JPS63228763A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS63228763A
JPS63228763A JP6302687A JP6302687A JPS63228763A JP S63228763 A JPS63228763 A JP S63228763A JP 6302687 A JP6302687 A JP 6302687A JP 6302687 A JP6302687 A JP 6302687A JP S63228763 A JPS63228763 A JP S63228763A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
compound semiconductor
indium gallium
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6302687A
Other languages
Japanese (ja)
Other versions
JPH0362303B2 (en
Inventor
Tatsuya Ohori
達也 大堀
Masahiko Takigawa
正彦 滝川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP6302687A priority Critical patent/JPS63228763A/en
Publication of JPS63228763A publication Critical patent/JPS63228763A/en
Publication of JPH0362303B2 publication Critical patent/JPH0362303B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/778Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface
    • H01L29/7782Field effect transistors with two-dimensional charge carrier gas channel, e.g. HEMT ; with two-dimensional charge-carrier layer formed at a heterojunction interface with confinement of carriers by at least two heterojunctions, e.g. DHHEMT, quantum well HEMT, DHMODFET

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve the performance of a high electron-mobility FET by forming the hetero-junction of an InGaAs layer and an InGaP layer, to which an impurity is doped, and using the InGaAs layer as the channel of interface- quantized carriers. CONSTITUTION:An AlGaAs buffer layer 2, an InGaAs layer 3, an InGaP electron supply layer 4 and a GaAs layer 5 are shaped onto a semi-insulating GaAs substrate 1. Source-drain electrodes 8 are patterned onto the layer by employing AuGe/Au, etc., and alloy regions 8A are formed in depth reaching the layer 3 through heat treatment. A gate electrode 9 is shaped onto the layer 5. According to such constitution, the surface concentration of a two-dimensional electron gas is increased by the hetero-junction of the layer 3 and the layer 4. Since the electrode 9 is formed onto the layer 5, the large height of a Schottky barrier is acquired, thus improving performance.

Description

【発明の詳細な説明】 〔概要〕 この発明は、界面量子化されたキャリアを利用する半導
体装置において、 In、Ga+−、As半導体層とInXGa、−、P半
導体層とでヘテロ接合を形成し、該InXGa1−XP
半導体層をキャリア供給層、該1nxGa I −xA
s半導体層をキャリアのチャネルとすることにより、 キャリア濃度の増大、安定性の向上などを実現するもの
である。
[Detailed Description of the Invention] [Summary] The present invention forms a heterojunction between an In, Ga+-, As semiconductor layer and an InXGa,-, P semiconductor layer in a semiconductor device using interfacial quantized carriers. , the InXGa1-XP
The semiconductor layer is a carrier supply layer, and the 1nxGa I -xA
By using the s semiconductor layer as a carrier channel, it is possible to increase carrier concentration and improve stability.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置、特に界面量子化されたキャリアを
利用する高電子移動度電界効果トランジスタ(HEMT
)等の化合物半導体装置の改善に関する。
The present invention relates to semiconductor devices, particularly high electron mobility field effect transistors (HEMTs) that utilize interfacial quantized carriers.
) and other compound semiconductor devices.

例えばHEMTでは空間分離ドーピングとヘテロ接合界
面による量子化によって電子の移動度を高めており、高
速デバイスとして強い期待が寄せられているが、なお後
述の如く改善が要望されている。
For example, in HEMT, the mobility of electrons is increased by spatial separation doping and quantization at the heterojunction interface, and there are strong expectations as a high-speed device, but improvements are still desired as described below.

〔従来の技術〕[Conventional technology]

ヘテロ接合界面によるキャリアの量子化と空間分離ドー
ピングにより高いキャリア移動度を実現している半導体
装置の例として、)IEMTの一例の模式断面図及びエ
ネルギーバンド図を第4図(al、(blに示す。
As an example of a semiconductor device that achieves high carrier mobility through carrier quantization and spatial separation doping at a heterojunction interface, a schematic cross-sectional view and an energy band diagram of an example of an IEMT are shown in Figure 4 (al and (bl). show.

その半導体基体は半絶縁性砒化ガリウム(GaAs)基
板21上に、バッファ層とチャネル層を兼ねるノンドー
プのi型層aAsチャネル層23と、これより電子親和
力が小さい砒化アルミニウムガリウム(AI。
The semiconductor substrate is formed on a semi-insulating gallium arsenide (GaAs) substrate 21, and includes a non-doped i-type aAs channel layer 23 that serves as both a buffer layer and a channel layer, and aluminum gallium arsenide (AI), which has a lower electron affinity than the undoped i-type aAs channel layer 23.

Ga1−、As)からなるn型電子供給層24が積層さ
れ、このAlGaAs電子供給層24からGaAs層2
3へ遷移した電子によってヘテロ接合界面近傍に2次元
電子ガス26が形成される。この2次元電子ガス26は
不純物散乱による移動度低下が殆どなく、格子散乱が減
少する例えば77に程度以下の低温において最も高い移
動度が得られる。
An n-type electron supply layer 24 made of Ga1-, As) is laminated, and from this AlGaAs electron supply layer 24 the GaAs layer 2
A two-dimensional electron gas 26 is formed near the heterojunction interface by the electrons that have transitioned to 3. This two-dimensional electron gas 26 has almost no reduction in mobility due to impurity scattering, and the highest mobility can be obtained at low temperatures, such as 77°C or lower, where lattice scattering is reduced.

この半導体基体上にソース、ドレイン電極28とゲート
主桟29を設け、ゲート電極29によるショットキ空乏
層で2次元電子ガス26の面濃度を制御してトランジス
タ動作が行われる。
Source and drain electrodes 28 and a main gate crosspiece 29 are provided on this semiconductor substrate, and the surface concentration of the two-dimensional electron gas 26 is controlled by the Schottky depletion layer formed by the gate electrode 29 to perform transistor operation.

このIIEMTの電子供給層であるAlxGat−xA
s層24のAlAsとGaAsの混晶比Xは、2次元電
子ガス26の移動度μn及び面濃度Nsを比較検討して
選択されるが、移動度μnはx=0.2〜0.3程度で
最大となり、また面濃度Nsからはi形GaAs層23
との伝導帯のエネルギー準位差を0.24eV程度以上
、従ってx=0.30程度以上とすることが望ましい。
AlxGat-xA, which is the electron supply layer of this IIEMT
The mixed crystal ratio X of AlAs and GaAs in the s-layer 24 is selected by comparing and examining the mobility μn and the surface concentration Ns of the two-dimensional electron gas 26, and the mobility μn is x=0.2 to 0.3. Also, from the surface concentration Ns, the i-type GaAs layer 23
It is preferable that the energy level difference in the conduction band between x and x is about 0.24 eV or more, and therefore x=0.30 or more.

しかしながら他方において、AlにGa、□Asの混晶
比Xを0.25程度より大きくすればドープしたSt等
がDXセンターと呼ばれる深いドナー準位を形成する。
On the other hand, however, if the mixed crystal ratio X of Ga, □As to Al is made larger than about 0.25, the doped St etc. will form a deep donor level called a DX center.

このためにドーピング量を増加してもこれに見合って2
次元電子ガス26の面濃度Nsが増大せず、更に200
に程度以下で赤外線が入射すればDXセンターから伝導
帯に電子が励起され、光照射を停止してもこの伝導電子
がドナー準位に落ちないPPC(persistent
 photo conductivity)等の現象を
示す。
For this reason, even if the doping amount is increased, the amount of doping will be increased by 2
The surface concentration Ns of the dimensional electron gas 26 does not increase and further increases by 200
If infrared rays are incident below the level of
photo conductivity).

従って上述の如きGaAs/A lGaAs系HEMT
では、ドレイン電流、伝達コンダクタンスg1等が制約
され、更にこれらの特性及び閾値電圧Vい等に大きい温
度依存性が現れて動作の安定性が低下している。
Therefore, the above-mentioned GaAs/AlGaAs HEMT
In this case, the drain current, the transfer conductance g1, etc. are restricted, and furthermore, these characteristics and the threshold voltage V, etc. have a large temperature dependence, which reduces the stability of operation.

この様な問題点のあるGaAs/A lGaAs系HE
MTを改善するために、本出願人は先に特願昭58−1
95579号により第4図(C)にエネルギーバンド図
を示す下記の構造を提供している。
GaAs/AlGaAs HE with such problems
In order to improve MT, the present applicant first filed a patent application in 1986-1.
No. 95579 provides the following structure whose energy band diagram is shown in FIG. 4(C).

該発明による半導体装置は、電子供給層24Aを燐化イ
ンジウムガリウム(Ino、 4sGao、 5zP)
によって形成する。InGaPはDXセンターが形成さ
れないために、2次元電子ガス26の面濃度Nsの増大
、動作の不安定性の改善を実現するのみならず、その構
成元素にアルミニウム(AI)を含まないために、有機
金属熱分解気相成長(?1O−CVD)法などの気相成
長プロセス中及び成長後の化学的安定性が向上する効果
も得ている。
In the semiconductor device according to the invention, the electron supply layer 24A is made of indium gallium phosphide (Ino, 4sGao, 5zP).
formed by Since InGaP does not form a DX center, it not only increases the surface concentration Ns of the two-dimensional electron gas 26 and improves operational instability, but also improves the stability of the organic The effect of improving chemical stability during and after the growth process such as metal pyrolysis vapor deposition (?1O-CVD) has also been achieved.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

前記先願発明は上述の如き効果を与えているが、その利
点を損なうことなく2次元電子ガスの面濃度Nsを更に
増加するなどの改善を推進して、高速デバイスとして期
待が大きいHEMT等の性能を向上することを目的とす
る。
The invention of the prior application has the above-mentioned effects, but improvements such as further increasing the surface concentration Ns of the two-dimensional electron gas without sacrificing its advantages will improve the performance of HEMTs, etc., which have great expectations as high-speed devices. The purpose is to improve performance.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、インジウムガリウム砒素化合物(In、
Ga1□As)半導体層と、不純物をドープしたインジ
ウムガリウム燐化合物(I n XGa 1.− XP
)半導体層とのヘテロ接合を備えて、該inつGa、J
s半導体層を界面量子化されたキャリアのチャネルとす
る本発明による半導体装置により解決される。
The problem is that indium gallium arsenide compounds (In,
Ga1□As) semiconductor layer and an impurity-doped indium gallium phosphide compound (I n XGa 1.-XP
) with a heterojunction with the semiconductor layer, in the Ga, J
This problem is solved by the semiconductor device according to the present invention in which the s-semiconductor layer serves as a channel for interfacially quantized carriers.

〔作 用〕[For production]

本発明に用いるInxGa+−xP/In)(Gal=
xΔSのヘテロ接合は、例えば前者をGaAsに格子整
合する[no。48Gao、 5ZPとし後者をIno
、 +5Gao、 esAsとした場合にΔEC=0.
32eVとなり、先願発明のIno、 4BGao、 
SAP/GaAsヘテロ接合のΔEc=0.2eVより
大きい伝導帯エネルギー準位差が得られ、2次元電子ガ
スの面濃度Nsの増大が達成される。
InxGa+-xP/In) (Gal=
The xΔS heterojunction lattice matches the former to GaAs, for example [no. 48Gao, 5ZP and the latter is Ino
, +5Gao, esAs, ΔEC=0.
32eV, Ino, 4BGao, of the earlier invention,
A conduction band energy level difference larger than ΔEc=0.2 eV of the SAP/GaAs heterojunction is obtained, and an increase in the surface concentration Ns of the two-dimensional electron gas is achieved.

なおIn、Ga、−、Asをチャネル層に用いることは
、例えばインジウムe(InP)基板上でx=0.53
程度のInXGa1−XAsをチャネル層とし、InP
を電子供給層とする例(例えば特開昭58−19605
7号、特開昭59−5675号)等で従来知られている
が、この様な従来例でもΔEC=0.2 eV程度であ
る。
Note that using In, Ga, -, and As for the channel layer means that x=0.53 on an indium e (InP) substrate, for example.
The channel layer is made of InXGa1-XAs, and the InP
An example in which the electron supply layer is
No. 7, JP-A No. 59-5675), etc., but even in such a conventional example, ΔEC=0.2 eV.

ただしInxGa、□Asは、半導体装置の基板として
多く用いられるGaAsに対して格子定数に差があり、
本半導体装置をGaAs1板を用いて実現するには、例
えばこのInXGa1−xAs半導体層を量子化された
キャリアのチャネルとして必要なり 10 nm程度以
下の厚さに止めて格子不整合;こよる転位の発生を防止
するか、或いはGaAs半導体基板上に格子定数差を緩
和するバッファ層を介して、In、Ga、□As半導体
層及びInxGat−xr’半導体層を相互に格子整合
させて成長するなどの構造を用いる。
However, InxGa and □As have different lattice constants from GaAs, which is often used as a substrate for semiconductor devices.
In order to realize this semiconductor device using a GaAs1 plate, for example, this InXGa1-xAs semiconductor layer is required as a channel for quantized carriers. To prevent this, or to grow In, Ga, □As semiconductor layers and InxGat-xr' semiconductor layers with mutual lattice matching through a buffer layer that alleviates the lattice constant difference on the GaAs semiconductor substrate. Use structure.

〔実施例] 以下本発明を実施例により具体的に説明する。〔Example] The present invention will be specifically explained below using examples.

第1図fa)、fb)は本発明の第1の実施例を示す模
式断面図及びエネルギーバンド図である。
FIGS. 1 fa) and fb) are a schematic cross-sectional view and an energy band diagram showing a first embodiment of the present invention.

本実施例の半導体基体は半絶縁性GaAs基板1上に、
AlGaAsバッファ層2、InGaAsチャネル層3
、TnGaP電子供給層4 、GaAs層5が例えば下
記の如< MO−CVD法により形成されている。
The semiconductor substrate of this example is on a semi-insulating GaAs substrate 1,
AlGaAs buffer layer 2, InGaAs channel layer 3
, the TnGaP electron supply layer 4, and the GaAs layer 5 are formed, for example, by the MO-CVD method as described below.

符号  組成       不純物    厚さ5  
  GaAs      5t−IXIO”cm−3#
lOnm4 InxGat−xP ;x=0.48 5
i−1xlO”am−’  #30nm3  rnXG
a+−x^s;x=下記  ノンドープ  下記2 A
1.Ga+−、AsHx=下記  ノンドープ  ”q
Is本実施例ではバッファ層2をx =0.2〜0.3
程度のAIXca、−xhsNとしているが、これは例
えば10”Ωcm程度以上の高い抵抗率を得るためであ
る。なおこのバッファ層2にAlGaAsを用いてもノ
ンドープの高抵抗層であるために前記の問題は生じない
Code Composition Impurity Thickness 5
GaAs 5t-IXIO"cm-3#
lOnm4 InxGat-xP; x=0.48 5
i-1xlO"am-'#30nm3 rnXG
a+-x^s;x= Below Non-doped Below 2 A
1. Ga+-, AsHx = below non-doped "q
Is In this embodiment, the buffer layer 2 is x = 0.2 to 0.3
The reason for this is to obtain a high resistivity of, for example, about 10" Ωcm or more. Note that even if AlGaAs is used for this buffer layer 2, it is a non-doped high resistance layer, so the above-mentioned No problems arise.

またバy 77層2をGaAs或いはIno、 naG
ao、 szPなどとすることも可能であり、この場合
にはそのエネルギーバンドが第1図中)に破線で例示す
る形状となる。
Also, layer 2 of 77 is made of GaAs or Ino, naG.
It is also possible to use ao, szP, etc., and in this case, the energy band has the shape illustrated by the broken line in FIG.

本実施例の構成では結晶欠陥の発生も考慮して、Inx
Gat−XAsチャネル層3の混晶比Xを例えば0.1
5〜0.20、厚さを例えば10〜15nm程度に選択
する。
In the configuration of this embodiment, taking into consideration the occurrence of crystal defects, Inx
For example, the mixed crystal ratio X of the Gat-XAs channel layer 3 is 0.1.
5 to 0.20 nm, and the thickness is selected to be, for example, about 10 to 15 nm.

Xを大きくすればIno、 asGao、 52P電子
供給層4との間のΔEcが大きくなるが、GaAsとの
格子定数差も大きく厚さが制限される。本実施例ではこ
れらを例えば下記データ例に示す値としている。
If X is increased, the ΔEc between Ino, asGao, and 52P electron supply layer 4 will increase, but the difference in lattice constant from GaAs will also be large, and the thickness will be limited. In this embodiment, these are set to values shown in the following data example, for example.

この半導体基体上にソース、ドレイン電極8を例えば金
ゲルマニウム/金(AuGe/Au)を用いてパターニ
ングし、熱処理を行ってInXGap−xAsチャネル
層3に達する深さに合金領域8Aを形成する。
Source and drain electrodes 8 are patterned using, for example, gold germanium/gold (AuGe/Au) on this semiconductor substrate, and heat treatment is performed to form an alloy region 8A at a depth that reaches the InXGap-xAs channel layer 3.

またゲート電極9をGaAs層5上に例えばAIを用い
て配設する。この様にゲート電極9をGaAs層5上に
設けることにより、Ino、 asGao、 szP電
子供給層4上に設けるより大きいショソトキハリア高さ
が得られる。
Further, a gate electrode 9 is provided on the GaAs layer 5 using, for example, AI. By providing the gate electrode 9 on the GaAs layer 5 in this manner, a greater height of the gate electrode can be obtained than when providing the gate electrode 9 on the Ino, asGao, or szP electron supply layer 4.

第2図は本実施例と前記先願発明の半導体基体について
、温度300K及び77Kにおける2次元電子ガス6の
面濃度Ns及び移動度μnの平均値を示す図であり、M
O−CVD法によって成長した各試料のIno、’aa
Gao、 szP電子供給層4は不純物濃度1×101
 e c m−:l、厚さ37nmとしている。
FIG. 2 is a diagram showing the average values of the surface concentration Ns and the mobility μn of the two-dimensional electron gas 6 at temperatures of 300 K and 77 K for the semiconductor substrates of this example and the prior invention, and
Ino, 'aa of each sample grown by O-CVD method
Gao, szP electron supply layer 4 has an impurity concentration of 1×101
e c m-:l, and the thickness is 37 nm.

ムと△て示す本発明の実施例はInxGat−、Asチ
ャネル層3の混晶比Xを0.15、厚さを8.’Inm
、■と口で示す実施例はIn、Ga 、 −、Asチャ
ネルN3の混晶比Xを0.15、厚さを17nmとして
いる。また先願発明の試料は・と○で示し、ム、■、・
は300K、△、口、○は77Kを示す。
In the embodiment of the present invention shown as △ and △, the mixed crystal ratio X of the InxGat-, As channel layer 3 is 0.15, and the thickness is 8. 'Inm
In the embodiment shown by . In addition, the samples of the prior invention are indicated by ・ and ○, and mu, ■, ・
indicates 300K, △ indicates mouth, and ○ indicates 77K.

本データ例から2次元電子ガス6の面濃度Nsが本発明
により顕著に増大することが明らかであり、Ino、 
a8Gao、 s□P電子供給層4の不純物濃度を本実
施例のI XIO”cm−3より高くすれば、面濃度N
sを更に増加させることができる。
It is clear from this data example that the surface concentration Ns of the two-dimensional electron gas 6 is significantly increased by the present invention, and Ino,
If the impurity concentration of the a8Gao, s□P electron supply layer 4 is made higher than the IXIO"cm-3 of this embodiment, the surface concentration N
s can be further increased.

なお移動度μnは常温300 Kにおいては同等と見做
される。低温では従来知られている事実と同様に面濃度
Nsの増加に伴う移動度μnの減少傾向が見られて、使
用目的に即して両者の兼ね合いをIn)(Gal−XA
sチャネル層3の厚さ等により選択することとなる。
Note that the mobility μn is considered to be the same at room temperature of 300K. At low temperatures, the mobility μn tends to decrease as the surface concentration Ns increases, similar to the previously known fact.
The selection is made depending on the thickness of the s-channel layer 3, etc.

また第3図は本発明の第2の実施例を示す模式断面図で
ある。
Further, FIG. 3 is a schematic sectional view showing a second embodiment of the present invention.

本実施例の半導体基体は半絶縁性GaAs基板1工上に
、超格子構造のバッファ層12、バッファ層とチャネル
層を兼ねるInGaAs層13、InGaP電子供給層
14を例えば下記の如< MO−CVD法により形成し
、ソース、ドレイン電極18、ゲート電極19を設けて
いる。
The semiconductor substrate of this example is a semi-insulating GaAs substrate with a buffer layer 12 having a superlattice structure, an InGaAs layer 13 serving as a buffer layer and a channel layer, and an InGaP electron supply layer 14, for example, by MO-CVD as follows. A source electrode, a drain electrode 18, and a gate electrode 19 are provided.

符号  組成       不純物    厚さ14 
InxGa1−xP ;x=o、75 5i−IXIO
”cm−”  #30nm13 In、Ga1−xAs
;x=0.30   ノンドープ  ’=1μm12 
 下記12a、12bを10〜20層交互に積層12b
   InAs      ノンドープ −1,5nm
12a   GaAs      ノンドープ ’=1
.5r+m本実施例ではIn、Ga + ” 、Asチ
ャネル層13の混晶比を例えばx=0.30とし、In
、Ga+−xP電子供給J’i14をこれに格子整合す
るX・0.75として、これらの層とGaAs基板11
との間の格子不整合をGaAs#nAs超格子構造のバ
ッファ層12により緩和している。
Code Composition Impurity Thickness 14
InxGa1-xP; x=o, 75 5i-IXIO
"cm-"#30nm13 In, Ga1-xAs
;x=0.30 non-doped '=1μm12
Alternately stack 10 to 20 layers of the following 12a and 12b 12b
InAs non-doped -1.5nm
12a GaAs non-doped '=1
.. 5r+m In this example, the mixed crystal ratio of the In, Ga + '', As channel layer 13 is set to x=0.30, and In
, Ga+-xP electron supply J'i 14 is lattice-matched to this as X 0.75, these layers and the GaAs substrate 11
The lattice mismatch between the two is alleviated by the buffer layer 12 having a GaAs#nAs superlattice structure.

本実施例も前記第1の実施例と同等以上の2次元電子ガ
ス16の面濃度Nsが得られている。
In this embodiment as well, a surface concentration Ns of the two-dimensional electron gas 16 that is equal to or higher than that in the first embodiment is obtained.

なお本発明は上述の説明に引例したHEMTにその適用
を限られるものではなく、例えば速度変調トランジスタ
 (シelocity−Modulation Tra
nsistor。
Note that the present invention is not limited to application to the HEMTs cited in the above explanation, but is applicable to, for example, velocity modulation transistors (helocity-modulation transistors).
nsistor.

H,5akaki: Jpn、J、Appl、Phys
、 Vol、21.No、6.1982年6月)、又は
重量子井戸トランジスタ (SingleQuantu
m Well Transistor、 C,llam
aguchi他: Jpn。
H, 5akaki: Jpn, J, Appl, Phys.
, Vol. 21. No. 6. June 1982), or Quantum Well Transistor (Single Quantum Well Transistor)
m Well Transistor, C,llam
aguchi et al.: Jpn.

J、Appl、Phys、 Vol、23.No、3.
1984年3月)等の空間分離ドーピングと界面量子化
による高移動度のキャリアを利用する半導体装置全般に
適用することが可能である。
J, Appl, Phys, Vol, 23. No, 3.
It can be applied to all semiconductor devices that utilize high-mobility carriers by spatially separated doping and interface quantization, such as (March 1984).

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、ヘテロ接合により界
面量子化されたキャリアをチャネルとする半導体装置に
おいて、動作の不安定性の排除、キャリア濃度の増大な
どが更に推進され、高速デバイスとして期待されるHE
MT等に大きい効果が得られる。
As explained above, according to the present invention, in a semiconductor device in which carriers quantized at the interface by a heterojunction are used as channels, instability in operation can be further eliminated, carrier concentration can be increased, etc., and it is expected to be used as a high-speed device. H.E.
Great effects can be obtained on MT, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は第1の実施例の模式断面図及びエネルギーバン
ド図、 第2図は2次元電子ガスの面濃度と移動度の例を示す図
、 第3図は第2の実施例の模式断面図、 第4図は従来例の模式断面図及びエネルギーバンド図で
ある。 図において、 ■、■1は半絶縁性GaAs基板、 2はノンドープのへ1GaAsバ′ツファ層、12はG
aAs/InAs超格子構造のバッファ層、3.13は
InxGa1−、Asチャネル層、4.14はIn、G
a+−、P電子供給層、5はノンドープのGaAs層、 6.16は2次元電子ガス、 8.18はソース、ドレイン電極、 9.19はゲート電極を示す。 +−′、− ¥ 1 図 算3図 2次7c電号力゛スの障l薯准とがと動産系 2 図
Fig. 1 is a schematic cross-sectional view and energy band diagram of the first embodiment, Fig. 2 is a diagram showing an example of the areal concentration and mobility of a two-dimensional electron gas, and Fig. 3 is a schematic cross-section of the second embodiment. FIG. 4 is a schematic cross-sectional view and an energy band diagram of a conventional example. In the figure, 1 and 1 are semi-insulating GaAs substrates, 2 is a non-doped GaAs buffer layer, and 12 is a G
aAs/InAs superlattice structure buffer layer, 3.13 InxGa1-, As channel layer, 4.14 In, G
a+-, P electron supply layer, 5 is a non-doped GaAs layer, 6.16 is a two-dimensional electron gas, 8.18 is a source and drain electrode, and 9.19 is a gate electrode. +-', - ¥ 1 Diagram 3 Diagram 2D 7c Electrical signal power failure standard and movable property system 2 Diagram

Claims (1)

【特許請求の範囲】 1)インジウムガリウム砒素化合物半導体層と不純物を
ドープしたインジウムガリウム燐化合物半導体層とのヘ
テロ接合を備えて、該インジウムガリウム砒素化合物半
導体層を界面量子化されたキャリアのチャネルとするこ
とを特徴とする半導体装置。 2)前記インジウムガリウム砒素化合物半導体層が、何
れもガリウム砒素化合物単結晶に格子整合する第3の化
合物半導体層と前記インジウムガリウム燐化合物半導体
層との間に設けられてなることを特徴とする特許請求の
範囲第1項記載の半導体装置。 3)前記インジウムガリウム砒素化合物半導体層及び前
記インジウムガリウム燐化合物半導体層が、ガリウム砒
素化合物半導体基板上に格子定数差を緩和する半導体層
を介して形成され、該インジウムガリウム砒素化合物半
導体層と該インジウムガリウム燐化合物半導体層とが相
互に格子整合することを特徴とする特許請求の範囲第1
項記載の半導体装置。
[Claims] 1) A heterojunction between an indium gallium arsenide compound semiconductor layer and an impurity-doped indium gallium phosphide compound semiconductor layer is provided, and the indium gallium arsenide compound semiconductor layer is used as a channel for interfacially quantized carriers. A semiconductor device characterized by: 2) A patent characterized in that the indium gallium arsenide compound semiconductor layer is provided between the third compound semiconductor layer and the indium gallium phosphide compound semiconductor layer, both of which are lattice matched to the gallium arsenide compound single crystal. A semiconductor device according to claim 1. 3) The indium gallium arsenide compound semiconductor layer and the indium gallium phosphorus compound semiconductor layer are formed on a gallium arsenide compound semiconductor substrate with a semiconductor layer that alleviates the difference in lattice constant interposed therebetween, and the indium gallium arsenide compound semiconductor layer and the indium gallium arsenide compound semiconductor layer Claim 1 characterized in that the gallium phosphide compound semiconductor layer and the gallium phosphate compound semiconductor layer are mutually lattice matched.
1. Semiconductor device described in Section 1.
JP6302687A 1987-03-18 1987-03-18 Semiconductor device Granted JPS63228763A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6302687A JPS63228763A (en) 1987-03-18 1987-03-18 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6302687A JPS63228763A (en) 1987-03-18 1987-03-18 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS63228763A true JPS63228763A (en) 1988-09-22
JPH0362303B2 JPH0362303B2 (en) 1991-09-25

Family

ID=13217406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6302687A Granted JPS63228763A (en) 1987-03-18 1987-03-18 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS63228763A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04226041A (en) * 1990-04-11 1992-08-14 Hughes Aircraft Co Hemt strucutre provided with passivation donor layer
US5319223A (en) * 1991-07-26 1994-06-07 Kabushiki Kaisha Toshiba High electron mobility transistor
US5504353A (en) * 1994-06-06 1996-04-02 Nec Corporation Field effect transistor
US6933542B2 (en) 2003-02-10 2005-08-23 Matsushita Electric Industrial Co., Ltd. Field-effect transistor, and integrated circuit device and switching circuit using the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04226041A (en) * 1990-04-11 1992-08-14 Hughes Aircraft Co Hemt strucutre provided with passivation donor layer
US5319223A (en) * 1991-07-26 1994-06-07 Kabushiki Kaisha Toshiba High electron mobility transistor
US5504353A (en) * 1994-06-06 1996-04-02 Nec Corporation Field effect transistor
US6933542B2 (en) 2003-02-10 2005-08-23 Matsushita Electric Industrial Co., Ltd. Field-effect transistor, and integrated circuit device and switching circuit using the same

Also Published As

Publication number Publication date
JPH0362303B2 (en) 1991-09-25

Similar Documents

Publication Publication Date Title
JP2676442B2 (en) Heterojunction field effect transistor and manufacturing method thereof
JPH07120790B2 (en) Semiconductor device
US5489549A (en) Method of fabricating n-type antimony-based strained layer superlattice
JPS63228763A (en) Semiconductor device
JPH08306909A (en) Ingaas field effect transistor
JP3447438B2 (en) Field effect transistor
JPH098285A (en) Hetero-junction semiconductor device
JP3094500B2 (en) Field effect transistor
JPS62256477A (en) Semiconductor device
JPS62213279A (en) Semiconductor device
JP2557373B2 (en) Compound semiconductor device
JP2994863B2 (en) Heterojunction semiconductor device
JPS63272080A (en) Semiconductor device
JP2730511B2 (en) Heterojunction field effect transistor
JPH0260225B2 (en)
JPS62211964A (en) Semiconductor device
JPS63172A (en) Semiconductor device
JP2672180B2 (en) III-Group V compound semiconductor device
JPS6390861A (en) Semiconductor device
JPH01120871A (en) Semiconductor device
JP2576232B2 (en) Semiconductor crystal
JPH06151469A (en) Compound semiconductor device
JPH04129231A (en) Hetero-junction field-effect transistor
JPS63284869A (en) Heterojunction field-effect semiconductor device
JPH01183164A (en) High electron mobility field effect transistor

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees