is currently no steel plate that corresponds to this, and furthermore, for the above applications, it is suitable for slow aging at room temperature.
It is also desired that the baking hardenability is 2 kg/mm 2 or more. Conventionally, it has been considered effective to reduce the amount of C in the steel composition in order to increase the value. However, in high-tensile cold-rolled steel sheets, it is necessary to increase the strength while avoiding an increase in cost, so C: 0.03% or more has conventionally been used in many cases. On the other hand, in order to obtain a steel plate with a high value, it is known that the best method is to gradually heat it by batch annealing, but in this case, it is difficult to obtain a tensile strength of 50 kg/mm 2 or more, and it is to increase strength
There was an unresolved problem that temper color tends to occur when Mn or Si, especially Si, is added in an amount of 0.5% or more, which is not desirable in practice. The object of the present invention is to eliminate the drawbacks of the prior art for obtaining a steel plate with a high value of 1.3 or more and a tensile strength of 50 Kg/mm 2 or more,
Furthermore, it has slow aging properties at room temperature and bake hardenability of 2.
The present invention provides a method for producing a high tensile strength cold rolled steel sheet having a tensile strength of Kg/mm 2 or more. The gist of the present invention is as follows.
That is, in terms of weight ratio, C: 0.01 to 0.029%, Si:
0.3-1.8%, Mn: 0.1-1.0%, P: 0.04-0.20%
and solAl: 0.01 to 0.20%, and (Si+
Steel having a value expressed by 4P)/Mn in the range of 1 to 13, with the remainder consisting of Fe and unavoidable impurities, is subjected to a hot rolling process and a cold rolling process, followed by a continuous annealing line at 650 to 900℃. 2-150 in temperature range
Second-annealed and cooled coils are placed in a bell-shaped annealing furnace.
A method for producing a high-strength cold-rolled steel sheet having a high value and bake hardenability, characterized by comprising a step of performing an overaging treatment of heating in a temperature range of 250 to 500°C for 0.5 to 10 hours. The numerous experiments that the present inventors conducted to arrive at the present invention and the important findings that are essential to the present invention obtained from these experiments will be described. First, regarding the reduction of C as a means of increasing the value, recently the use of bottom blowing converters has made it possible to relatively easily lower the C in molten steel to around 0.01%, reducing C. The disadvantage of significantly higher manufacturing costs due to the use of silicon is being resolved, and the problem of temper color generation is being resolved by adopting a continuous annealing method, which makes it difficult to generate temper color even when 1% or more of Si is added. It no longer inhibits strength. As described above, some of the conventional problems have been solved by recent advances in steel manufacturing technology, and it was decided to make full use of these advantages to achieve the object of the present invention. Therefore, the first goal is to increase the C content by setting it in the range of 0.01 to 0.029%, and instead of reducing the C content, add or increase Mn, P, and Si to ensure tensile strength. I experimented with the aim of First, C is 0.01 to 0.03%, P, Mn and Si
0.25% or less, 0.1-1.5% and 2.0% respectively
Aluminum-killed steel with various changes in the following range was produced, and the obtained steel ingot was hot-rolled and then cold-rolled to a thickness of 0.8 mm. This cold-rolled sheet was continuously annealed at 800°C for 1 minute and cooled to room temperature at a cooling rate of approximately 50°C/sec, and the influence of each element on the mechanical properties was investigated. The findings obtained as a result are as follows. (b) P without adding Si and keeping Mn constant at about 0.5%
Examining the influence of the content, it was found that even if approximately 0.20% of P was added, a tensile strength of 50 Kg/mm 2 or more could not be obtained, and the ductility was drastically reduced, so it was meaningless to increase the amount of P any further. However, the value increases as the P content increases, so adding an appropriate amount of P of 0.20% or less is one of the essential requirements of the present invention. (b) Without adding Si and keeping P constant at about 0.10%
Examining the influence of Mn content, when the Mn content exceeds 1.0%, the tensile strength becomes 50 Kg/mm 2 or more, but
The upper limit of Mn is
Should be 1.0%. However, if the Mn content is less than 0.1%, it is difficult to obtain a tensile strength of 50 Kg/mm 2 or more.
The amount of Mn is 1.0%, which is within the range that does not significantly reduce the value.
The amount below should be kept at an appropriate level, and the lack of tensile strength should be solved by adding a third element. as the third element
Si is preferred. (c) Si with P constant at about 0.10% and Mn constant at about 0.5%.
As a result of investigating the effect of addition, the value and elongation decrease as the Si content increases, but the degree of decrease is small, and a tensile strength of 50 Kg/mm 2 or more can be secured with an Si content of at least 0.3%. . Therefore, at least 0.3% Si is one of the essential requirements of the present invention.
However, if Si exceeds 1.8%, the value deteriorates significantly, so the upper limit should be set at 1.8%. (d) As a result of many more experiments, in order to satisfy all of the requirements of high value, high ductility, and high strength with tensile strength of 50 Kg/mm 2 or more, C: 0.01 to 0.029% Si: 0.3 to 1.8% Mn: 0.1 It has been found that aluminum killed steel containing ~1.0% P:0.04~0.20% is an essential composition in the present invention. Based on the knowledge of (a), (b), (c), and (d) above, the steel plate with the above composition is melted, hot-rolled, cold-rolled, and then annealed for a short time on a continuous annealing line, and the mechanical properties are as follows: Although satisfactory, the aging properties are extremely poor, and the aging index (hereinafter abbreviated as A and I) decreases to 4 kg/mm 2 or less no matter how the hot rolling, cold rolling conditions, and continuous annealing conditions including overaging treatment are changed. I didn't. Therefore, since such a steel sheet is aged at room temperature, stretcher strain occurs during press working, and even if it has excellent mechanical properties, it cannot be used for the purpose of the present invention. Another problem is that the yield point is high and the yield ratio reaches 80 to 90%, so the work hardening index n value is low. In order to solve the above two problems, we melted various steels with different compositions and repeated experiments. As a result, we were able to solve the above two problems at the same time by satisfying the following requirements. Ta. (a) In addition to satisfying the above essential requirements, the composition of the steel should include Si, P, and Mn so that the A value expressed by Si+4P/Mn=A is in the range of 1 to 13, preferably 1.5 to 8. adjust. (b) After continuous annealing, the steel plate or steel strip (hereinafter collectively referred to as steel plate) is over-aged in a bell-type annealing furnace, and the treatment conditions are set to a temperature range of 250 to 500℃.
It is assumed that the temperature is maintained for 0.5 to 10 hours, and the composition is controlled so that the higher the A value, the higher the temperature and the longer the temperature, or the higher the temperature, or the longer the temperature is maintained. The bell-shaped annealing furnace was used for annealing.
Although the process takes a long time of 0.5 to 10 hours,
This is because it is not suitable for continuous annealing furnaces. The above two requirements (a) and (b) are also essential requirements of the present invention. In addition to the above-mentioned limited amounts of C, Si, Mn, and P, regarding the composition of the high-strength cold-rolled steel sheet according to the present invention,
The content of solAl is required to be 0.01 to 0.20%, and the reasons for limiting these chemical components are as follows. C: It is well known that the lower the value of C, the higher the value, but for the purpose of the present invention, it is at least 0.029.
% or less. However, reducing it to less than 0.01% requires degassing treatment, which increases manufacturing costs, so it is set at 0.01 to 0.029%. Si: As mentioned earlier, Si is an element necessary to achieve both high strength and high ductility, and for this purpose, at least 0.3% is required, but if it exceeds 1.8%, the value will deteriorate significantly, so Si is an element necessary to achieve both high strength and high ductility. It was limited to a range of ~1.8%. Mn: Mn requires at least 0.1% or more for desulfurization and is an effective element for increasing strength, but if it exceeds 1.0%, the value decreases, so 0.1% or more
It was limited to a range of 1.0%. P: P is at least
It is necessary to contain 0.04% or more, but since it has the disadvantage of reducing ductility, the upper limit is set at 0.20%.
and the range was 0.04% to 0.20%. sol, Al: Al is an essential element for fixing N in steel as AlN, preventing N aging, and deoxidizing, and for this purpose, at least 0.01% as sol, Al.
However, if it exceeds 0.20%, alumina clusters will form and the surface quality will deteriorate.
It was limited to a range of 0.01-0.20%. In addition to the above limiting components, Si+4P/Mn=A between Si, Mn, and P... (1) The value of A expressed in equation (1) is 1 to 13, preferably
As already stated, it is an essential requirement that the value be 1.5 to 8. The steel having the above-described limited composition may be produced by an ingot-forming method or by a continuous casting method. The hot rolling conditions may be the usual conditions for rolling high-strength cold-rolled steel sheets, but the coiling temperature after hot rolling should be higher, and 650-750°C is preferable than the usual 500-600°C. . Next, there is no need to particularly limit the cold rolling conditions, but it is effective to increase the cold rolling rate to about 80% in order to obtain a high value. Next, the reason for limiting the annealing process will be explained. In the continuous annealing process, it is necessary to perform recrystallization and sufficient crystal grain growth in a short time. for that purpose
A temperature range of 650-900℃ is an essential requirement;
Below ℃, the growth of crystal grains is insufficient and the value is low.
Also, if the temperature exceeds 900℃, the value will actually decrease.
The temperature range was limited to 650-900℃. Also, the soaking time is set to 2 to 150 seconds for the same reason as above. In order to ensure a high cooling rate of the steel plate after continuous annealing, it is desirable to cool the steel plate as fast as possible economically without forming a mixed structure of ferrite and martensite. The cooled steel plate is rolled up and transferred to the overaging treatment in a bell furnace, which is an essential requirement, but there is no need to pass it through the overaging zone in the continuous annealing line; A simple continuous annealing line without overaging zones may be used. The heat pattern of overaging treatment and continuous annealing is the first
There are differences as shown in the figure. That is, continuous annealing is annealing at a high temperature for a short time and has a high cooling rate, whereas overaging treatment is a long time treatment at a low temperature of 250 to 500°C for 0.5 hours or more and 10 hours or less, and the cooling rate is low. The purpose of overaging treatment is to reduce the AI to 4Kg/mm 2 or less,
The purpose is to provide baking hardenability of 2.0Kg/mm 2 or more. Therefore, the holding temperature during overaging treatment is
If the temperature is less than 250℃, the temperature is too low and overaging will not proceed, and even if the holding temperature exceeds 500℃,
Since the AI obtained is almost the same as in the case of °C, the upper limit was set at 500 °C to save energy. In addition, as for the holding time in the above temperature range, at the temperature of 400 to 500℃ where overaging is most likely to proceed, at least 0.5 hour is required to keep AI below 4Kg/ mm2 , and more than 10 hours. If held for a long time, the baking hardenability would be lost or the degree of decrease in AI would be extremely small, so the time range was limited to 0.5 to 10 hours in consideration of economic efficiency. Here, the present inventors have found that the relationship between AI and bake hardenability, and the holding temperature and holding time in overaging treatment is affected by the component composition, and in particular, A We found that there is a close relationship with the value. That is, Si+
The relationship between the A value expressed by 4P/Mn=A, AI, and the amount of baking hardening is as shown in Figure 2, using the overaging treatment conditions as parameters, P 1 and P 1 , respectively.
A relationship exists as shown by the P 2 and Q 1 , Q 2 curves. The above four curves P 1 , P 2 and Q 1 , Q 2 are respectively 250% within the range of overaging treatment conditions.
Low temperature and short time of ℃×0.5h and high temperature of 500℃×10h.
It shows the long-term limit line. As the characteristics of the steel sheet of the present invention, it is required that the AI is 4 kg/mm 2 or less and the bake hardening amount is 2 kg/mm 2 or more. ~13, particularly preferably
It is an essential requirement that it be within the range of 1.5 to 8. Therefore, in actual operation, in the case of a composition with a large A value, overaging treatment is performed at high temperature and for a long time.
When the A value is small, low-temperature and short-time processing is also possible. As described above, the aging property of the steel sheet having the composition of the present invention can hardly be improved by short-time overaging treatment in a continuous annealing line, and the aging property can only be improved by overaging treatment in a bell furnace. . The reason for this has not yet been elucidated, but it is thought to be as follows. That is, the progress rate of overaging generally changes depending on the degree of C supersaturation and the number of precipitation sites. However, in the range of 0.01 to 0.029% of the C content of the present invention, the amount of cementite that serves as a precipitation site is small, and overaging is inherently difficult to progress, but when Si and P are small, overaging occurs as conventionally known. proceed. However, in the present invention, Si and P are contained in large amounts, and especially when the A value is 1 or more, the solid solubility limit of C in ferrite is high and the degree of supersaturation of C is lower. This is thought to be due to the fact that diffusion and precipitation of C takes a long time. Example Twelve types of steel having the compositions shown in Table 1 left were melted in a bottom blowing converter and hot-rolled at a finishing temperature of 890°C and at a coiling temperature.
【表】
度710℃で熱延して3.2mm厚とし、冷延によつて
0.75mm厚に仕上げた。連続焼鈍は850℃で60秒保
持した後強制空冷によつて室温近くまで冷却して
コイルに巻き取り、過時効処理はベル炉にて第1
表に示す温度と時間保持し、炉冷とした。この後
1.5%のスキンパスをかけられた製品の機械的性
質と時効特性は同表右半分に示すとおりである。
第1表において本発明の限定外条件もしくは限定
外特性にアンダーラインを附した。
No.1およびNo.2鋼は本発明に基く組成ではな
く、引張強さが不足するか、値が低いかする比
較鋼であり、250℃×0.5hの低温・短時間側限界
条件の過時効処理で焼き付け硬化性がなくなつて
いる。No.3〜No.5鋼は本発明鋼であり、値が
1.4〜1.6と高く、焼き付け硬化量も3.5〜4.7Kg/
mm2有している。No.6鋼は本発明の組成であるが
400℃×5minの過時効処理帯を通過させたもの
で、A.I.が7.2Kg/mm2と高く、常温時効する。No.7
鋼も本発明に含まれる組成であるが、No.6鋼とは
逆に過時効処理を高温で長時間行なつたため、焼
き付け硬化性がほとんどなくなつた例である。No.
8およびNo.9鋼は本発明鋼であり、焼き付け硬化
量はNo.3〜No.5鋼より大きい。No.10鋼も本発明鋼
であり、60Kg/mm2級の引張強さを持ち、焼き付け
硬化量も大きい。No.11とNo.12鋼は引張強さは60
Kg/mm2級であるが値が低く、また過時効処理を
高温で長時間行なつてもA.I.が4Kg/mm2以下にな
つていない。本発明鋼は値がいずれも1.3以上
と高く、伸びは引張強さが高いにも拘らず大であ
り、かつ降伏比は70%程度であり更にA.I.は4
Kg/mm2以下であつて焼き付け硬化性は2Kg/mm2以
上あるのが特徴であつて、本発明による方法によ
つてのみこの要件を満足する高張力冷延鋼板の製
造が可能である。
上記実施例より明らかな如く、本発明による高
張力冷延鋼板の製造方法においては、C,Si,
Mn,PおよびsolAlの成分組成を限定すると共
にSi+4P/Mnにて表わされるA値を1〜13、好
ましくは1.5〜8の範囲に限定し、かつ連続焼鈍
条件を規制したほか、過時効処理をベル炉によつ
て低温・長時間過時効処理することにより次のす
ぐれた効果を有する高い値と焼き付け硬化性を
有する高張力冷延鋼板の製造が可能となつた。
(イ) が常に安定して1.3以上の加工性にすぐれ、
かつ時効指数(A.I.)が4Kg/mm2以下と常温遅
時効性にして焼き付け硬化性が2Kg/mm2以上、
引張強さが50〜60Kg/mm2の高張力冷延鋼板の製
造が可能となつた。
(ロ) 本発明鋼の降伏比が70%程度であることによ
つてもすぐれた加工性が証明される。
(ハ) 現在連続焼鈍ラインによる冷延鋼板の製造比
率が増加しつつあり、その結果従来使用して来
たベル炉が遊休化もしくは稼動率の低下を来た
す懼れのあるとき本発明ではこれを活用する道
を拓いた。
(ニ) 本発明では再結晶と結晶粒の成長のためには
高温、短時間、時効性と降伏比の改善のために
は、低温、長時間過時効処理するという理想的
な工程の組合わせにより実施可能である。[Table] Hot rolled at 710°C to a thickness of 3.2mm, then cold rolled.
Finished with a thickness of 0.75mm. Continuous annealing is performed by holding the temperature at 850°C for 60 seconds, then cooling it to near room temperature by forced air cooling, and winding it into a coil.
The temperature and time shown in the table were maintained, and the mixture was cooled in the furnace. After this
The mechanical properties and aging characteristics of products subjected to a 1.5% skin pass are shown in the right half of the same table.
In Table 1, conditions or characteristics outside the limitations of the present invention are underlined. No. 1 and No. 2 steels do not have compositions based on the present invention, and are comparison steels that either lack tensile strength or have low tensile strength, and exceed the low temperature and short time limit conditions of 250°C x 0.5 h. The baking hardenability has been lost due to aging treatment. No. 3 to No. 5 steels are the steels of the present invention, and the values are
It is high at 1.4-1.6, and the baking hardening amount is 3.5-4.7Kg/
It has mm 2 . No. 6 steel has the composition of the present invention.
It passed through an over-aging treatment zone at 400℃ for 5 minutes, had a high AI of 7.2Kg/ mm2 , and was aged at room temperature. No.7
Steel also has a composition included in the present invention, but contrary to No. 6 steel, this is an example in which the overaging treatment was performed at high temperature for a long period of time, so that the bake hardenability was almost completely lost. No.
Steels No. 8 and No. 9 are steels of the present invention, and the amount of bake hardening is larger than steels No. 3 to No. 5. No. 10 steel is also a steel of the present invention, and has a tensile strength of 60 Kg/mm 2nd grade and a large amount of baking hardening. No.11 and No.12 steel have tensile strength of 60
Kg/mm 2 grade, but the value is low, and the AI does not fall below 4 Kg/mm 2 even after over-aging treatment at high temperatures for a long time. The steel of the present invention has high values of 1.3 or more, has a large elongation despite its high tensile strength, has a yield ratio of about 70%, and has an AI of 4.
Kg/mm 2 or less and bake hardenability is 2 Kg/mm 2 or more, and it is possible to produce a high-strength cold-rolled steel sheet that satisfies these requirements only by the method of the present invention. As is clear from the above examples, in the method for manufacturing high-strength cold-rolled steel sheets according to the present invention, C, Si,
In addition to limiting the component compositions of Mn, P and solAl, the A value expressed by Si+4P/Mn was limited to a range of 1 to 13, preferably 1.5 to 8, and continuous annealing conditions were regulated. By performing low-temperature, long-term overaging treatment in a bell furnace, it has become possible to produce high-strength cold-rolled steel sheets with high values and bake hardenability that have the following excellent effects. (a) is always stable and has excellent workability of 1.3 or higher,
And the aging index (AI) is 4Kg/ mm2 or less, slow aging at room temperature, and the baking hardenability is 2Kg/mm2 or more .
It has become possible to produce high-strength cold-rolled steel sheets with a tensile strength of 50 to 60 kg/mm 2 . (b) The fact that the steel of the present invention has a yield ratio of about 70% also proves its excellent workability. (c) Currently, the proportion of cold-rolled steel sheets manufactured by continuous annealing lines is increasing, and as a result, there is a fear that the conventionally used bell furnaces will become idle or the operating rate will decrease. It paved the way for its use. (d) In the present invention, an ideal process combination is used: high temperature and short time for recrystallization and grain growth, and low temperature and long overaging treatment for improving aging properties and yield ratio. It can be implemented by
第1図は本発明による高張力冷延鋼板の製造工
程における連続焼鈍と過時効処理のヒートパター
ンを示す時間−温度曲線、第2図は本発明の要件
の一つであるSi+4P/Mn=Aにて表わされるA
値と、過時効処理条件の時効指数(A.I.)および
焼き付け硬化量に及ぼす影響を示す相関図であ
る。
Figure 1 is a time-temperature curve showing the heat pattern of continuous annealing and overaging treatment in the manufacturing process of high-strength cold-rolled steel sheets according to the present invention, and Figure 2 is one of the requirements of the present invention, Si + 4P / Mn = A A represented by
FIG. 3 is a correlation diagram showing the influence of overaging treatment conditions on the aging index (AI) and the amount of baking hardening.
Claims (1)
%、Mn:0.1〜1.0%、P:0.04〜0.20%および
solAl:0.01〜0.20%を含有し、かつ(Si+
4P)/Mnにて表わされる値が1〜13の範囲にあ
り、残部がFeおよび不可避的不純物より成る鋼
を熱間圧延工程と冷間圧延工程を経た後連続焼鈍
ラインにより650〜900℃の温度範囲にて2〜150
秒焼鈍し、冷却したコイルをベル型焼鈍炉により
250〜500℃の温度範囲にて0.5〜10時間加熱する
過時効処理を施す工程を有することを特徴とする
高い値と焼き付け硬化性を有する高張力冷延鋼
板の製造方法。1 C: 0.01-0.029%, Si: 0.3-1.8 by weight ratio
%, Mn: 0.1-1.0%, P: 0.04-0.20% and
Contains solAl: 0.01~0.20% and (Si +
Steel having a value expressed by 4P)/Mn in the range of 1 to 13, with the remainder consisting of Fe and unavoidable impurities, is subjected to a hot rolling process and a cold rolling process, followed by a continuous annealing line at 650 to 900℃. 2-150 in temperature range
Second-annealed and cooled coils are placed in a bell-shaped annealing furnace.
A method for producing a high tensile strength cold-rolled steel sheet having a high value and bake hardenability, the method comprising the step of performing an overaging treatment by heating in a temperature range of 250 to 500°C for 0.5 to 10 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17277680A JPS5798630A (en) | 1980-12-08 | 1980-12-08 | Manufacture of high-tension cold-rolled steel plate with high lankford value and baking hardness |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17277680A JPS5798630A (en) | 1980-12-08 | 1980-12-08 | Manufacture of high-tension cold-rolled steel plate with high lankford value and baking hardness |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5798630A JPS5798630A (en) | 1982-06-18 |
JPS6323248B2 true JPS6323248B2 (en) | 1988-05-16 |
Family
ID=15948126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP17277680A Granted JPS5798630A (en) | 1980-12-08 | 1980-12-08 | Manufacture of high-tension cold-rolled steel plate with high lankford value and baking hardness |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5798630A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04325654A (en) * | 1991-04-25 | 1992-11-16 | Sumitomo Metal Ind Ltd | High tensile strength steel sheet haivng hardenability in coating/baking and its manufacture |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS57143464A (en) * | 1981-03-02 | 1982-09-04 | Kobe Steel Ltd | High-strength cold-rolled steel plate with superior enameling hardenability and its manufacture |
CN113462857B (en) * | 2021-06-04 | 2022-10-18 | 湖南华菱涟钢特种新材料有限公司 | Electrical steel and preparation method thereof |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5157623A (en) * | 1974-11-18 | 1976-05-20 | Nippon Kokan Kk | Takaitosoyakitsukekokaseitosugureta hijikoseiomotsukochoryokureienkohanno seizohoho |
JPS55100933A (en) * | 1979-01-24 | 1980-08-01 | Kobe Steel Ltd | Production of high tensile steel plate excellent in deep drawing and non-aging property by use of continuous annealing |
-
1980
- 1980-12-08 JP JP17277680A patent/JPS5798630A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5157623A (en) * | 1974-11-18 | 1976-05-20 | Nippon Kokan Kk | Takaitosoyakitsukekokaseitosugureta hijikoseiomotsukochoryokureienkohanno seizohoho |
JPS55100933A (en) * | 1979-01-24 | 1980-08-01 | Kobe Steel Ltd | Production of high tensile steel plate excellent in deep drawing and non-aging property by use of continuous annealing |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04325654A (en) * | 1991-04-25 | 1992-11-16 | Sumitomo Metal Ind Ltd | High tensile strength steel sheet haivng hardenability in coating/baking and its manufacture |
Also Published As
Publication number | Publication date |
---|---|
JPS5798630A (en) | 1982-06-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6323248B2 (en) | ||
JPH108143A (en) | Production of thin steel sheet excellent in workability and hardenability in coating/backing | |
JPS62112731A (en) | Manufacture of steel sheet hardenable by baking and having superior deep drawability | |
JPH04120217A (en) | Manufacture of cold-rolled steel sheet having excellent baking hardenability of paint | |
JP2560168B2 (en) | Method for producing cold-rolled steel sheet excellent in paint bake hardenability at low temperature | |
JPS5913030A (en) | Manufacture of cold rolled al killed steel plate with superior deep drawability | |
JPS6367524B2 (en) | ||
JPS59123720A (en) | Production of cold rolled steel sheet for deep drawing | |
JPH0681045A (en) | Production of cold rolled steel sheet excellent in workability and baking hardenability | |
JPH04131357A (en) | Steel sheet for deep drawing having excellent baking hardenability and non-aging property and production thereof | |
JPH026814B2 (en) | ||
JPH0545655B2 (en) | ||
JP4332960B2 (en) | Manufacturing method of high workability soft cold-rolled steel sheet | |
JPS6349726B2 (en) | ||
JPS5980727A (en) | Manufacture of cold rolled steel sheet with high drawability by continuous annealing | |
JPH0394020A (en) | Production of cold rolled steel sheet for deep drawing excellent in resistance to secondary working brittleness | |
JPH01177321A (en) | Manufacture of cold rolled steel sheet excellent in deep drawability | |
JPH05331553A (en) | Manufacture of baking hardensability steel sheet for deep drawing excellent in delayed aging property | |
JPH07100817B2 (en) | Method for manufacturing slow-aging cold-rolled steel sheet | |
JPS6112007B2 (en) | ||
JPH0639622B2 (en) | Method for producing soft cold-rolled steel sheet by continuous annealing excellent in deep drawability and non-aging at room temperature | |
JPS6119739A (en) | Preparation of high tensile steel plate having good drawing property by continuous annealing | |
JPH06145809A (en) | Manufacture of cold rolled steel sheet having excellent aging resistance and workability | |
JPH07242949A (en) | Production of cold rolled steel sheet for deep drawing excellent in baking hardenability | |
JPS6067627A (en) | Preparation of steel plate for soft surface treatment excellent in fluting resistance by continuous annealing |