JPS63185580A - Buffing material - Google Patents

Buffing material

Info

Publication number
JPS63185580A
JPS63185580A JP20429586A JP20429586A JPS63185580A JP S63185580 A JPS63185580 A JP S63185580A JP 20429586 A JP20429586 A JP 20429586A JP 20429586 A JP20429586 A JP 20429586A JP S63185580 A JPS63185580 A JP S63185580A
Authority
JP
Japan
Prior art keywords
buffing
silicon carbide
fine
polishing
buffing material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20429586A
Other languages
Japanese (ja)
Inventor
Fumio Okada
文男 岡田
Yasuoki Sasaki
佐々木 泰興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanebo Ltd
Original Assignee
Kanebo Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanebo Ltd filed Critical Kanebo Ltd
Priority to JP20429586A priority Critical patent/JPS63185580A/en
Publication of JPS63185580A publication Critical patent/JPS63185580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polishing Bodies And Polishing Tools (AREA)

Abstract

PURPOSE:To polish a polished article without generating scratch flaws and extremely suppress the consumed quantity of the abrasive grain slurry by dispersing and holding the silicon carbide fine needle-shaped crystals into the fine three-dimensional network structure of a specific porous elastic body. CONSTITUTION:A buffing material is prepared uniformly dispersing and holding the fine needle-shaped silicon carbide crystals in a range of volume mixing rate of 0.5-10% for a buffing basic material into the fine three dimensional network structure of a polyvinyl acetal group porous elastic body. The fine needle-shaped silicon carbide crystal in the buffing material is extremely hard, and the surface of a polished member can be polished without generating scratch flaws. Therefore, the buffing material itself develops the superior polishing force, and the consumed quantity of the abrasive grain slurry supplied from outside can be suppressed to an extremely low value.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、ガラス、石材、金属等の表面研磨に用いるバ
フ材に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a buffing material used for surface polishing of glass, stone, metal, etc.

〈従来の技術〉 硝子、金属1石材等の表面仕上げ研磨を行う方法には、
従来から羊毛、山羊系あるいは合成繊維等をフェルト状
に加工したものを円板状に成型してなる所謂バフ材が用
いられている。具体的には前記バフ材を高速で回転する
一方で、研磨面に酸化セリウム、酸化クローム、アルミ
ナあるいは炭化珪素等の微粉末スラリーを砥粒として供
給し、前記バフ材が被研磨体を擦過して研摩を行う方法
が極めて一触的であった。
<Conventional technology> Methods for surface finishing polishing of glass, metal, stone, etc.
BACKGROUND ART Conventionally, so-called buffing materials have been used, which are made by processing wool, goat-based fibers, synthetic fibers, etc. into felt shapes and molding them into disk shapes. Specifically, while rotating the buffing material at high speed, a slurry of fine powder such as cerium oxide, chromium oxide, alumina, or silicon carbide is supplied to the polishing surface as abrasive grains, so that the buffing material scrapes the object to be polished. The method of polishing was extremely intuitive.

〈従来技術の問題点〉 前述のフェルト状バフ材については製造上の問題から厚
さ25mm以上のものを得ることは非常に難しく、該フ
ェルト状バフ材が有する諸性質についても弾力性、多様
性、WQ水性等が良好であるとは言い難い、又、フェル
ト状バフ材自体が撥水性を有する為にバフ樋内における
砥粒微粉末の保持力も充分とはいえず、さらにはバフ材
自体が有する研磨力も皆無であることからして、結果的
には外部から投入される高価な砥粒スラリーのみで研磨
力を捻出することとなり、多量の砥粒スラリーを消費し
コスト面で不利であり、その他にも過剰砥粒スラリーが
研@機周辺部をγ9染するという欠点が指摘されている
。また、上述のバフ材中で原材料を羊毛、山羊系等の天
然物に求めるものは使用が長期に渡る場合には腐敗1発
黴、悪臭、変色等の不本意な1g態が発生し易く甚だし
きはバフ材の変質という好ましからざる現象発現の危険
性を内包してなりハフ材として甚だ不適当である。さら
に、ポリビニルアセタール(以下PVAtと略記する)
系多孔質弾性体に各種繊維の微細カット物を混入したバ
フ材として特許第980614号。
<Problems with the prior art> Regarding the felt buffing material mentioned above, it is very difficult to obtain a thickness of 25 mm or more due to manufacturing problems, and the various properties of the felt buffing material include elasticity and diversity. , WQ water resistance, etc. cannot be said to be good, and since the felt buffing material itself has water repellency, the holding power of fine abrasive powder in the buffing channel is not sufficient, and furthermore, the buffing material itself is Since it has no abrasive power, the polishing power is generated only by expensive abrasive slurry input from the outside, which consumes a large amount of abrasive slurry and is disadvantageous in terms of cost. Another drawback has been pointed out: excessive abrasive slurry stains the surrounding area of the grinder with γ9. In addition, if the buffing materials mentioned above are made from natural materials such as wool or goat-based materials, if they are used for a long period of time, undesirable conditions such as rotting mold, bad odor, and discoloration are likely to occur. is extremely unsuitable as a buffing material because it carries the risk of undesirable phenomena such as deterioration of the buffing material. Furthermore, polyvinyl acetal (hereinafter abbreviated as PVAt)
Patent No. 980614 is a buffing material in which finely cut fibers of various types are mixed into a porous elastic material.

同第980615号及び特願昭59−25612号が提
案されているが、これ等はバフ基材内に於ける砥粒微粉
末の保持力には優れているものの、混入物である各種繊
維の微細カット物が研磨力を有さないという点には変わ
りなく、結果的には外部から投入される砥粒スラリーの
みが研磨力を捻出し、バフ材として完全なものとは言い
難い。
No. 980,615 and Japanese Patent Application No. 59-25,612 have been proposed, but although these have excellent retention of fine abrasive powder in the buffing base material, they do not allow for the retention of various types of fibers as contaminants. There is no change in the fact that the finely cut material does not have abrasive power, and as a result, only the abrasive slurry introduced from the outside produces the abrasive power, and it is difficult to say that it is perfect as a buffing material.

〈発明の目的〉 本発明者らは上述の点に鑑み鋭意研究を行い、その結果
、炭化珪素の微細針状結晶(以下炭化珪素ウィスカーと
いう)が優れた研磨力を有し、且つバフ社内にあっては
該バフ材の寸法安定性を補うことを見出し本発明を完成
するに至ったものである。即ちその目的とするところは
、優れた柔軟性を有し且つ寸法安定性及び砥粒スラリー
との親和性に富み、さらには充分な研磨力をも有し且つ
高価な砥粒スラリーの消費量を極力抑制しうるバフ材を
提供することにある。
<Purpose of the Invention> The present inventors conducted intensive research in view of the above points, and as a result, found that fine acicular crystals of silicon carbide (hereinafter referred to as silicon carbide whiskers) have excellent polishing power, and that It was discovered that the dimensional stability of the buffing material could be supplemented and the present invention was completed. In other words, the objective is to have excellent flexibility, dimensional stability, and compatibility with abrasive slurry, as well as sufficient polishing power and reduce consumption of expensive abrasive slurry. The object of the present invention is to provide a buffing material that can be suppressed as much as possible.

く問題点を解決するための手段〉 上述の目的は、ポリビニルアセタール系多孔質弾性体の
微細三次元綱目mi3中に、炭化珪素の微細針状結晶を
均一に分散し且つ保持してなることを特徴とするバフ材
によって達成される。
Means for Solving the Problems> The above object is to uniformly disperse and hold fine acicular crystals of silicon carbide in the fine three-dimensional mesh mi3 of a polyvinyl acetal porous elastic body. This is achieved by using the characteristic buffing material.

詳述すると本発明において使用される炭化珪素 −ウィ
スカーは、例えば高温の非酸化性ガス雰囲気中で炭素成
分と珪素成分とを気相反応させることによって得られる
微細針状結晶であり、−触的に砥粒として用いられる炭
化珪素微粉末が炭化珪素を主体としてなる鉱石とカーボ
ンとを電気炉にて融解した後に徐冷し成長させた結晶体
を粉砕後分級して得られる粒子状物であるのに対し、全
く異なった方法にて得られる異なった形状のものであり
、前記炭化珪素ウィスカーの場合には製造条件をコント
ロールすれば常に一定の繊径のものを得ることができる
Specifically, the silicon carbide whiskers used in the present invention are fine needle-like crystals obtained by, for example, causing a gas phase reaction between a carbon component and a silicon component in a high-temperature non-oxidizing gas atmosphere. The fine silicon carbide powder used as abrasive grains is a particulate material obtained by melting an ore mainly composed of silicon carbide and carbon in an electric furnace, and then slowly cooling and growing crystals, which are then crushed and classified. On the other hand, the silicon carbide whiskers have different shapes obtained by completely different methods, and in the case of the silicon carbide whiskers, they can always have a constant diameter by controlling the manufacturing conditions.

次に本発明に係るPVAt系多孔質弾性体を主体とする
バフ基材は、例えば平均重合度300乃至3 G O(
1,鹸化度80%以上のポリビニルアルコール1f=1
若しくはそれ以上を水溶液と為し、前記ポリビニルアル
コール水溶液と、架橋剤としてのアルデヒド類とを酸触
媒の存在下で反応させ、その後水不溶化する際には澱粉
等の気孔生成剤等を加えてスラリー状分散液となし、さ
らに該分散液には炭化珪素ウィスカーを分散混入し所定
の型枠に注型して50〜80℃の温度にて5〜24時間
程度反応を行い、次に流水にて余剰のアルデヒド類、#
M及び澱粉類等を除去して乾燥・成型することによりえ
られる多孔質弾性体である。前述の気孔生成剤としては
澱粉等が一般的であるが有機又は無機の微細粒子を前記
澱粉と混合することにより、また単独で用いることも可
能であり、前述の澱粉等に代えチタン酸化理、アスベス
ト等の微細粒子を気孔生成剤として用いた場合には澱粉
を使用した場合に比し気孔径のより微細なる網目状三次
元連続気孔組織のPVAt系多孔質多孔π弾性体ことが
できる。
Next, the buffing base material mainly composed of the PVAt-based porous elastic body according to the present invention has an average degree of polymerization of 300 to 3 G O (
1. Polyvinyl alcohol with saponification degree of 80% or more 1f=1
The polyvinyl alcohol aqueous solution and an aldehyde as a crosslinking agent are reacted in the presence of an acid catalyst, and then a pore forming agent such as starch is added to make the slurry insoluble in water. Further, silicon carbide whiskers are dispersed and mixed into the dispersion, and the mixture is poured into a predetermined mold and reacted at a temperature of 50 to 80°C for about 5 to 24 hours, and then poured with running water. Surplus aldehydes, #
It is a porous elastic body obtained by removing M, starch, etc., then drying and molding. Starch is commonly used as the above-mentioned pore-forming agent, but it is also possible to mix organic or inorganic fine particles with the starch or use it alone. When fine particles such as asbestos are used as a pore-forming agent, a PVAt-based porous π-elastic material having a network-like three-dimensional continuous pore structure with a finer pore diameter than when starch is used can be obtained.

〈発明の作用〉 以下本発明に係るバフ材について詳述する。<Action of the invention> The buffing material according to the present invention will be explained in detail below.

本発明に係るバフ社内に混入されてなる炭化珪素ウィス
カーは針状の形状を有する結晶体であり、該形状の特殊
性に起因する種々の作用を有してなる。即ち、前記炭化
珪素ウィスカーの個々の結晶体は極めて微小であり、そ
の特性として極めて硬質であることが認められている。
The silicon carbide whisker mixed into the buff according to the present invention is a crystalline substance having a needle-like shape, and has various effects due to the peculiarity of the shape. That is, it is recognized that the individual crystals of the silicon carbide whiskers are extremely small and are extremely hard.

それゆえに研磨作用に際しては針状の結晶体の先端部が
非研磨体に対する引っ掻き具として良好に作用し、また
、個々の結晶体が極めて微小であるため前記引っ掻き作
用の際に非研磨体に条痕を付与する等の危険率も皆無で
あり、バフ樋口らが良好な研磨力を発揮し、外部から投
入される砥粒スラリーの消費量を極力抑え若しくは皆無
とする事が可能となる。
Therefore, during the polishing action, the tip of the needle-shaped crystal body acts well as a scratching tool against the non-abrasive object, and since each crystal is extremely small, the scratching action causes the non-abrasive object to be exposed to a force. There is no risk of leaving marks, etc., and the buff Higuchi et al. exhibits good polishing power, making it possible to minimize or eliminate the consumption of abrasive slurry introduced from the outside.

また、前述の如く炭化珪素ウィスカーは針状結晶である
からして繊径を等しくする一般的な炭化珪素の粒子状砥
粒に比し著しく長い全長を有する。
Further, as described above, since silicon carbide whiskers are needle-shaped crystals, they have a significantly longer overall length than typical silicon carbide granular abrasive grains having the same fiber diameter.

よって炭化珪素珪素ウィスカー自体の表面積及びバフ基
材との接着面積が著しく拡大されて自ずとバフ基材内で
の炭化珪素ウィスカーの保持性も向上し、研磨工程に於
ける炭化珪素ウィスカーの脱落等の発生率が著しく低下
することとなる。その他前述の炭化珪素ウィスカーは、
バフ基材内における耐水性能及び寸法安定性能を強化す
る作用をも併せ持ちバフ材の機械的強度を補うものでも
ある。即ち炭化珪素ウィスカーは鉱物であり極めて硬質
であるため羊毛等を混入物として用いた従来品に比べ高
い寸法安定性を有する。又、より高いレベルでの耐水性
及び寸法安定性が必要な場合にはフェノール系樹脂、メ
ラミン系樹脂、工・ポキシ系樹脂及びウレタン系樹脂の
少なくとも1つの熱硬化樹脂を適量添加することが有効
であり、添加方法としては原液スラリー中に熱硬化樹脂
を混入する事が最も好ましいく、他には乾燥後に前記樹
脂を含浸処理することも可能である。但し、何れの場合
も添加樹脂の硬化温度まで一度昇温してキユアリングを
行い、化学的な安定状態に至らしめる必要がある。
Therefore, the surface area of the silicon carbide whiskers themselves and the adhesion area with the buffing base material are significantly expanded, which naturally improves the retention of the silicon carbide whiskers within the buffing base material, and prevents the silicon carbide whiskers from falling off during the polishing process. The incidence rate will be significantly reduced. Other silicon carbide whiskers mentioned above are
It also has the effect of strengthening the water resistance and dimensional stability within the buffing base material, and also supplements the mechanical strength of the buffing material. That is, since silicon carbide whiskers are minerals and are extremely hard, they have higher dimensional stability than conventional products that use wool or the like as a contaminant. Additionally, if a higher level of water resistance and dimensional stability is required, it is effective to add an appropriate amount of at least one thermosetting resin of phenolic resin, melamine resin, synthetic/poxy resin, and urethane resin. The most preferable addition method is to mix the thermosetting resin into the stock slurry, but it is also possible to impregnate the resin after drying. However, in either case, it is necessary to once raise the temperature to the curing temperature of the added resin and perform curing to reach a chemically stable state.

次に本発明に係るPVAt系多孔質弾性体が有する微細
三次元割目状組織の作用について詳述すると、該組織に
おいて気孔は独立して存在せず常に連続組織となる為、
研磨作用に際しては極めて有効に作用する。即ち、バフ
材の如く被研磨体を高速回転にて擦過する研磨材の場合
には、P!!擦熱が発生し易く、最悪の場合には該摩擦
熱がバフ材の焼は焦げ等に繋がる危険性を孕んでいる。
Next, to explain in detail the effect of the fine three-dimensional cracked structure possessed by the PVAt-based poroelastic body according to the present invention, since pores do not exist independently in this structure and are always a continuous structure,
It works extremely effectively in the polishing action. That is, in the case of an abrasive material such as a buffing material that rubs the object to be polished at high speed rotation, P! ! Frictional heat is likely to occur, and in the worst case, there is a risk that the frictional heat may lead to burning of the buffing material.

よって前記摩擦熱をを効果的に吸収し且つ放1にせしめ
、研磨作用面の高熱化現象を抑えるための手段が必要と
なるが、前述の如き連続気孔&1lvaにおいては該気
孔組織が摩擦熱の抜は道として作用するため、研磨作用
面での高熱化現象を抑制することが可能となる。また外
部から投入される砥粒の効果的な保持及び該砥粒による
効果的な研磨も前述の連続気孔組織により可能となる。
Therefore, there is a need for a means to effectively absorb and release the frictional heat to suppress the heating phenomenon of the polishing surface. However, in the case of continuous pores and 1lva as described above, the pore structure absorbs and releases the frictional heat. Since the removal acts as a path, it becomes possible to suppress the phenomenon of high heat generation on the polishing surface. Further, the continuous pore structure described above also enables effective retention of abrasive grains introduced from the outside and effective polishing by the abrasive grains.

更に炭化珪素ウィスカーを前述のPVAt系多孔賞弾性
体に混入する際の体積混和率について述ぺると、数値的
には0.5乃至10%であることが好ましく該数値範囲
を下回ると研磨力が不十分となり、反対に上回ると炭化
珪素ウィスカーが分散不良となり易くバフ社内の至ると
ころで炭化珪素ウィスカーの凝集が発生し、該凝集が被
研磨体に条痕を付与するという最悪の事態を招来する。
Furthermore, when talking about the volumetric mixing ratio when silicon carbide whiskers are mixed into the above-mentioned PVAt-based porous elastic material, it is preferably 0.5 to 10% numerically, and if it is less than this numerical range, the polishing force will decrease. If the amount is insufficient, on the other hand, if the amount is exceeded, the silicon carbide whiskers tend to be poorly dispersed, causing agglomeration of silicon carbide whiskers throughout the buffing chamber, resulting in the worst situation in which the aggregation imparts streaks to the object to be polished.

すなわちバフ材における炭化珪素ウィスカーの分散状態
は研磨作用の善し悪しを左右する重要なポイントであり
、よって炭化珪素ウィスカーの混入に当たっては細心の
注意が必要となる。そこで通常の場合には例えば混入前
に炭化珪素ウィスカーを十分にほぐした上で少量の水に
て分散を促進したり、超音波にて分散を促進する工程が
必要となり、同時に他方ではバフ基材の主原料となるポ
リビニルアルコール自体も良好な分散材として作用し、
液中での二次凝集の防止に尽力する。又、前述の如き通
常の方法では分散が不十分な場合には界面活性剤等の分
散剤を適量加える方法等を用いることも可能である。
That is, the state of dispersion of silicon carbide whiskers in the buffing material is an important point that determines the quality of the polishing action, and therefore, great care must be taken when mixing silicon carbide whiskers. Therefore, in normal cases, for example, it is necessary to sufficiently loosen the silicon carbide whiskers before mixing and promote dispersion with a small amount of water or with ultrasonic waves. Polyvinyl alcohol itself, which is the main raw material of
We strive to prevent secondary aggregation in liquids. In addition, if dispersion is insufficient by the conventional method as described above, it is also possible to use a method of adding an appropriate amount of a dispersant such as a surfactant.

〈実施例〉 試料1 β型針状微細結晶タイプで繊径0.5μ、結晶の平均全
長120μの炭化珪素ウィスカー30g。
<Example> Sample 1 30 g of silicon carbide whiskers of β-type needle-like microcrystal type with a fiber diameter of 0.5 μ and an average total crystal length of 120 μ.

平均重合度1700のポリビニルアルコール180g、
フェノール樹脂(住友ベークライト製PR961A)2
90g、そして架橋剤としてのホルムアルデヒド、触媒
としての硫酸、更に気孔生成剤としてのコンスターチを
加え合わせて均一スラリーとなし、円筒型の型枠に注型
した後余剰のホルムアルデヒド、酸及び澱粉類を除去し
て乾燥せしめ、乾燥後13つ℃にて6時間キユアリング
を行い、直径205鶴、厚さ25mの円板状のバフ材を
得た。かくして得られたバフ材は、炭化珪素ウィスカー
の体積混入率が11%、平均気孔径120μ、気孔率7
5%のものであった。該バフ材を研磨機にセントし回転
数150OR/Mでステンレス板のバンフィングを行っ
た。なお、研磨液としては水と研磨油剤の混合物を使用
し、砥粒は用いなかった。実験結果を試料1として第1
表に示した。
180 g of polyvinyl alcohol with an average degree of polymerization of 1700,
Phenol resin (PR961A manufactured by Sumitomo Bakelite) 2
90 g, formaldehyde as a cross-linking agent, sulfuric acid as a catalyst, and cornstarch as a pore-forming agent to make a uniform slurry, and after casting into a cylindrical mold, excess formaldehyde, acid, and starch were removed. After drying, curing was performed at 13 °C for 6 hours to obtain a disc-shaped buffing material with a diameter of 205 m and a thickness of 25 m. The buffing material thus obtained had a volumetric inclusion rate of silicon carbide whiskers of 11%, an average pore diameter of 120μ, and a porosity of 7.
It was 5%. The buffing material was placed in a polishing machine, and a stainless steel plate was buffed at a rotation speed of 150 OR/M. Note that a mixture of water and polishing oil was used as the polishing liquid, and no abrasive grains were used. The experimental results are used as sample 1.
Shown in the table.

比較例1 炭化珪素ウィスカーの代わりにビニロン繊維(カット長
5m)を混入する以外は実施例1と同一条件にて作成し
たバフ材を用い、同一条件にてステンレス板のバッフィ
ングテストを行った。実験結果を比較例1として第1表
に示した。
Comparative Example 1 A buffing test was conducted on a stainless steel plate under the same conditions using a buffing material prepared under the same conditions as in Example 1 except that vinylon fibers (cut length 5 m) were mixed in place of silicon carbide whiskers. The experimental results are shown in Table 1 as Comparative Example 1.

比較例2 研F2液として平均粒子径0,35μの酸化クローム微
粉末15%を含むスラリーを用いる以外は比較例1と同
一条件にてステンレス板のバッフィングテストを行った
。実験結果を比較例2として第1表に示した。
Comparative Example 2 A buffing test on a stainless steel plate was conducted under the same conditions as Comparative Example 1, except that a slurry containing 15% of chromium oxide fine powder with an average particle diameter of 0.35 μm was used as the polishing F2 liquid. The experimental results are shown in Table 1 as Comparative Example 2.

第1表 上述の表から明らかな通り、比較例1の如〈従来品であ
るバフ材を用いた研磨においては、外部からの研磨砥粒
の投入が無ければ研磨効果は皆無であた。すなわち比較
例2の実験結果からも明らかな通り、従来品であるバフ
材は外部から研磨砥粒を投入して初めて試料1と同様の
研磨効果をえることができた。しかしながら、それとて
も仕上げ面精度等を比べると試料1に著しく劣るもので
あり、このことからも、バフ社内に混入された炭化珪素
微粉末が如何に良好なる研磨作用を有するかが伺えた。
Table 1 As is clear from the above table, in the polishing using the conventional buffing material as in Comparative Example 1, there was no polishing effect unless abrasive grains were introduced from the outside. That is, as is clear from the experimental results of Comparative Example 2, the conventional buffing material was able to achieve the same polishing effect as Sample 1 only when abrasive grains were introduced from the outside. However, it was significantly inferior to Sample 1 in terms of finished surface accuracy, etc., and this also showed how good the silicon carbide fine powder mixed in the buffing chamber had a good polishing effect.

〈効果〉 本発明に係るバフ材においては、バフ社内への混入物で
ある炭化珪素ウィスカー自体が研磨力を保有するため、
高価な砥粒スラリーのみで研磨力を捻出していた従来の
バフ材に比べ、砥粒スラリーの消費量において格段の抑
制が可能となりコストダウン化がはかられ、同時に、砥
粒スラリーの消費量減少に伴う波及効果として研磨機周
辺部の汚染問題も解消され研磨機の取り扱いが容易とな
る。また、本発明に係る炭化珪素ウィスカーはその形状
を針状とするため、従来の粒状砥粒に比しバフ社内での
安定性に優れ、固型砥石等の固型砥粒を用いた研磨方式
を鏡面仕上げの分野にまで導入することを可能とするも
のである。その他、天然繊維からなるフェルト4F、バ
フ材及び混入物に各種繊維の微細カット物を用いてなる
従来型のバフ材と、バフ材としてPVAL系多孔質弾性
体、混入物として炭化珪素ウィスカーを用いてなる本発
明に係るバフ材とを比べると、本発明に係るバフ材は、
混入物の原料を鉱物に求めることにより物性変化の少な
い安定した品質のバフ材を常時供給することが可能とな
る。さらに本発明に係るバフ材は、天然物を構成物中に
含むバフ材に比し、変色、異臭、変質等の弊害の発生率
が低率であることも認められる。さらに完成品であるバ
フ材の有する厚みについても従来品の如き限界が製造面
において生じることはなく、任意のIIみを有するバフ
材が安定して得られ、研磨業界に及ぼす効果は極めて大
であるといえる。
<Effects> In the buffing material according to the present invention, silicon carbide whisker itself, which is a contaminant in the buffing company, has abrasive power;
Compared to conventional buffing materials that generate polishing power using only expensive abrasive slurry, it is possible to significantly reduce the consumption of abrasive slurry, resulting in cost reductions.At the same time, the consumption of abrasive slurry As a ripple effect of this reduction, the problem of contamination around the polishing machine is also resolved, making it easier to handle the polishing machine. In addition, since the silicon carbide whisker according to the present invention has an acicular shape, it has superior stability in a buffing company compared to conventional granular abrasive grains, and polishing method using solid abrasive grains such as a solid whetstone. This makes it possible to introduce this into the field of mirror finishing. In addition, there is Felt 4F made of natural fibers, a conventional buffing material using finely cut pieces of various fibers as a buffing material and an admixture, a PVAL porous elastic material as a buffing material, and silicon carbide whiskers as an admixture. When compared with the buffing material according to the present invention, the buffing material according to the present invention has
By using minerals as raw materials for contaminants, it is possible to constantly supply buffing materials of stable quality with little change in physical properties. Furthermore, it is also recognized that the buffing material according to the present invention has a lower incidence of adverse effects such as discoloration, off-odor, and deterioration than buffing materials containing natural products in its composition. Furthermore, the thickness of the finished buffing material does not have the same limitations in manufacturing as in conventional products, and buffing materials having only II can be stably obtained, which has an extremely large effect on the polishing industry. It can be said that there is.

Claims (2)

【特許請求の範囲】[Claims] (1)ポリビニルアセタール系多孔質弾性体の微細三次
元網目組織中に、炭化珪素の微細針状結晶を均一に分散
し且つ保持してなることを特徴とするバフ材。
(1) A buffing material characterized by having fine acicular crystals of silicon carbide uniformly dispersed and held in a fine three-dimensional network structure of a polyvinyl acetal porous elastic body.
(2)炭化珪素の微細針状結晶が、バフ基材に対して体
積混和率0.5乃至10%の範囲にある特許請求の範囲
第(1)項記載のバフ材。
(2) The buffing material according to claim (1), wherein the fine acicular crystals of silicon carbide have a volumetric mixing ratio of 0.5 to 10% with respect to the buffing base material.
JP20429586A 1986-08-29 1986-08-29 Buffing material Pending JPS63185580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20429586A JPS63185580A (en) 1986-08-29 1986-08-29 Buffing material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20429586A JPS63185580A (en) 1986-08-29 1986-08-29 Buffing material

Publications (1)

Publication Number Publication Date
JPS63185580A true JPS63185580A (en) 1988-08-01

Family

ID=16488113

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20429586A Pending JPS63185580A (en) 1986-08-29 1986-08-29 Buffing material

Country Status (1)

Country Link
JP (1) JPS63185580A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232174A (en) * 1989-03-01 1990-09-14 Nippon Steel Corp Rotary tool consisting of inorganic fiber reinforced resin
JPH03277479A (en) * 1990-03-26 1991-12-09 Kanebo Ltd Buff material and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02232174A (en) * 1989-03-01 1990-09-14 Nippon Steel Corp Rotary tool consisting of inorganic fiber reinforced resin
JPH03277479A (en) * 1990-03-26 1991-12-09 Kanebo Ltd Buff material and manufacture thereof

Similar Documents

Publication Publication Date Title
JP2509379B2 (en) Abrasive binder, method for producing abrasive particles, and method for improving grinding performance of abrasive binder
US4255164A (en) Fining sheet and method of making and using the same
JP5110600B2 (en) Fixed abrasive tool and method of manufacturing the same
JPS61192480A (en) Synthetic grinding stone for soft metal
TW495418B (en) Polishing compact and polishing surface plate using the same
KR20000047696A (en) A member for polishing, surface plate for polishing and polishing method using the same
JP2694705B2 (en) Synthetic grindstone for high-purity aluminum substrate polishing
JPS63185580A (en) Buffing material
JP2777356B2 (en) Inorganic media for dry barrel polishing
JP2003105324A (en) Abrasive grain and method for producing the same, polishing tool and method for producing the same, grindstone for polishing and method for producing the same and polishing apparatus
JP3011431B2 (en) Whetstone for precision polishing
JP4301434B2 (en) Polishing abrasive grains and polishing tool
TW562720B (en) Polishing molding and polishing surface plate using the same
JPH0825213A (en) Polishing surface plate for lapping device
JPH10130634A (en) Cleaning material comprising abrasive-containing sponge
JPH0360970A (en) Polishing surface plate
JP2593829B2 (en) Synthetic whetstone
JPH09254041A (en) Synthetic grinding wheel and manufacture thereof
JP2684607B2 (en) Synthetic whetstone
JPS6339384B2 (en)
JPH11198045A (en) Polishing molded body, polishing surface plate and polishing method using the same
JPS59169764A (en) Solid grindstone
JPH02185374A (en) Synthetic grindstone
JPH05188B2 (en)
JPH0763936B2 (en) Grinding stone and method for manufacturing the same