JPS6321728B2 - - Google Patents
Info
- Publication number
- JPS6321728B2 JPS6321728B2 JP16683182A JP16683182A JPS6321728B2 JP S6321728 B2 JPS6321728 B2 JP S6321728B2 JP 16683182 A JP16683182 A JP 16683182A JP 16683182 A JP16683182 A JP 16683182A JP S6321728 B2 JPS6321728 B2 JP S6321728B2
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- ferrite
- less
- range
- grains
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 229910000859 α-Fe Inorganic materials 0.000 claims description 71
- 238000010438 heat treatment Methods 0.000 claims description 57
- 230000009466 transformation Effects 0.000 claims description 47
- 229910001141 Ductile iron Inorganic materials 0.000 claims description 32
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 27
- 229910002804 graphite Inorganic materials 0.000 claims description 26
- 239000010439 graphite Substances 0.000 claims description 26
- 239000011159 matrix material Substances 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 22
- 229910052759 nickel Inorganic materials 0.000 claims description 19
- 229910052802 copper Inorganic materials 0.000 claims description 18
- 229910001566 austenite Inorganic materials 0.000 claims description 14
- 239000000203 mixture Substances 0.000 claims description 14
- 229910001563 bainite Inorganic materials 0.000 claims description 13
- 229910000734 martensite Inorganic materials 0.000 claims description 11
- 229910052750 molybdenum Inorganic materials 0.000 claims description 11
- 229910052804 chromium Inorganic materials 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 6
- 229910001018 Cast iron Inorganic materials 0.000 claims description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 3
- 229910052748 manganese Inorganic materials 0.000 claims description 3
- 229910052742 iron Inorganic materials 0.000 claims 2
- 239000010949 copper Substances 0.000 description 21
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 21
- 238000012360 testing method Methods 0.000 description 21
- 230000000694 effects Effects 0.000 description 19
- 239000000463 material Substances 0.000 description 19
- 239000000126 substance Substances 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 10
- 150000003839 salts Chemical class 0.000 description 8
- 239000000523 sample Substances 0.000 description 8
- 239000007858 starting material Substances 0.000 description 6
- 230000007423 decrease Effects 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 238000005204 segregation Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 3
- 230000005496 eutectics Effects 0.000 description 3
- 238000009863 impact test Methods 0.000 description 3
- 229910000519 Ferrosilicon Inorganic materials 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-M Nitrite anion Chemical compound [O-]N=O IOVCWXUNBOPUCH-UHFFFAOYSA-M 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910001567 cementite Inorganic materials 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- KSOKAHYVTMZFBJ-UHFFFAOYSA-N iron;methane Chemical compound C.[Fe].[Fe].[Fe] KSOKAHYVTMZFBJ-UHFFFAOYSA-N 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 229910001562 pearlite Inorganic materials 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 238000009864 tensile test Methods 0.000 description 2
- 229910052684 Cerium Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000805 Pig iron Inorganic materials 0.000 description 1
- 229910007981 Si-Mg Inorganic materials 0.000 description 1
- 229910008316 Si—Mg Inorganic materials 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000006477 desulfuration reaction Methods 0.000 description 1
- 230000023556 desulfurization Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 235000000396 iron Nutrition 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 150000002826 nitrites Chemical class 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D5/00—Heat treatments of cast-iron
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
Description
本発明は強靭球状黒鉛鋳鉄の熱処理方法の改良
に係る。
鋳鉄は球状黒鉛鋳鉄の発明によつて強度が飛躍
的に向上したが、伸びや衝撃値はなお鋼に及ばな
いので、これを改善するために黒鉛の微細均一化
や合金元素の添加が試みられているが、充分な成
果を挙げるに至つて居らず、その上特殊な溶湯処
理を必要としたり、或いは原材料費の増大をきた
す等の問題がある。
このような問題点を改良するため微細なフエラ
イト粒とマルテンサイト粒またはベイナイト粒と
からなる基地組織を有する強靭球状黒鉛鋳鉄およ
びこれを得るための熱処理方法を先に提示した
(特願昭54―85995号および特願昭55―32463号)。
これらの発明は球状黒鉛鋳鉄の黒鉛近傍に偏析
して共析変態温度区間を上昇させる作用を有する
Siと、共晶セル境界およびその近傍に偏析して共
析変態温度区間を降下させる作用を有するMnと
のミクロ偏析による共析変態温度区間の不均一を
矯正するためMn含有量を1%以下とし、黒鉛近
傍に偏析し共析変態温度区間を降下させる作用を
有するCuとNiとの一方または両方を含有させて
Mnの作用を減ずると共にSiの作用と相殺し、基
地組織の均一化を図つた微細なフエライト粒とマ
ルテンサイト粒(特願昭54―85995号)または微
細なフエライト粒とベイナイト粒(特願昭55―
32463号)とからなる混合基地組織の球状黒鉛鋳
鉄に係る発明、並びに上記所定の化学組成を有す
る球状黒鉛鋳鉄を遊離フエライトを含まぬ基地組
織から共析変態温度区間内の温度に加熱してフエ
ライト、オーステナイトおよび黒鉛の共存組織と
し、次いで急冷してオーステナイトをマルテンサ
イトに変態させてフエライト粒とマルテンサイト
粒とが微細に混合した基地組織とする熱処理方
法、或いは共析変態温度区間内の温度から250〜
370℃の熱浴中に急冷し、該温度に保持してオー
ステナイトをベイナイトに変態させてフエライト
粒とベイナイト粒とが微細に混合した基地組織と
する熱処理方法に係る。
上記の球状黒鉛鋳鉄はいずれも優れた強靭性を
有しているが、基地のフエライトとベイナイトま
たはマルテンサイトを適当な量的関係にするのに
必要な、例えば基地中のフエライト量を面積比で
30〜70%とするのに必要な共析変態温度区間内の
加熱温度範囲は20〜27℃程度であつて工業的には
比較的狭いのが問題であり、製造上避けられない
化学成分組成の、特にSiのばらつきや肉厚の差異
による熱処理時の鋳造品内部の温度の不均一を考
慮すると上記の温度範囲は一層広いことが要望さ
れる。
本発明は上記の要望に応える改善された熱処理
方法を提供することを目的とし、その第1の発明
はC3〜4%、Si2.2〜3.7%、Mn1%以下、P0.1%
以下、S0.02%以下、黒鉛球状化処理元素0.07%
以下、並びにCu0.4〜2%もしくはNi0.7〜3%ま
たは添付図面第1図に示すA(Cu0.4%、Ni0%)、
B(Cu2%、Ni0%)、C(Ni0.7%、Cu0%)、D
(Ni3%、Cu0%)、E(Ni1%、Cu2%)で囲まれ
る範囲内のCuとNiとを含有し、残部が実質的に
Feからなる球状黒鉛鋳鉄を共析変態温度区間内
の温度に加熱保持してフエライト、オーステナイ
トおよび黒鉛の共存する組織としたのち急冷して
マルテンサイト粒またはベイナイト粒とフエライ
ト粒との混合した基地中に球状黒鉛が晶出してい
る組織と強靭球状黒鉛鋳鉄の熱処理方法であつ
て、共析変態温度区間内の温度への平均加熱速度
を600℃以上の温度域において10℃/分以下とし、
かつ共析変態温度区間内の保持温度を添付第2図
に示す直線W1―X1と直線Y2―Z2上のSi含有量に
対応する温度からCuまたはNiの含有量に応じて
21℃×(Cu%―1.0%)または21℃×(Ni%―0.5
%)を減じた温度間の温度とし、基地中のフエラ
イト粒が面積率で30〜70%の混合基地組織とする
ことを特徴とする強靭球状黒鉛鋳鉄の熱処理方法
に係り、その第2の発明は上記第1の発明の化学
成分組成に更にMoおよびCrの1種または2種を
合計で0.05〜0.5%含有させた球状黒鉛鋳鉄に上
記第1の発明におけると同様な熱処理(ただし共
析変態温度区間内の保持温度をMoまたはCrの含
有量に応じて更に(Mo+Cr)1%当り28℃を加
算した温度とする)を施すことを特徴とする強靭
球状黒鉛鋳鉄の熱処理方法に係る。なお本明細書
においては化学組成は重量%で、金属組織成分の
割合は顕微鏡試料について線積分法によつて測定
した面積%で示すこととする。
次に本発明に係る球状黒鉛鋳鉄の化学成分組成
について説明する。
Cは通例の球状黒鉛鋳鉄と同様に含有量を3〜
4%とする。3%未満では鋳造品にチルが入り易
く、4%を越えるとカーボンドロスが発生し、鋳
造品の中に巻きこまれて欠陥となり易い。
Siは共析変態温度区間を拡げる作用を有してい
るので、熱処理をより容易にするためには含有量
が多いほどよく、本発明では2.2%以上とするが、
3.7%を越えるとSiの脆化作用の影響が顕著にな
つて伸びと衝撃値の低下が著しくなるので好まし
くないので上限は3.7%とする。
Mnは前記したように共晶セル境界およびその
近傍に偏析する性質を有し、含有量が1%を越え
ると偏析が甚しくなり、その部分の共析変態温度
区間が下り過ぎて後述するCuやNiによつて共析
変態温度区間を修正しきれなくなるので1%以下
とする。
Pは通常不純物として含有されるが、多くなる
と鋳鉄を脆化する性質があるので0.1%以下とす
るのがよい。Sは同様に通常は下純物として含有
されるが、特に黒鉛球状化を阻害する性質の強い
有害な元素であるから少ないほどよい。含有量が
0.02%を越えると黒鉛球状化処理剤の使用量が多
くなる結果ドロスの発生が多くなり、鋳造品の欠
陥の原因になり易い上に、黒鉛球状化が困難にな
ることさえある。従つて溶湯のS量が0.02%を越
える場合には黒鉛の球状化処理に先だつて脱硫処
理を施して0.02%以下としておくことが必要であ
る。
黒鉛球状化処理剤としては通常MgまたはMg
合金のほかにCe、Y或いはCa等の1種または2
種以上が使用されるのは周知のとおりであり、鋳
造中に残留する量は通常0.07%以下である。
Cuは黒鉛の周辺に偏析してその部分の共析変
態温度区間を下降させる作用を有し、Siが黒鉛周
辺に偏析して共析変態温度区間を上昇させる作
用、およびMnが共晶セル境界とその近傍に偏析
してその部分の共析変態温度区間を下降させる作
用に基づく基地組織中の局部的な共析変態温度区
間の不均一を是正して該温度区間を均一にするこ
とによつて基地組織の不均一を防止する。しかし
その含有量が0.4%未満では効果が不充分であり、
Cuの含有量が多くなると黒鉛の球状化が困難に
なつて来るほか、Cuに富むε相の析出による脆
化が起るようになるのでその上限は2%とするの
がよい。
NiはCuと同様な作用を有しているが、その含
有量が0.7%未満では効果が充分には認められず、
その量が多くなると次第にその効果が飽和状態に
近づき、原価高にもなるのでその上限は3%とす
るのがよい。
CuとNiとは上記のように同様な作用を有する
ので、相互にその含有量の一部を置換することが
可能であるがその効果はNiの方が多少弱いこと
と、多量のCuの添加は黒鉛の球状化を阻害する
ことを勘案して添付図面第1図のA・B・C・
D・Eの各点で囲まれる範囲内とするのがよい。
MoおよびCrについては後述する。
次に第1の発明の熱処理について説明する。
ところで前記特願昭55―32463号に係る発明に
よれば球状黒鉛鋳鉄をその共析変態温度区間内の
温度に加熱すると基地のパーライト中のセメンタ
イトが周囲のフエライト中に固溶し、フエライト
はオーステナイトに変化してセメンタイトが消失
すると共に、オーステナイトの成長によつて生ず
るオーステナイト粒子の三重点が核となつてフエ
ライト相が出現し、成長してオーステナイト粒と
フエライト粒との混合基地組織となり、これを冷
却すると熱浴中での恒温変態を経て最終的にオー
ステナイトが変態したベイナイト粒とフエライト
粒とが混合した基地組織になると考えられる。共
析変態温度区間の温度から室温まで急冷する特願
昭54―85995号の場合も上記と同様な機構によつ
てフエライト粒とマルテンサイト粒との混合した
基地組織となるものと考えられる。
これらの先行出願に係る発明においては遊離フ
エライトを含まぬ基地組織の球状黒鉛鋳鉄を出発
材料としたのであるが、その後の研究の結果共析
変態温度区間内の温度への加熱速度を遅くするこ
とによつて遊離フエライトを含む球状黒鉛鋳鉄を
出発材料とすることができることが判つた。
従つて前記の先行出願に係る発明にあつては組
織中に遊離フエライトを含む球状黒鉛鋳鉄は予め
焼準を施してパーライト基地組織としておく必要
があるが、本発明に係る方法では凝固の際にチル
を生ずることがあればその球状黒鉛鋳鉄にチル消
しの焼鈍を施す以外には予め熱処理を施す必要が
なく、鋳放し状態で組織中に遊離フエライトを含
む球状黒鉛鋳鉄でも加熱速度を所定の範囲内にす
ることによつてそのまま出発材料として使用する
ことができる。
本発明の方法によつて得られる球状黒鉛鋳鉄の
基地中のフエライト量が30%未満では伸びや衝撃
値が所望の値よりも低下するようになつて好まし
くなく、これが70%を越えると引張り強さや耐力
の低下が著しくなる。従つて基地中のフエライト
の量が30〜70%に、マルテンサイトまたはベイナ
イトの量は70〜30%になるようにする。
共析変態温度区間内の温度への平均加熱速度に
ついて言えば600℃以上の温度域において10℃/
分以下とする。600℃より下の温度における加熱
速度の遅速による遊離フエライトの変化には実質
的に影響が認められない。600℃以上の平均加熱
速度が速すぎると組織中に遊離フエライトを含む
球状黒鉛鋳鉄を出発材料とした場合には遊離フエ
ライトの部分はフエライトの多い組織となつて基
地組織が不均一になり易く、その結果強靭性が損
われるようになる。また実験結果によれば上記加
熱速度を10℃/分以下とすることによつて基地中
のフエライトの量が30〜70%となる加熱温度範囲
(以下MD域と呼ぶ)を拡げることができる。
第2図は後述する実験例における大よそCu1
%、Ni0.5%を含有する本発明に係る化学成分組
成の球状黒鉛鋳鉄のフエライト30%またはフエラ
イト70%の基地組織が得られるSi含有量別に示し
た加熱速度および共析変態温度区間内の保持温度
の関係を示す第3図をSi含有量と保持温度とをそ
れぞれ横軸、縦軸にとつて書き直したものであ
る。
第1の発明における保持温度は第2図中に示さ
れているフエライト30%の基地組織となる加熱速
度2℃/分以下の直線W1―X1とフエライト70%
の基地組織となる加熱速度10℃/分の直線Y2―
Z2にそれぞれCuおよびNiの含有量に応じて後述
するように修正を加えた温度の間の温度とする。
保持温度がこの温度範囲をはずれて高温になると
基地中のフエライトの量が約30%よりも少なくな
り、他方保持温度がこの温度範囲よりも低温にな
ると基地中のフエライトの量が70%を越えるよう
になる。
共析変態温度区間はSiによつて上昇する以外に
CuまたはNiによつて降下するので、CuまたはNi
の含有量に応じて上記直線W1―X1および直線Y2
―Z2で示される温度に修正を加える必要がある。
CuおよびNiはいずれも1%当り共析変態温度区
間をおよそ20℃下げる。第2図はCu1%、Ni0.5
%の例であるから、上記直線W1―X1および直線
Y2―Z2から得られる保持温度にCu、Niの含有量
に応じて21℃×(Cu%―1.0%)または21℃×(Ni
%―0.5%)を減じて修正する。なお上記加熱速
度が10℃/分以下の範囲で変動した場合でも基地
中のフエライトの量が30〜70%の範囲に入るよう
にするためには直線W1―X1に代えて同図中に示
されるフエライト30%の基地組織になる加熱速度
10℃/分の直線W2―X2を、直線Y2―Z2に代えて
フエライト70%の基地組織になる加熱速度2℃/
分の直線Y1―Z1を採用することが好ましい。
保持時間は5分間以上とすれば前記のような基
地組織が得られるが、大量生産の場合には鋳造品
の肉厚の差異と経済性を考慮して保持時間を30分
〜2時間とするのが望ましい。
なお第2図から加熱速度2℃/分または10℃/
分でフエライト30〜70%となるMD域が20℃/分
または40℃/分の場合のMD域よりも広いことが
同一Si%で比較してみれば容易に認められよう。
次いで上記の2相混合基地組織となつた球状黒
鉛鋳鉄を急冷してオーステナイト粒をマルテンサ
イト粒に変態させる。或いはソルトバス等の熱浴
中に浸漬、保持して恒温変態を行なわせてオース
テナイト粒をベイナイト粒に変態させる。恒温変
態に当つては熱浴温度が250℃よりも低い場合に
は変態終了までに著しく長時間を要する上に、材
料が脆くなるおそれがあり、これが400℃よりも
高い場合には熱浴温度までの急冷過程でAr′変態
が一部起つて一次トルースタイトを生じ、強靭性
が損われる。従つて熱浴温度は250〜400℃の範囲
とするのがよい。
第2の発明は前記第1の発明の化学成分組成に
更にMoおよびCrの1種または2種を合計で0.05
〜0.5%含有させ、鋳造品の肉厚が大きい場合に
共析変態温度区間の温度から急冷の過程で基地中
のフエライトの量が増大したり、あるいはAr′変
態が一部起つて一次トルースタイトを生ずるのを
阻止するようにしたものである。
従つて厚肉鋳造品や部分的に厚肉部を有する鋳
造品にあつては少量のMoやCrを含有することが
望ましい。この場合のMoもしくはCrまたは両者
の含有量は合計40.05%未満ではその効果が不充
分であり、これが多過ぎると恒温変態処理に当つ
て熱浴中に保持する時間が長くなつて不経済であ
るからMoもしくはCrまたは両者の含有量は合計
で0.05〜0.5%とするのがよい。
MoとCrは0.5%以下の範囲ではいずれも共析変
態温度区間を1%当りおよそ28℃上昇させるの
で、共析変態温度区間内の保持温度は前記第2図
に示す直線W1―X1およびY2―Z2から得られた保
持温度に対してCuまたはNiの含有量に応じた修
正を行なつた値に、更に28℃×(Mo%+Cr%)
を加算した温度とする。その余は前記第1の発明
における手順と同様である。
次に実験例について説明する。
() 基地組織に関する実験
球状黒鉛鋳鉄用銑、鋼屑、フエロシリコン、ニ
ツケルおよび銅を原材料とし、50Kg容量の高周波
誘導電気炉で溶解し、Fe―Si―Mg合金添加によ
る黒鉛球状化処理とフエロシリコン添加による後
期接種を施し、シエル鋳型に鋳込みA号Yブロツ
クを鋳造し、押湯部分を除去して供試材とした。
その化学組成は第1表に示すとおりCuを大略1
%、Niを大略0.5%とし、Si含量を変化させてあ
る。図表には遊離フエライトの量が併記してあ
る。
The present invention relates to an improvement in a heat treatment method for tough spheroidal graphite cast iron. The strength of cast iron has improved dramatically with the invention of spheroidal graphite cast iron, but its elongation and impact value are still not as good as steel, so attempts have been made to make the graphite finer and more uniform and to add alloying elements to improve this. However, sufficient results have not been achieved, and there are problems such as requiring special molten metal processing or increasing raw material costs. In order to improve these problems, we have previously proposed a strong spheroidal graphite cast iron having a matrix structure consisting of fine ferrite grains and martensite grains or bainite grains, and a heat treatment method for obtaining the same. No. 85995 and Patent Application No. 1983-32463). These inventions have the effect of increasing the eutectoid transformation temperature range by segregation in the vicinity of graphite in spheroidal graphite cast iron.
In order to correct the unevenness of the eutectoid transformation temperature range due to the micro-segregation of Si and Mn, which segregates at the eutectic cell boundary and its vicinity and has the effect of lowering the eutectoid transformation temperature range, the Mn content is reduced to 1% or less. and contains one or both of Cu and Ni, which segregate near graphite and have the effect of lowering the eutectoid transformation temperature range.
Fine ferrite grains and martensite grains (patent application No. 85995-1986) or fine ferrite grains and bainite grains (patent application No. 1985-85995) are designed to reduce the action of Mn and offset the action of Si, thereby making the matrix structure uniform. 55-
No. 32463), and the invention relates to spheroidal graphite cast iron having a mixed matrix structure consisting of the above-mentioned predetermined chemical composition, which is heated to a temperature within the eutectoid transformation temperature range from a matrix structure containing no free ferrite to produce ferrite. , a heat treatment method that creates a coexistence structure of austenite and graphite, and then rapidly cools the austenite to transform it into martensite to form a matrix structure in which ferrite grains and martensite grains are finely mixed, or from a temperature within the eutectoid transformation temperature range. 250~
It relates to a heat treatment method in which the material is rapidly cooled in a 370° C. heat bath and kept at that temperature to transform austenite into bainite to form a matrix structure in which ferrite grains and bainite grains are finely mixed. All of the above-mentioned spheroidal graphite cast irons have excellent toughness.
The problem is that the heating temperature range within the eutectoid transformation temperature range required to achieve 30 to 70% is about 20 to 27 degrees Celsius, which is relatively narrow for industrial purposes. Considering the non-uniformity of temperature inside the cast product during heat treatment, especially due to variations in Si and wall thickness, the above temperature range is desired to be wider. The purpose of the present invention is to provide an improved heat treatment method that meets the above-mentioned needs, and the first invention includes C3-4%, Si2.2-3.7%, Mn 1% or less, P0.1%.
Below, S0.02% or less, graphite nodularization treatment element 0.07%
The following, as well as Cu0.4-2% or Ni0.7-3% or A (Cu0.4%, Ni0%) shown in Figure 1 of the attached drawings,
B (Cu2%, Ni0%), C (Ni0.7%, Cu0%), D
(Ni3%, Cu0%), E (Ni1%, Cu2%), and the remainder is substantially
Spheroidal graphite cast iron made of Fe is heated and held at a temperature within the eutectoid transformation temperature range to form a structure in which ferrite, austenite, and graphite coexist, and then rapidly cooled to form a matrix containing martensite grains or bainite grains and ferrite grains. A method for heat treatment of a structure in which spheroidal graphite is crystallized and strong spheroidal graphite cast iron, wherein the average heating rate to a temperature within the eutectoid transformation temperature range is 10°C/min or less in a temperature range of 600°C or higher,
And the holding temperature within the eutectoid transformation temperature range is determined from the temperature corresponding to the Si content on the straight line W 1 - X 1 and the straight line Y 2 - Z 2 shown in the attached Figure 2, depending on the Cu or Ni content.
21℃×(Cu%−1.0%) or 21℃×(Ni%−0.5
The second invention relates to a heat treatment method for tough spheroidal graphite cast iron, characterized in that the temperature is between the temperatures where is a heat treatment similar to that in the first invention (however, eutectoid transformation The present invention relates to a heat treatment method for tough spheroidal graphite cast iron, characterized in that the holding temperature within the temperature range is further increased by 28°C per 1% (Mo + Cr) according to the content of Mo or Cr. In this specification, the chemical composition is expressed in weight %, and the proportion of metallographic components is expressed in area % measured by line integral method on a microscopic sample. Next, the chemical composition of the spheroidal graphite cast iron according to the present invention will be explained. The content of C is 3 to 3, similar to ordinary spheroidal graphite cast iron.
4%. If it is less than 3%, chill tends to enter the cast product, and if it exceeds 4%, carbon dross is likely to be generated and become entangled in the cast product, resulting in defects. Since Si has the effect of expanding the eutectoid transformation temperature range, in order to make heat treatment easier, the higher the content, the better; in the present invention, the content is set at 2.2% or more.
If it exceeds 3.7%, the effect of the embrittlement effect of Si becomes significant, resulting in a significant drop in elongation and impact value, which is undesirable, so the upper limit is set at 3.7%. As mentioned above, Mn has the property of segregating at the eutectic cell boundary and its vicinity, and when the content exceeds 1%, the segregation becomes severe, and the eutectoid transformation temperature range in that area becomes too low, causing Cu to be described later. Since the eutectoid transformation temperature range cannot be completely corrected by Ni and Ni, it is set to 1% or less. P is normally contained as an impurity, but if too much it has the property of embrittling cast iron, so it is best to keep it at 0.1% or less. Similarly, S is usually contained as a lower purity substance, but it is a harmful element that has a strong property of inhibiting graphite spheroidization, so the less it is, the better. The content is
If it exceeds 0.02%, the amount of graphite spheroidizing agent used increases, resulting in increased generation of dross, which tends to cause defects in cast products and may even make it difficult to spheroidize graphite. Therefore, if the S content of the molten metal exceeds 0.02%, it is necessary to carry out a desulfurization treatment prior to the graphite spheroidization treatment to reduce the S content to 0.02% or less. The graphite nodularization treatment agent is usually Mg or Mg.
In addition to alloys, one or two of Ce, Y, Ca, etc.
It is well known that more than 100% of the content is used, and the amount remaining during casting is usually 0.07% or less. Cu segregates around graphite and has the effect of lowering the eutectoid transformation temperature range in that part, Si segregates around graphite and has the effect of raising the eutectoid transformation temperature range, and Mn has the effect of segregating around graphite and lowering the eutectoid transformation temperature range, and Mn has the effect of increasing the eutectoid transformation temperature range at the eutectic cell boundary. By correcting the non-uniformity of the local eutectoid transformation temperature section in the base structure, which is based on the effect of segregation in the vicinity of the eutectoid transformation temperature section and lowering the eutectoid transformation temperature section of that part, the temperature section is made uniform. This prevents uneven base structure. However, if the content is less than 0.4%, the effect is insufficient.
If the Cu content increases, it becomes difficult to make graphite spheroidal, and embrittlement occurs due to the precipitation of Cu-rich ε phase, so the upper limit is preferably 2%. Ni has the same effect as Cu, but if its content is less than 0.7%, the effect will not be sufficiently recognized.
As the amount increases, the effect gradually approaches saturation and the cost increases, so it is best to set the upper limit to 3%. Since Cu and Ni have similar effects as mentioned above, it is possible to replace a part of their content with each other, but the effect is somewhat weaker with Ni, and the addition of a large amount of Cu In consideration of inhibiting the spheroidization of graphite, A, B, C, and
It is preferable to set it within the range surrounded by each point D and E. Mo and Cr will be described later. Next, the heat treatment of the first invention will be explained. According to the invention disclosed in Japanese Patent Application No. 55-32463, when spheroidal graphite cast iron is heated to a temperature within its eutectoid transformation temperature range, the cementite in the base pearlite dissolves in the surrounding ferrite, and the ferrite becomes austenite. As the cementite disappears, the triple points of the austenite particles generated by the growth of austenite become nuclei and a ferrite phase appears, which grows into a mixed base structure of austenite and ferrite grains. It is thought that when cooled, it undergoes isothermal transformation in a heat bath and finally becomes a matrix structure consisting of a mixture of bainite grains and ferrite grains in which austenite has been transformed. In the case of Japanese Patent Application No. 85995/1987, in which the material is rapidly cooled from a temperature in the eutectoid transformation temperature range to room temperature, it is thought that a matrix structure in which ferrite grains and martensite grains are mixed is formed by the same mechanism as described above. In the inventions related to these earlier applications, spheroidal graphite cast iron with a matrix structure containing no free ferrite was used as the starting material, but subsequent research revealed that the heating rate to a temperature within the eutectoid transformation temperature range was slowed down. It was found that spheroidal graphite cast iron containing free ferrite can be used as a starting material. Therefore, in the invention according to the above-mentioned earlier application, it is necessary to normalize the spheroidal graphite cast iron containing free ferrite in its structure to form a pearlite base structure, but in the method according to the present invention, it is necessary to normalize the spheroidal graphite cast iron containing free ferrite in the structure, but in the method according to the present invention, the If chill occurs, there is no need to pre-heat treat the spheroidal graphite cast iron other than annealing to eliminate the chill, and even spheroidal graphite cast iron that contains free ferrite in its structure in the as-cast state can be heated at a heating rate within a specified range. It can be used as a starting material as it is. If the amount of ferrite in the base of the spheroidal graphite cast iron obtained by the method of the present invention is less than 30%, the elongation and impact value will be lower than desired values, which is undesirable, and if it exceeds 70%, the tensile strength will be The sheath strength decreases significantly. Therefore, the amount of ferrite in the base should be 30 to 70%, and the amount of martensite or bainite should be 70 to 30%. Regarding the average heating rate to the temperature within the eutectoid transformation temperature range, it is 10℃/
minutes or less. There is virtually no effect on the change in free ferrite due to the slow heating rate at temperatures below 600°C. If the average heating rate of 600°C or higher is too fast, when spheroidal graphite cast iron containing free ferrite in its structure is used as a starting material, the free ferrite portion tends to become a ferrite-rich structure, making the base structure non-uniform. As a result, toughness is impaired. Further, according to experimental results, by setting the heating rate to 10° C./min or less, it is possible to widen the heating temperature range (hereinafter referred to as MD range) in which the amount of ferrite in the base is 30 to 70%. Figure 2 shows the approximate Cu1 in the experimental example described later.
%, and the chemical composition of the spheroidal graphite cast iron according to the present invention containing 0.5% Ni, a matrix structure of 30% ferrite or 70% ferrite is obtained.The heating rate and eutectoid transformation temperature range shown by Si content are FIG. 3, which shows the relationship between holding temperatures, has been redrawn with Si content and holding temperature set on the horizontal and vertical axes, respectively. The holding temperature in the first invention is a straight line W 1 -
The straight line Y 2 with a heating rate of 10°C/min, which forms the base structure of
The temperature is between Z 2 and modifications as described below depending on the content of Cu and Ni, respectively.
If the holding temperature is higher than this temperature range, the amount of ferrite in the base will be less than about 30%, while if the holding temperature is lower than this temperature range, the amount of ferrite in the base will be more than 70%. It becomes like this. In addition to being increased by Si, the eutectoid transformation temperature range
Cu or Ni
The above straight line W 1 - X 1 and straight line Y 2 according to the content of
- It is necessary to make corrections to the temperature indicated by Z 2 .
Both Cu and Ni lower the eutectoid transformation temperature range by approximately 20°C per 1%. Figure 2 shows Cu1% and Ni0.5
Since this is an example of %, the above straight line W 1 - X 1 and the straight line
Depending on the content of Cu and Ni, the holding temperature obtained from Y 2 - Z 2 is 21℃ x (Cu% - 1.0%) or 21℃ x (Ni
% - 0.5%). In addition, in order to keep the amount of ferrite in the base within the range of 30 to 70% even if the above heating rate fluctuates within the range of 10°C/min or less, the line W 1 - X 1 in the figure should be replaced with Heating rate to form a base structure of 30% ferrite shown in
Replace the straight line W 2 -
It is preferable to adopt the straight line Y 1 - Z 1 . If the holding time is 5 minutes or more, the above-mentioned base structure can be obtained, but in the case of mass production, the holding time is set to 30 minutes to 2 hours in consideration of the difference in wall thickness of the cast product and economic efficiency. is desirable. From Figure 2, the heating rate is 2℃/min or 10℃/min.
When compared at the same Si%, it will be easily recognized that the MD range in which ferrite is 30 to 70% per minute is wider than the MD range at 20°C/min or 40°C/min. Next, the spheroidal graphite cast iron that has become the two-phase mixed matrix structure is rapidly cooled to transform the austenite grains into martensite grains. Alternatively, the austenite grains are transformed into bainite grains by immersing and holding them in a hot bath such as a salt bath to carry out isothermal transformation. In isothermal transformation, if the heat bath temperature is lower than 250℃, it will take an extremely long time to complete the transformation and the material may become brittle; if it is higher than 400℃, the heat bath temperature will be lower. During the rapid cooling process, some Ar′ transformation occurs, forming primary troostite, which impairs toughness. Therefore, the heat bath temperature is preferably in the range of 250 to 400°C. The second invention further includes one or two of Mo and Cr in a total of 0.05% of the chemical composition of the first invention.
~0.5%, and when the thickness of the cast product is large, the amount of ferrite in the base increases during the rapid cooling process from the temperature in the eutectoid transformation temperature range, or some Ar' transformation occurs, resulting in primary troostite. It is designed to prevent this from occurring. Therefore, for thick-walled cast products or cast products with partially thick-walled parts, it is desirable to contain a small amount of Mo or Cr. In this case, if the total content of Mo or Cr or both is less than 40.05%, the effect is insufficient, and if it is too large, the time required to hold the product in the heat bath during isothermal transformation treatment becomes long, which is uneconomical. The total content of Mo, Cr, or both is preferably 0.05 to 0.5%. Since both Mo and Cr raise the eutectoid transformation temperature range by approximately 28°C per 1% in the range of 0.5% or less, the holding temperature within the eutectoid transformation temperature range is the straight line W 1 - X 1 shown in Figure 2 above. And the holding temperature obtained from Y 2 - Z 2 is corrected according to the content of Cu or Ni, and then 28℃ × (Mo% + Cr%)
The temperature is the sum of The rest of the procedure is the same as the procedure in the first invention. Next, an experimental example will be explained. () Experiments on matrix structure Spheroidal graphite cast iron pig iron, steel scrap, ferrosilicon, nickel, and copper were used as raw materials, melted in a high-frequency induction electric furnace with a capacity of 50 kg, and treated with graphite spheroidization by adding Fe-Si-Mg alloy. Late-stage inoculation was performed by adding ferrosilicon, and a No. A Y block was cast in a shell mold, and the riser portion was removed to prepare a test material.
Its chemical composition is approximately 1 Cu as shown in Table 1.
%, Ni was approximately 0.5%, and the Si content was varied. The amount of free ferrite is also shown in the chart.
【表】
これら供試材から10×10×10mmの正六面体試料
を採取し、次の実験を行なつた。
(I−1) 600℃以上の平均加熱速度を2,10,
20および40℃/分にとり試料を730〜870℃の間
の温度に加熱して60分間保持し、水冷して基地
中のフエライト量を顕微鏡で線積分法によつて
測定した。なお上記保持温度においてオーステ
ナイトであつた部分はマルテンサイトになつて
いるので容易に区別できる。
測定結果から各試料について基地中のフエラ
イトが30%または70%となる加熱速度と保持温
度との関係を求めると第3図のようになる。図
において同一Si含有量の破線と実線との曲線で
挾まれる範囲の変化から判るように、基地中の
フエライトが30〜70%の間になる保持温度の範
囲すなわちMD域は加熱速度が小さいほど広く
なつており、特に高Si含有側でその傾向が強
い。MD域の変化は加熱速度10℃/分より遅い
範囲では次第に小さくなり、2℃/分以下では
ほぼ一定になるものと判断される。また保持温
度の変化はおよそ10〜20℃/分の加熱速度の範
囲で著しい。従つて保持温度の変化を小さな範
囲に押えながら広いMD域を得るためには加熱
速度を10℃/分以下とするのがよいと考えられ
る。
第2図は第3図の各加熱速度について基地中
のフエライトが30%および70%となるSi含有量
と保持温度との関係を求めたものである。第2
図から加熱速度10℃/分以下で基地中のフエラ
イト量が30〜70%となる保持温度は加熱速度10
℃、フエライト量30%を示す直線W1―X1と加
熱速度2℃/分以下、フエライト量70%を示す
直線Y2―Z2との間(斜線を引いた範囲)の温
度であることが理解できる。第2図から例えば
Siの含有量が3.0〜3.2%の間(差R=0.2%)に
ばらついた場合でも加熱速度を10℃/分以下と
して保持温度をA点で示す790℃とB点で示す
827℃の間(R=37℃)にとれば基地中のフエ
ライト量を30〜70℃の範囲内にすることができ
ることになる。
なおこの実験は大よそCu1%、Ni0.5%でMo
およびCrを含まない化学組成についての実験
であるから、Cu、Ni、MoまたはCrの含有量
がこれと異なる場合にはその含有量に応じて第
2図から求めた保持温度に修正を加える必要が
あることは前述したとおりである。
(−2) 本発明によつて得られる球状黒鉛鋳
鉄の組織が熱処理前の遊離フエライトの量によ
つて影響を受けるかどうかを調べるため、第2
表に示す化学組成の供試材を前実験と同様にし
て製作し、以下の実験を行なつた。[Table] Regular hexahedral samples of 10 x 10 x 10 mm were taken from these test materials and the following experiments were conducted. (I-1) The average heating rate above 600℃ is 2,10,
The sample was heated to a temperature between 730 and 870°C at a rate of 20 and 40°C/min, held for 60 minutes, cooled with water, and the amount of ferrite in the matrix was measured using a microscope using line integral method. Note that the portions that were austenite at the above-mentioned holding temperature are now martensite and can be easily distinguished. Figure 3 shows the relationship between the heating rate and holding temperature at which the ferrite content in the matrix becomes 30% or 70% for each sample from the measurement results. As can be seen from the change in the range between the dashed line and the solid line for the same Si content in the figure, the heating rate is low in the holding temperature range where ferrite in the base is between 30 and 70%, that is, the MD region. This tendency is particularly strong on the high Si content side. It is judged that the change in the MD region becomes gradually smaller in a range where the heating rate is slower than 10°C/min, and becomes almost constant at a heating rate of 2°C/min or less. Also, the change in holding temperature is significant in the heating rate range of approximately 10-20°C/min. Therefore, in order to obtain a wide MD range while suppressing the change in holding temperature within a small range, it is considered that the heating rate should be set to 10° C./min or less. FIG. 2 shows the relationship between the Si content and the holding temperature at which the ferrite content in the matrix becomes 30% and 70% for each heating rate shown in FIG. 3. Second
From the figure, the holding temperature at which the amount of ferrite in the base becomes 30 to 70% at a heating rate of 10℃/min or less is a heating rate of 10
℃, the temperature should be between the straight line W 1 - X 1 indicating 30% ferrite amount and the straight line Y 2 - Z 2 indicating heating rate 2℃/min or less and 70% ferrite amount (shaded range). I can understand. For example, from Figure 2
Even if the Si content varies between 3.0 and 3.2% (difference R = 0.2%), the heating rate is set to 10°C/min or less, and the holding temperature is shown as 790°C at point A and 790°C at point B.
If the temperature is between 827°C (R=37°C), the amount of ferrite in the matrix can be kept within the range of 30 to 70°C. In this experiment, Cu was approximately 1%, Ni was 0.5%, and Mo
Since this experiment was conducted on a chemical composition that does not contain Cr, if the content of Cu, Ni, Mo, or Cr is different from this, it is necessary to modify the holding temperature determined from Figure 2 according to the content. As mentioned above, there is. (-2) In order to investigate whether the structure of spheroidal graphite cast iron obtained by the present invention is affected by the amount of free ferrite before heat treatment, the second
Test materials having the chemical compositions shown in the table were prepared in the same manner as in the previous experiment, and the following experiments were conducted.
【表】
第4図は供試材の鋳放し状態における組織を
示す顕微鏡写真(倍率100倍)で、aは供試材
pの、bは供試材Qの組織を示している。遊離
フエライトの量はPでは17%、Qでは6%と測
定された。供試材QはMoを含有しているため
供試材Pに比べてブルスアイ状に析出した遊離
フエライトの量が少ない。
これらの供試材を600℃以上の平均加熱速度
4℃/分で815℃に加熱して2時間保持したの
ち、340℃の亜硝酸系塩浴中に移して2時間保
持して空冷し、その組織を調べた。第5図はそ
の顕微鏡写真(400倍)で、aは供試材Pの、
bは供試材Qの組織を示している。基地のフエ
ライト量はPでは55%、Qでは52%であり、両
者の間には実質的な組織上の差は認められな
い。
第4図,第5図から熱処理前には供試材P、
Q間に遊離フエライトの量に差があつても、熱
処理後の組織には差が認められなくなつてお
り、本発明にあつては遊離フエライトを含む組
織の球状黒鉛鋳鉄を出発材料としても差支えな
いことが判る。
() 機械的性質に関する実験
(−1) 基地中のフエライト量と機械的性質
との関係を調査するため前記実験()と同様
にして第3表に示す化学組成の供試材を製作し
た。[Table] Figure 4 is a micrograph (100x magnification) showing the structure of the test material in the as-cast state, where a shows the structure of test material P and b shows the structure of test material Q. The amount of free ferrite was determined to be 17% for P and 6% for Q. Since sample material Q contains Mo, the amount of free ferrite precipitated in a bull's eye shape is smaller than that in sample material P. These test materials were heated to 815°C at an average heating rate of 4°C/min over 600°C and held for 2 hours, then transferred to a 340°C nitrite salt bath, held for 2 hours, and air cooled. I looked into the organization. Figure 5 is a micrograph (400x magnification) of the specimen P.
b shows the structure of sample material Q. The amount of ferrite in the base is 55% in P and 52% in Q, and there is no substantial difference in structure between the two. From Figures 4 and 5, before heat treatment, sample material P,
Even if there is a difference in the amount of free ferrite between Q, no difference is recognized in the structure after heat treatment, and in the case of the present invention, there is no problem even using spheroidal graphite cast iron with a structure containing free ferrite as a starting material. It turns out there isn't. () Experiment regarding mechanical properties (-1) In order to investigate the relationship between the amount of ferrite in the base and mechanical properties, test materials having the chemical compositions shown in Table 3 were prepared in the same manner as in the experiment () above.
【表】
これら供試材を共析変態温度区間内の温度に
加熱したのち、亜硝酸塩系塩浴中に移し、恒温
変態を行なわせてから空冷する熱処理を施し
た。その熱処理条件は第4表に示すとおりであ
る。熱処理後の基地はフエライトとベイナイト
の混合組織を呈していた。[Table] After these test materials were heated to a temperature within the eutectoid transformation temperature range, they were transferred to a nitrite-based salt bath, subjected to isothermal transformation, and then heat-treated by air cooling. The heat treatment conditions are shown in Table 4. The base after heat treatment had a mixed structure of ferrite and bainite.
【表】
第4表に示す熱処理を施した供試材から平行
部径6mm、標点距離25mmの引張試験片およびシ
ヤルピー衝撃試験片(3号試験片)を製作し、
インストロン型引張試験機を用いて1mm/分の
歪速度の引張試験、5Kg・m容量の衝撃試験機
で衝撃試験を行ない、衝撃試験片は次に検鏡し
て基地中のフエライト量を測定したのち硬さ試
験に供した。
試験結果は第6図に示すとおりである。引張
り強さ、耐力は基地中のフエライトの量の増加
に伴なつて低下し、伸びはフエライト量の増加
に伴なつて増加しているのは通常のとおりであ
る。衝撃値はフエライト量の増加に伴なつて高
くなるがおよそ50%〜60%でピークに達し、更
に増加すると低下する傾向がみられる。硬さは
フエライト量の増加によつて低下するのは予想
どおりである。モリブデンを含有する供試材は
モリブデンを含有しない供試材の成績と比較す
ると衝撃値が高いほかは特に差異は認められな
い。以上の結果から基地中のフエライト量は強
度を持たせるためには70%以下とするのが望ま
しく、また充分な靭性を持たせるためと硬さの
上昇を押えて被削性を害しないようにするため
には30%以上とするのが望ましいことが判る。
(−2) 熱浴温度と機械的性質との関係を調
査するため前記実験()と同様にして第3表
に示す化学組成を有する供試材を製作した。同
表には鋳放し状態における基地中のフエライト
の量が併記してある。[Table] Tensile test pieces and Charpy impact test pieces (No. 3 test piece) with a parallel part diameter of 6 mm and a gauge length of 25 mm were manufactured from the heat-treated test materials shown in Table 4.
A tensile test was performed using an Instron type tensile tester at a strain rate of 1 mm/min, and an impact test was performed using an impact tester with a capacity of 5 kg・m.The impact test piece was then examined under a microscope to measure the amount of ferrite in the base. After that, it was subjected to a hardness test. The test results are shown in Figure 6. As usual, tensile strength and yield strength decrease as the amount of ferrite in the base increases, and elongation increases as the amount of ferrite increases. The impact value increases as the amount of ferrite increases, reaching a peak at approximately 50% to 60%, and tends to decrease as the amount of ferrite increases further. As expected, the hardness decreases as the amount of ferrite increases. When comparing the results of the test material containing molybdenum with the test material not containing molybdenum, no particular difference was observed other than a higher impact value. From the above results, it is desirable to keep the amount of ferrite in the base to 70% or less in order to provide strength, and to ensure sufficient toughness and to suppress the increase in hardness so as not to impair machinability. It can be seen that it is desirable to set it to 30% or more in order to achieve this. (-2) In order to investigate the relationship between hot bath temperature and mechanical properties, test materials having the chemical compositions shown in Table 3 were produced in the same manner as in the experiment () above. The table also shows the amount of ferrite in the base in the as-cast state.
【表】
これらの供試材を600℃以上の平均加熱速度
4℃/分でP―2は810℃に、Q―2および
QR―2は815℃に、R―2は819℃に加熱して
1時間保持してから250〜400℃の所定温度に保
持された亜硝酸系塩浴中に移し、2時間保持し
たのち空冷した。これから試験片を採取して前
記実験(―1)と同様の試験を行なつた。
試験結果を第7図に示す。なお基地中のフエ
ライト量は供試材P―2、R―2、QR―2で
は50〜55℃(ベイナイト量50〜45%)、Q―2
では47〜53%(ベイナイト量53〜47%)であつ
た。図から判るように塩浴温度が高くなるほど
引張り強さと硬さが低下し、耐力は上昇する。
伸びは塩浴温度350〜375℃でピークに達し、衝
撃値は350℃でピークを示している。しかし塩
浴温度400℃でもなお伸びは12%以上、衝撃値
は1.3Kg・m/cm2以上を示している。これらの
結果から優れた靭性が得られる塩浴温度は250
〜400℃の範囲で、特に好ましい範囲は300〜
375℃であることが判る。
以上説明したように本発明の熱処理方法によれ
ば出発材料のフエライト量には関係がなく、熱処
理温度の許容範囲も広いので、鋳造品の化学組成
や肉厚に変動があつても、それらに応じて熱処理
温度を厳密に制御する必要はなく大量生産に好適
であつて工業上の利用価値はきわめて大きい。ま
た本発明の方法によつて得られる球状黒鉛鋳鉄は
優れた強靭性を有し、その機械的性質は前記先行
出願の球状黒鉛鋳鉄のそれに比べて劣ることはな
い。[Table] These test materials were heated to 810°C for P-2, Q-2 and
QR-2 was heated to 815℃ and R-2 was heated to 819℃, held for 1 hour, then transferred to a nitrite-based salt bath maintained at a specified temperature of 250 to 400℃, held for 2 hours, and then air cooled. did. A test piece was taken from this and the same test as in the experiment (-1) was conducted. The test results are shown in Figure 7. The amount of ferrite in the base is 50 to 55℃ (bainite amount 50 to 45%) for sample materials P-2, R-2, and QR-2, and Q-2.
It was 47-53% (bainite amount 53-47%). As can be seen from the figure, the higher the salt bath temperature, the lower the tensile strength and hardness, and the higher the yield strength.
The elongation peaks at a salt bath temperature of 350-375°C, and the impact value peaks at 350°C. However, even at a salt bath temperature of 400°C, the elongation was still over 12% and the impact value was over 1.3Kg·m/cm 2 . From these results, the salt bath temperature at which excellent toughness can be obtained is 250.
~400℃ range, particularly preferred range is 300~
It turns out that the temperature is 375℃. As explained above, the heat treatment method of the present invention is independent of the amount of ferrite in the starting material and has a wide allowable range of heat treatment temperature, so even if there are variations in the chemical composition or wall thickness of the cast product, Accordingly, it is not necessary to strictly control the heat treatment temperature, and it is suitable for mass production and has extremely high industrial utility value. Further, the spheroidal graphite cast iron obtained by the method of the present invention has excellent toughness, and its mechanical properties are not inferior to those of the spheroidal graphite cast iron of the prior application.
第1図は本発明に係る球状黒鉛鋳鉄のNiとCu
の含有量の範囲を示すグラフ、第2図は同じくSi
含有量と共析変態温度区間保持温度とを座標軸に
とつて加熱速度とフエライト量との関係を示すグ
ラフ、第3図は同じく保持温度までの加熱速度と
同保持温度とを座標軸にとつてフエライト量、Si
含有量間の関係を示すグラフ、第4図は実験例の
熱処理前の供試材の組織を示す顕微鏡写真(×
100)、第5図は同じく熱処理後の組織を示す顕微
鏡写真(×400)、第6図は本発明に係る球状黒鉛
鋳鉄の基地中のフエライト量と機械的関係の一例
を示すグラフ、第7図は同じく塩浴中保持温度と
機械的性質との関係の一例を示すグラフである。
Figure 1 shows Ni and Cu of spheroidal graphite cast iron according to the present invention.
Figure 2 is a graph showing the range of Si content.
A graph showing the relationship between the heating rate and the amount of ferrite, with the content and the eutectoid transformation temperature interval holding temperature as the coordinate axes, and Figure 3 is a graph showing the relationship between the heating rate and the amount of ferrite, with the coordinate axis being the heating rate to the holding temperature and the holding temperature. amount, Si
A graph showing the relationship between contents, and Figure 4 is a micrograph showing the structure of the test material before heat treatment in the experimental example (×
100), FIG. 5 is a micrograph (×400) showing the structure after heat treatment, FIG. 6 is a graph showing an example of the mechanical relationship between the amount of ferrite in the matrix of spheroidal graphite cast iron according to the present invention, and FIG. The figure is also a graph showing an example of the relationship between the holding temperature in the salt bath and the mechanical properties.
Claims (1)
%以下、S0.02%以下、黒鉛球状化処理元素0.07
%以下、並びにCu0.4〜2%もしくはNi0.7〜3%
または添付図面第1図に示すA(Cu0.4%、Ni0
%)、B(Cu2%、Ni0%)、C(Ni0.7%、Cu0%)、
D(Ni3%、Cu0%)、E(Ni1%、Cu2%)で囲ま
れる範囲内のCuとNiとを含有し、残部が実質的
にFeからなる球状黒鉛鋳鉄を共析変態温度区間
内の温度に加熱保持してフエライト、オーステナ
イトおよび黒鉛の共存する組織としたのち冷却し
てマルテンサイト粒またはベイナイト粒とフエラ
イト粒との混合した基地中に球状黒鉛が晶出して
いる組織とする強靭球状黒鉛鋳鉄の熱処理方法で
あつて、共析変態温度区間内の温度への平均加熱
速度を600℃以上の温度域において10℃/分以下
とし、かつ共析変態温度区間内の保持温度を添付
図面第2図に示す直線W1―X1と直線Y2―Z2のSi
含有量に対応する温度からCuまたはNiの含有量
に応じて21℃×(Cu%―1%)または21℃×(Ni
%―0.5%)を減じた温度間の温度とし、基地中
のフエライト粒が面積率で30〜70%の混合基地組
織とすることを特徴とする強靭球状黒鉛鋳鉄の熱
処理方法。 2 C3〜4%、Si2.2〜3.7%、Mn1%以下、P0.1
%以下、S0.02%以下、黒鉛球状化処理元素0.07
%以下、MoおよびCrの1種または2種を合計で
0.05〜0.5%、並びにCu0.5〜2%もしくはNi1〜
3%または添付図面第1図に示すA(Cu0.4%、
Ni0%)、B(Cu2%、Ni0%)、C(Ni0.7%、Cu0
%)、D(Ni3%、Cu0%)、E(Ni1%、Cu2%)で
囲まれる範囲内のCuとNiとを含有し、残部が実
質的にFeからなる球状黒鉛鋳鉄を共析変態温度
区間内の温度に加熱保持してフエライト、オース
テナイトおよび黒鉛の共存する組織としたのち冷
却してマルテンサイト粒またはベイナイト粒とフ
エライト粒との混合した基地中に球状黒鉛が晶出
している組織とする強靭球状黒鉛鋳鉄の熱処理方
法であつて、共析変態温度区間内の温度への平均
加熱速度を600℃以上の温度域において10℃/分
以下とし、かつ共析変態温度区間内の保持温度を
添付図面第2図に示す直線W1―X1と直線Y2―Z2
上のSi含有量を対応する温度からCu、Niの含有
量に応じて21℃×(Cu%―1%)、もしくは21℃
(Ni%―0.5%)を減じ、または前記温度にMo、
Crの含有量に応じて28℃×(Mo%+Cr%)を加
算した温度の間の温度として基地中のフエライト
粒が面積率で30〜70%の混合基地組織とすること
を特徴とする強靭球状黒鉛鋳鉄の熱処理方法。[Claims] 1 C3-4%, Si2.2-3.7%, Mn 1% or less, P0.1
% or less, S0.02% or less, graphite nodularization treatment element 0.07
% or less, and Cu0.4-2% or Ni0.7-3%
Or A (Cu0.4%, Ni0
%), B (Cu2%, Ni0%), C (Ni0.7%, Cu0%),
Spheroidal graphite cast iron containing Cu and Ni within the range surrounded by D (Ni 3%, Cu 0%) and E (Ni 1%, Cu 2%), with the remainder essentially consisting of Fe, is heated within the eutectoid transformation temperature range. Tough spheroidal graphite that is heated and held at a certain temperature to form a structure in which ferrite, austenite, and graphite coexist, and then cooled to form a structure in which spheroidal graphite is crystallized in a matrix of martensite grains or a mixture of bainite grains and ferrite grains. A heat treatment method for cast iron, in which the average heating rate to a temperature within the eutectoid transformation temperature range is 10°C/min or less in a temperature range of 600°C or higher, and the holding temperature within the eutectoid transformation temperature range is set as shown in the attached drawing. Si of the straight line W 1 - X 1 and the straight line Y 2 - Z 2 shown in Figure 2
From the temperature corresponding to the content to 21℃ x (Cu% - 1%) or 21℃ x (Ni
% - 0.5%), and a mixed matrix structure in which ferrite grains in the matrix have an area ratio of 30 to 70%. 2 C3~4%, Si2.2~3.7%, Mn1% or less, P0.1
% or less, S0.02% or less, graphite nodularization treatment element 0.07
% or less, one or both of Mo and Cr in total
0.05~0.5%, and Cu0.5~2% or Ni1~
3% or A (Cu0.4%,
Ni0%), B (Cu2%, Ni0%), C (Ni0.7%, Cu0
%), D (Ni 3%, Cu 0%), E (Ni 1%, Cu 2%), containing Cu and Ni within the range, with the balance essentially consisting of Fe, at the eutectoid transformation temperature. It is heated and maintained at a temperature within the range to form a structure in which ferrite, austenite, and graphite coexist, and then cooled to form a structure in which spheroidal graphite is crystallized in a matrix of martensite grains or a mixture of bainite grains and ferrite grains. A heat treatment method for tough spheroidal graphite cast iron, wherein the average heating rate to a temperature within the eutectoid transformation temperature range is 10°C/min or less in a temperature range of 600°C or higher, and the holding temperature within the eutectoid transformation temperature range is Straight line W 1 - X 1 and straight line Y 2 - Z 2 shown in attached drawing Figure 2
Depending on the content of Cu and Ni, change the Si content above from the corresponding temperature to 21℃ x (Cu% - 1%) or 21℃
(Ni% - 0.5%) or Mo at the above temperature,
Toughness characterized by a mixed matrix structure with ferrite grains in the base having an area ratio of 30 to 70% at a temperature between 28℃ x (Mo% + Cr%) depending on the Cr content. Heat treatment method for spheroidal graphite cast iron.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16683182A JPS5956518A (en) | 1982-09-25 | 1982-09-25 | Heat treatment of tough and strong spheroidal graphite cast iron |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16683182A JPS5956518A (en) | 1982-09-25 | 1982-09-25 | Heat treatment of tough and strong spheroidal graphite cast iron |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5956518A JPS5956518A (en) | 1984-04-02 |
JPS6321728B2 true JPS6321728B2 (en) | 1988-05-09 |
Family
ID=15838462
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16683182A Granted JPS5956518A (en) | 1982-09-25 | 1982-09-25 | Heat treatment of tough and strong spheroidal graphite cast iron |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5956518A (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1984002925A1 (en) * | 1983-01-24 | 1984-08-02 | Ford Werke Ag | Method of making ductile cast iron with improved strength |
JPS63166928A (en) * | 1986-12-26 | 1988-07-11 | Kurimoto Iron Works Ltd | Manufacture of tough bainitic spheroidal graphite cast iron |
JP2794881B2 (en) * | 1990-03-13 | 1998-09-10 | トヨタ自動車株式会社 | High toughness spheroidal graphite cast iron and method for producing the same |
JP2007197747A (en) * | 2006-01-25 | 2007-08-09 | Aisin Takaoka Ltd | Cast iron containing spheroidal graphite |
JP5649111B2 (en) * | 2010-04-13 | 2015-01-07 | 株式会社キーレックス | Press mold made of spheroidal graphite cast iron and method for producing the same |
CN109852886B (en) * | 2019-03-25 | 2024-05-14 | 山东速达新能源科技有限公司 | High-strength high-toughness spheroidal graphite cast iron, crankshaft and preparation method thereof |
-
1982
- 1982-09-25 JP JP16683182A patent/JPS5956518A/en active Granted
Also Published As
Publication number | Publication date |
---|---|
JPS5956518A (en) | 1984-04-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI655300B (en) | High rigidity low thermal expansion casting and manufacturing method thereof | |
JP6432070B2 (en) | Hot die steel for long-life die casting excellent in high-temperature thermal conductivity and method for producing the same | |
US4531974A (en) | Work-hardenable austenitic manganese steel and method for the production thereof | |
JP5296554B2 (en) | Method for producing an internal combustion engine valve and the valve obtained by this method | |
JPH10273756A (en) | Cold tool made of casting, and its production | |
JP6656013B2 (en) | Low thermal expansion cast steel product and method of manufacturing the same | |
JPS6358881B2 (en) | ||
JP3483493B2 (en) | Cast steel for pressure vessel and method of manufacturing pressure vessel using the same | |
CN115386808A (en) | Corrosion-resistant oil casing pipe and preparation method and application thereof | |
KR101723174B1 (en) | High chromium white cast-iron alloy with excellent abrasion resistance, oxidation resistance and strength and method for preparing the same | |
JPS6321728B2 (en) | ||
JPS6096750A (en) | Process-hardenable austenite manganese steel and manufacture | |
JP3723706B2 (en) | High-strength spheroidal graphite cast iron and method for producing the same | |
JPS6347774B2 (en) | ||
JP3535299B2 (en) | Large-sized cast and forged products of duplex stainless steel excellent in corrosion resistance and toughness, and methods for producing the same | |
JPH06100935A (en) | Production of martensitic stainless steel type seamless steel pipe excellent in toughness and stress corrosion cracking resistance | |
JP3649618B2 (en) | Cast steel for pressure vessel and method for producing pressure vessel using the same | |
JP2007327083A (en) | Spheroidal graphite cast iron and its production method | |
JPH0791579B2 (en) | Method for manufacturing case-hardening steel in which crystal grains do not coarsen during carburizing heat treatment | |
JP7229827B2 (en) | Manufacturing method of high carbon steel sheet | |
US20230108470A1 (en) | Low thermal expansion cast steel and method of production of same | |
JPS61133361A (en) | Spheroidal graphite cast iron and its manufacture | |
JP2008297581A (en) | Manganese-based twin-crystal-type damping alloy | |
JPH0688130A (en) | Production of martensitic stainless steel seamless steel pipe excellent in corrosion resistance | |
JP2003286546A (en) | Low-heat expansion cast alloy excellent in hardness and strength at normal temperature and low in crack sensitivity in casting |