JPS6321891A - Semiconductor light-emitting device - Google Patents
Semiconductor light-emitting deviceInfo
- Publication number
- JPS6321891A JPS6321891A JP61167109A JP16710986A JPS6321891A JP S6321891 A JPS6321891 A JP S6321891A JP 61167109 A JP61167109 A JP 61167109A JP 16710986 A JP16710986 A JP 16710986A JP S6321891 A JPS6321891 A JP S6321891A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- quantum
- light emitting
- level
- emitting device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 19
- 230000005684 electric field Effects 0.000 claims abstract description 12
- 238000002347 injection Methods 0.000 claims description 9
- 239000007924 injection Substances 0.000 claims description 9
- 230000004888 barrier function Effects 0.000 claims 2
- 238000003776 cleavage reaction Methods 0.000 claims 1
- 230000007017 scission Effects 0.000 claims 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 14
- 230000007704 transition Effects 0.000 abstract description 3
- 238000005036 potential barrier Methods 0.000 abstract description 2
- 238000010586 diagram Methods 0.000 description 8
- 230000005641 tunneling Effects 0.000 description 5
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- 229920006172 Tetrafluoroethylene propylene Polymers 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、半導体発光装置に関し、さらに詳しくは、
遠赤外光を安定に連続発光し得る半導体発光装置に係る
ものである。[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a semiconductor light emitting device, and more specifically,
The present invention relates to a semiconductor light-emitting device that can stably and continuously emit far-infrared light.
従来例によるこの種の半導体発光装置として、こkでは
、アプライド・フィジックス・レターズ(Applie
d Physics Letters) vol、39
(3)、1.198fに示されている量子井戸型半導体
レーザ装置のエネルギバンドダイヤグラムを第4図に示
す。This type of conventional semiconductor light emitting device is described in Applied Physics Letters.
d Physics Letters) vol, 39
(3), FIG. 4 shows an energy band diagram of the quantum well semiconductor laser device shown in 1.198f.
すなわち、この第4図のエネルギバンドダイヤグラムに
おいて、符号7は量子井戸内の電子の基底量子準位、1
8は同ホールの基底量子準位順位であり、また、13は
n型A文0.48Ga0.52”層、14はAM O,
f7Ga0.83As層、15はp型71!LO,48
GaO,52As層である。That is, in the energy band diagram of FIG. 4, 7 is the base quantum level of the electron in the quantum well, and 1
8 is the base quantum level order of the same hole, 13 is the n-type A structure 0.48Ga0.52'' layer, 14 is the AM O,
f7Ga0.83As layer, 15 is p-type 71! LO, 48
It is a GaO, 52As layer.
従って、この場合には、AM 0.17GaO,8aA
s層14と An 0.48”0.52”層13,15
とのエネルギギャップの差によって、AIL a、 1
7GaO,83”層14の伝導帯と価電子帯とに量子準
位7.18がそれぞれに形成され、A l o 、 4
8GaO,52As層11.15のpnPa合に順方向
バイアスを印加することで、Auo、t7Gao、a3
A3層14に電子とホールとを注入すると、注入された
電子とホールとが、量子井戸Ai0.17”0.83”
層14の量子基底準位7と18とをそれぞれに占有し、
これらの電子とホールとの再結合発光によって、レーザ
発振を生ずるのである。Therefore, in this case, AM 0.17GaO, 8aA
S layer 14 and An 0.48”0.52” layers 13, 15
AIL a, 1
A quantum level of 7.18 is formed in the conduction band and valence band of the 7GaO, 83'' layer 14, and A lo , 4
By applying a forward bias to the pnPa layer 11.15 of the 8GaO, 52As layer, Auo, t7Gao, a3
When electrons and holes are injected into the A3 layer 14, the injected electrons and holes form a quantum well Ai0.17"0.83"
occupying quantum ground levels 7 and 18 of layer 14, respectively;
Laser oscillation is produced by the recombination of these electrons and holes and the emission of light.
従来例での量子井戸型半導体レーザ装置にあっては、こ
のように構成されているために、量子井戸層となるA
l o 、 17”Q 、 aaAj層14のバンドギ
4r −/プ以上のエネルギをもつレーザ光しか得られ
ないと云う問題点がある。In the conventional quantum well type semiconductor laser device, since it is configured in this way, A which becomes the quantum well layer
There is a problem in that only a laser beam having an energy higher than the bandgap of the aaAj layer 14, 4r-/p, can be obtained.
この発明は、従来のこのような問題点を解消するために
なされたものであり、その目的とするところは、量子井
戸構造を用いて、遠赤外光を安定して発光し得る半導体
発光装置を提供することである。This invention was made to solve these conventional problems, and its purpose is to provide a semiconductor light-emitting device that can stably emit far-infrared light using a quantum well structure. The goal is to provide the following.
前記目的を達成するために、この発明に係る半導体発光
装置は、面内方向、および面に垂直方向に電界を印加で
きて、伝導帯に複数の量子準位をもつ量子井戸9発光層
と、面に垂直方向に電界を印加できて、発光層とは異な
る量子準位をもつ量子井戸、電流注入層とを隣接構成さ
せたものである。In order to achieve the above object, a semiconductor light emitting device according to the present invention includes a quantum well nine light emitting layer capable of applying an electric field in the in-plane direction and in a direction perpendicular to the plane and having a plurality of quantum levels in the conduction band; An electric field can be applied in a direction perpendicular to the surface, and a quantum well and a current injection layer, each having a quantum level different from that of the light emitting layer, are arranged adjacent to each other.
従って、この発明装置の場合、発光層としての量子井戸
では、垂直方向の電界を印加することにより、電子とホ
ールの量子準位が空間的に分離されて、電子・ホール間
での再結合が阻止され、また、電流注入層となる量子井
戸に垂直方向の適当な電界を印加することにより、共鳴
トンネリングによって、電子を発光層の伝導帯の励起量
子準位に注入させ、遠赤外光を安定して発光させ得るの
である。Therefore, in the case of the device of this invention, by applying a vertical electric field to the quantum well as the light emitting layer, the quantum levels of electrons and holes are spatially separated, and recombination between electrons and holes is prevented. By applying an appropriate electric field in the vertical direction to the quantum well that serves as the current injection layer, electrons are injected into the excited quantum level of the conduction band of the light emitting layer by resonant tunneling, and far-infrared light is emitted. This allows stable luminescence.
以下、この発明に係る半導体発光装置の一実施例につき
、第1図ないし第3図を参照して詳細に説明する。Hereinafter, one embodiment of a semiconductor light emitting device according to the present invention will be described in detail with reference to FIGS. 1 to 3.
第1図および第2図はこの実施例装置によるエネルギバ
ンドダイヤグラムを示し、また第3図は同上半導体発光
装置の概要を模式的に示す構成説明図である。1 and 2 show energy band diagrams of the device of this embodiment, and FIG. 3 is a structural explanatory diagram schematically showing the outline of the semiconductor light emitting device.
まず、第1図に示すエネルギバンドダイヤグラム、およ
び第3図に示す装置構成のそれぞれにおいて、符号1は
n型AILAs層、2は電流注入層としての、ノンドー
プA fLxG a t −、As層、3はAILAs
層、4は発光層としてのノンドープGaAs層、5はn
型A1As層であり、また8は前記A1As層1,3間
に挟まれたA 31 ICat−、As層2の量子井戸
内に形成される基底量子準位、7は前記LM As層3
.5間に挟まれたGaAs層4の量子井戸内に形成され
る基底量子準位、8はその第1励起量子準位を示し、さ
らに9.IOはバイアス電源、lla、llbは前記G
aAs層4の面内方向に形成した一対の電極、12はこ
れらの基板である。First, in the energy band diagram shown in FIG. 1 and the device configuration shown in FIG. are AILAs
layer, 4 is a non-doped GaAs layer as a light emitting layer, 5 is n
8 is the base quantum level formed in the quantum well of the A 31 ICat-, As layer 2 sandwiched between the A1As layers 1 and 3, and 7 is the LM As layer 3.
.. The base quantum level formed in the quantum well of the GaAs layer 4 sandwiched between 5 and 5, 8 indicates its first excited quantum level, and 9. IO is the bias power supply, lla and llb are the G
A pair of electrodes 12 formed in the in-plane direction of the aAs layer 4 are these substrates.
しかして、この実施例構成の場合、AiAa層1がn型
であるために、A文!Ga1−、As層2の基底量子準
位6は、電子によって占有されており、また量子井戸と
なるA文、Ga1−、As層2とGaAs層4とのエネ
ルギギャップが異なることから、これとの伝導帯に形成
される量子井戸内での基底準位のエネルギ準位も異なっ
ていて、このため、0バイアスの状態では、基底準位8
を占有している電子が、GaAs層4の伝導帯にトンネ
リングされることはない。However, in the case of this embodiment configuration, since the AiAa layer 1 is n-type, the A statement! The base quantum level 6 of the Ga1-, As layer 2 is occupied by electrons, and the energy gap between the A-structure, Ga1-, As layer 2, which forms a quantum well, and the GaAs layer 4 is different. The energy level of the ground level in the quantum well formed in the conduction band of is also different. Therefore, in the state of 0 bias, the ground level
The electrons occupying the GaAs layer 4 are not tunneled into the conduction band of the GaAs layer 4.
なお、こ−で量子井戸となるA文x G a 1−x
A s層2とGaAs層4との共通のポテンシャルバリ
アとなるA!LAs層3の膜厚は、後述するように、両
量子井戸間において電子のトンネリングを生ずるのに充
分な厚さになっている。In addition, A sentence x G a 1-x which becomes a quantum well here
A! serves as a common potential barrier between the As layer 2 and the GaAs layer 4! The LAs layer 3 has a thickness sufficient to cause electron tunneling between both quantum wells, as will be described later.
従って1.この実施例構成の場合、第2図に示す通り、
AfL、Ga1−8As層2の基底量子準位6とGa
As層への第1励起量子準位8とのエネルギ準位が一致
するようにバイアス電圧を印加すると、このとき、基底
量子準位8を占有していた電子は、共鳴トンネリングに
よって、GaAs層4の第1励起量子準位8を占有する
ようになり、そして、この電子は、電子によって占有さ
れていない基底量子準位7に遷移するときに、2つの量
子準位のエネルギ差に等しいエネルギをもつ遠赤外光を
発光、放出するに至る。Therefore 1. In the case of this embodiment configuration, as shown in FIG.
AfL, base quantum level 6 of Ga1-8As layer 2 and Ga
When a bias voltage is applied to the As layer so that its energy level matches that of the first excited quantum level 8, the electrons occupying the base quantum level 8 move to the GaAs layer 4 by resonance tunneling. , and when this electron transitions to the ground quantum level 7 that is not occupied by an electron, it imparts an energy equal to the energy difference between the two quantum levels. This results in the emission of far-infrared light.
こ−で、このように両量子井戸の伝導帯の量子準位間で
のみ、このような発光現象を生ずることは、次の機構に
よって保証される。The following mechanism ensures that such a light emission phenomenon occurs only between the quantum levels of the conduction bands of both quantum wells.
すなわち、 GaAs層4に垂直に印加された電界によ
って、伝導帯の電子分布は、第2図に示されているよう
に、AlAs層3の側に引き付けられ、−方9価電子帯
のホール分布は、電子と逆方向、つまり n型AlAs
層5の側に引き付けられることになり、このように電子
分布とホール分布とが空間的に分離されるために、電子
・ホール間での再結合を生ずることはなく、また励起量
子準位8からの遷移によって基底量子準位7に溜った電
子は、第3図に示すGaAs層4の面内方向に形成した
一対の電極11a、llbによって外部に取り除かれる
のである。That is, due to the electric field applied perpendicularly to the GaAs layer 4, the electron distribution in the conduction band is attracted to the side of the AlAs layer 3, as shown in FIG. 2, and the hole distribution in the -direction 9 valence band is is in the opposite direction to the electrons, that is, n-type AlAs
Since the electron distribution and the hole distribution are spatially separated in this way, recombination between electrons and holes does not occur, and the excited quantum level 8 The electrons accumulated in the ground quantum level 7 due to the transition from 2 to 3 are removed to the outside by a pair of electrodes 11a and 11b formed in the in-plane direction of the GaAs layer 4 shown in FIG.
このように、電流注入層となるAnよGat□As層2
の基底量子準位8から、発光層となるGaAs層4の第
1励起量子準位8に、共鳴トンネリングにより安定に電
子が供給されて、量子準位7と8との間で安定した遠赤
外光の発光を継続して生ずるのである。In this way, the An, Gat□As, layer 2, which becomes the current injection layer,
Electrons are stably supplied by resonance tunneling from the fundamental quantum level 8 of the GaAs layer 4 to the first excited quantum level 8 of the GaAs layer 4, which becomes the light emitting layer, and a stable far-infrared light is generated between the quantum levels 7 and 8. This causes continuous emission of external light.
なお、前記実施例構成においては、電流注入、轡をA
i!Gat−、Asによって形成したが、発光層と河様
にGaAsにより形成してもよく、この場合、電流注入
層と発光層との量子井戸幅を変えておくことで、両量子
井戸に形成される量子準位が異なることから、同実施例
と同様な作用、効果を奏し得るのである。Note that in the configuration of the above embodiment, the current injection and the
i! Although the light-emitting layer and the light-emitting layer are formed of GaAs, GaAs may also be formed. Since the quantum levels are different, the same actions and effects as in the same embodiment can be achieved.
また、前記実施例では、Gapsとこれにエピタキシャ
ル成長するAfLAsについて述べたが、同様な量子井
戸構造をもつものであれば、どのような材料を用いても
よく、さらに、前記実施例構成で。Further, in the above embodiment, Gaps and AfLAs epitaxially grown thereon have been described, but any material may be used as long as it has a similar quantum well structure, and furthermore, the structure of the above embodiment may be used.
装置の対向する端面をへき関して、ファブリペロ−型共
振器を形成させることによって、遠赤外し一ザ発振器と
して用いる得るのである。By separating the opposing end faces of the device to form a Fabry-Perot type resonator, it can be used as a far-infrared laser oscillator.
以上詳述したように、この発明によるときは、面内方向
、および面に垂直方向に電界を印加できて、伝導帯に複
数の量子準位をもつ2発光層としての量子井戸と、面に
垂直方向に電界を印加できて、発光層とは異なる量子準
位をもつ、電流注入層としての量子井戸とを隣接させ、
量子井戸への垂直方向の電界印加により、2つの量子井
戸間で共鳴トンネリングを生じさせ、発光層の電子分布
とホール分布とを空間的に分離させるようにしたので、
電子・ホール間での再結合を阻止できて、結果的には、
量子井戸構造を用いて、遠赤外光を安定的、かつ連続的
に発光させ得ると云う優れた特長がある。As detailed above, according to the present invention, an electric field can be applied in the in-plane direction and in a direction perpendicular to the plane, and a quantum well as two light-emitting layers having a plurality of quantum levels in the conduction band and a quantum well in the plane A quantum well serving as a current injection layer, which can apply an electric field in the vertical direction and has a quantum level different from that of the light emitting layer, is placed adjacent to the quantum well.
By applying an electric field in the vertical direction to the quantum well, resonant tunneling is caused between the two quantum wells, and the electron distribution and hole distribution in the light emitting layer are spatially separated.
Recombination between electrons and holes can be prevented, and as a result,
It has the excellent feature of being able to emit far-infrared light stably and continuously using a quantum well structure.
第1図および第2図はこの発明に係る半導体発光装置の
一実施例によるエネルギバンドダイヤグラム、第3図は
同上半導体発光装置の概要を模式的に示す構成説明図で
あり、また第4図は従来例による量子井戸型半導体レー
ザ装置のエネルギバンドダイヤグラムである。
1・・・・n型AlAs層、2・・・・電波注入層とし
てのA1GaAs層、3 ” AJIAs層、4−−−
−発光x 1−冨
層としてのGaAs層、5・令・・n型AlAs層、8
.7−・・・基底量子準位、8・・・・第1励起量子準
位、9.10・・・・バイアス電源、lla、llb・
・・・一対の電極、12・・・・半導体基板。
代理人 大 岩 増 雄
手続補正書(自発)1 and 2 are energy band diagrams of one embodiment of the semiconductor light emitting device according to the present invention, FIG. 3 is a configuration explanatory diagram schematically showing the outline of the semiconductor light emitting device, and FIG. 2 is an energy band diagram of a conventional quantum well semiconductor laser device. 1... N-type AlAs layer, 2... AlGaAs layer as a radio wave injection layer, 3'' AJIAs layer, 4---
-Light emission
.. 7-... Base quantum level, 8... First excited quantum level, 9.10... Bias power supply, lla, llb.
...Pair of electrodes, 12...Semiconductor substrate. Agent Masuo Oiwa Procedural amendment (voluntary)
Claims (4)
て、かつ伝導帯に複数の量子準位をもつ量子井戸、発光
層と、面に垂直方向に電界を印加できて、かつ前記発光
層に隣接されると共に、発光層とは異なる量子準位をも
つ量子井戸、電流注入層とを備え、前記発光層には、基
底準位に溜められる電子を外部に取り出す電極を配して
構成したことを特徴とする半導体発光装置。(1) An electric field can be applied in the in-plane direction and a direction perpendicular to the plane, and an electric field can be applied in the direction perpendicular to the plane with a quantum well or a light-emitting layer having multiple quantum levels in the conduction band, and A quantum well and a current injection layer are provided adjacent to the light-emitting layer and have a quantum level different from that of the light-emitting layer, and the light-emitting layer is provided with an electrode for extracting electrons stored in the ground level to the outside. A semiconductor light emitting device characterized by comprising:
高さを有することを特徴とする特許請求の範囲第1項に
記載の半導体発光装置。(2) The semiconductor light emitting device according to claim 1, wherein the quantum wells of the light emitting layer and the current injection layer have different barrier heights.
さを有して、ウェル幅を異ならせたことを特徴とする特
許請求の範囲第1項に記載の半導体発光装置。(3) The semiconductor light emitting device according to claim 1, wherein the quantum wells of the light emitting layer and the current injection layer have the same barrier height but different well widths.
る特許請求の範囲第1項に記載の半導体発光装置。(4) The semiconductor light emitting device according to claim 1, wherein the semiconductor light emitting device has cleavage planes at opposite ends.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16710986A JP2508649B2 (en) | 1986-07-15 | 1986-07-15 | Semiconductor light emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16710986A JP2508649B2 (en) | 1986-07-15 | 1986-07-15 | Semiconductor light emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6321891A true JPS6321891A (en) | 1988-01-29 |
JP2508649B2 JP2508649B2 (en) | 1996-06-19 |
Family
ID=15843597
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16710986A Expired - Lifetime JP2508649B2 (en) | 1986-07-15 | 1986-07-15 | Semiconductor light emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2508649B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0468691A2 (en) * | 1990-07-17 | 1992-01-29 | Kabushiki Kaisha Toshiba | Optical semiconductor device for emitting or sensing light of desired wavelength |
US5128728A (en) * | 1989-01-13 | 1992-07-07 | National Research Council Of Canada | Semiconductor superlattice infrared source |
US7715280B2 (en) | 2002-09-19 | 2010-05-11 | Citizen Holdings Co., Ltd. | Electronic clock |
-
1986
- 1986-07-15 JP JP16710986A patent/JP2508649B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5128728A (en) * | 1989-01-13 | 1992-07-07 | National Research Council Of Canada | Semiconductor superlattice infrared source |
EP0468691A2 (en) * | 1990-07-17 | 1992-01-29 | Kabushiki Kaisha Toshiba | Optical semiconductor device for emitting or sensing light of desired wavelength |
US7715280B2 (en) | 2002-09-19 | 2010-05-11 | Citizen Holdings Co., Ltd. | Electronic clock |
Also Published As
Publication number | Publication date |
---|---|
JP2508649B2 (en) | 1996-06-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9484715B2 (en) | Quantum-cascade laser | |
JPH0523516B2 (en) | ||
JPH0143472B2 (en) | ||
WO2021200168A1 (en) | Two-dimensional photonic crystal laser | |
EP0215125A1 (en) | Luminescent semiconductor element | |
US10312666B2 (en) | Semiconductor laser | |
JPS63220591A (en) | Semiconductor device | |
JPS6321891A (en) | Semiconductor light-emitting device | |
JP2003046200A (en) | Multiple quantum well semiconductor element | |
US20210351570A1 (en) | Quantum cascade laser device | |
JP2002368342A (en) | Multiplex quantum well semiconductor element | |
JPS6258557B2 (en) | ||
WO2005008851A1 (en) | Light pulse generating device | |
JP3223969B2 (en) | Semiconductor laser | |
JP2815165B2 (en) | Two-way injection type semiconductor laser device | |
JP2680015B2 (en) | Semiconductor laser device | |
JP2685441B2 (en) | Tunable semiconductor laser | |
JPS63302581A (en) | Light emitting element | |
JPH0632343B2 (en) | Semiconductor laser | |
JP2004200463A (en) | Semiconductor laser element | |
JPH10321960A (en) | Light-emitting semiconductor element | |
JP2876642B2 (en) | Quantum well laser | |
US10320153B1 (en) | Systems and methods of an L-switched light emission | |
Kononenko et al. | Electron-optical nonlinear interaction in asymmetric quantum-well laser heterostructures | |
JPH0745904A (en) | Exciton laser |