JPS63175357A - Air-zinc cell - Google Patents
Air-zinc cellInfo
- Publication number
- JPS63175357A JPS63175357A JP680587A JP680587A JPS63175357A JP S63175357 A JPS63175357 A JP S63175357A JP 680587 A JP680587 A JP 680587A JP 680587 A JP680587 A JP 680587A JP S63175357 A JPS63175357 A JP S63175357A
- Authority
- JP
- Japan
- Prior art keywords
- electrolyte
- active material
- electrode active
- zinc
- negative electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011701 zinc Substances 0.000 title claims description 20
- 229910052725 zinc Inorganic materials 0.000 title claims description 20
- 239000003792 electrolyte Substances 0.000 claims abstract description 37
- 239000007773 negative electrode material Substances 0.000 claims abstract description 29
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims abstract description 19
- 239000007864 aqueous solution Substances 0.000 claims abstract description 6
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 19
- 239000008151 electrolyte solution Substances 0.000 claims description 13
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 239000007774 positive electrode material Substances 0.000 claims description 6
- 230000007774 longterm Effects 0.000 abstract description 7
- 239000007788 liquid Substances 0.000 abstract description 3
- 230000001105 regulatory effect Effects 0.000 abstract description 3
- 230000000052 comparative effect Effects 0.000 description 10
- 230000007423 decrease Effects 0.000 description 6
- 239000003054 catalyst Substances 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 229910052753 mercury Inorganic materials 0.000 description 5
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 239000000203 mixture Substances 0.000 description 3
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- NUJOXMJBOLGQSY-UHFFFAOYSA-N manganese dioxide Chemical compound O=[Mn]=O NUJOXMJBOLGQSY-UHFFFAOYSA-N 0.000 description 2
- -1 polytetrafluoroethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 206010011878 Deafness Diseases 0.000 description 1
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000006183 anode active material Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000010370 hearing loss Effects 0.000 description 1
- 231100000888 hearing loss Toxicity 0.000 description 1
- 208000016354 hearing loss disease Diseases 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- LUMVCLJFHCTMCV-UHFFFAOYSA-M potassium;hydroxide;hydrate Chemical compound O.[OH-].[K+] LUMVCLJFHCTMCV-UHFFFAOYSA-M 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- ZULTYUIALNTCSA-UHFFFAOYSA-N zinc hydride Chemical compound [ZnH2] ZULTYUIALNTCSA-UHFFFAOYSA-N 0.000 description 1
- 229910000051 zinc hydride Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M12/00—Hybrid cells; Manufacture thereof
- H01M12/04—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type
- H01M12/06—Hybrid cells; Manufacture thereof composed of a half-cell of the fuel-cell type and of a half-cell of the primary-cell type with one metallic and one gaseous electrode
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Hybrid Cells (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、補聴器等の電源として用いられるボタン型空
気亜鉛電池に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a button-type zinc-air battery used as a power source for hearing aids and the like.
本発明は、亜鉛・を主体とする負極活物質と電解液とか
らなり、空気中の酸素を正極活物質としてなる空気亜鉛
電池において、
上記電解液濃度及び1解液量を所定の範囲内に制限する
ことにより、
放電容量の増大、放電時及び長期保存時における耐泪液
特性の向上を図り、信軌性に優れた空気亜鉛電池を提供
しようとするものである。The present invention provides a zinc-air battery consisting of a negative electrode active material mainly composed of zinc and an electrolyte, and in which oxygen in the air is used as a positive electrode active material. By restricting the amount of electricity, the aim is to increase the discharge capacity, improve the tear resistance during discharge and long-term storage, and provide a zinc-air battery with excellent reliability.
近年、高年齢化に伴う難聴対策として補聴器の需要が急
速に伸びてきており、かかる状況から補聴器用電源電池
への要求も高まっている。In recent years, the demand for hearing aids as a countermeasure for hearing loss associated with the aging of the population has been rapidly increasing, and due to this situation, the demand for power batteries for hearing aids has also increased.
従来、上記補聴器用電源としては、水銀電池が多く用い
られている。該水銀電池は、アルカリマンガン電池に比
べ電池容量が大きく、容量光たりの、コストが安価であ
ること、放電電圧が安定していること等の利点を有する
反面、補聴器用電源として使用した場合、約2週間程度
で電池交換を必要とすること、陽極活物質として用いる
水銀が公害の原因となること、水銀の比重が大きいため
例えば直径11.6m■、高さ5.4鰭の大きさの電池
でその重工が約3gと比較的重工が重いこと等の問題が
ある。Conventionally, mercury batteries have often been used as power sources for hearing aids. Mercury batteries have advantages over alkaline manganese batteries, such as higher battery capacity, lower cost, and stable discharge voltage; however, when used as a power source for hearing aids, The batteries need to be replaced every about two weeks, the mercury used as the anode active material causes pollution, and the specific gravity of mercury is high, so a battery with a diameter of 11.6 m and a height of 5.4 fins, for example. There are problems with batteries, such as their relatively heavy weight of about 3g.
これらの問題を解決する電池として、ボタン型空気亜鉛
電池が注目されている。Button-type zinc-air batteries are attracting attention as a battery that solves these problems.
上記空気亜鉛電池は、正極活物質として空気中の酸素を
用いるため、電池には負極活物質と触媒層を設けるだけ
でよく、従って負極活物質内容積の増大が図れ、電池の
高容量化が可能な電池である。また、空気亜鉛電池は放
電電位が平坦で安定しており、しかも低公害性且つ軽量
化が図れる等各種の利点を存している。Since the above-mentioned zinc-air battery uses oxygen in the air as the positive electrode active material, the battery only needs to be provided with a negative electrode active material and a catalyst layer. Therefore, the internal volume of the negative electrode active material can be increased and the capacity of the battery can be increased. This is a possible battery. Furthermore, the zinc-air battery has various advantages such as a flat and stable discharge potential, low pollution and light weight.
ところが、上記空気亜鉛電池は、正極罐側に空気取り入
れのための空気孔を設けているため、放電中や過放電後
または長期保存時の自然放電等において進行する放電反
応に伴う負極活物質の体積増加により、電解液を含有し
たセパレータを空気極側に圧迫することになり、該空気
孔から上記電解液が漏出してしまうという問題を生じ電
池の信頼性を喪失させることになる。However, since the above-mentioned zinc-air batteries are provided with air holes for air intake on the positive electrode can side, the negative electrode active material is removed due to the discharge reaction that progresses during discharge, after overdischarge, or during natural discharge during long-term storage. Due to the increase in volume, the separator containing the electrolytic solution is pressed against the air electrode side, causing a problem that the electrolytic solution leaks from the air holes, resulting in a loss of reliability of the battery.
そこで、本発明は上述の問題点に鑑みて提案されたもの
であって、放電容量が大きく、放電時及び長期保存時等
における耐漏液特性に優れ、信頼性に優れた空気亜鉛電
池を提供することを目的とするものである。SUMMARY OF THE INVENTION The present invention has been proposed in view of the above-mentioned problems, and provides a zinc-air battery that has a large discharge capacity, excellent leakage resistance during discharge and long-term storage, and is highly reliable. The purpose is to
本発明は、上述の目的を達成するために、亜鉛を主体と
する負極活物質と電解液とからなり、空気中の酸素を正
極活物質としてなる空気亜鉛電池において、上記電解液
として濃度32.5〜36.0重量%の水酸化カリウム
水溶液を用いるとともに、該電解液量を負極活物質1^
H(アンペア時間)相当量に対して0.26〜0.36
gとしたことを特徴とするものである。In order to achieve the above-mentioned object, the present invention provides a zinc-air battery consisting of a negative electrode active material mainly containing zinc and an electrolytic solution, and in which oxygen in the air is used as the positive electrode active material. A potassium hydroxide aqueous solution of 5 to 36.0% by weight is used, and the amount of the electrolyte is 1^ of the negative electrode active material.
0.26 to 0.36 for H (ampere hour) equivalent amount
g.
ここで、上記水酸化カリウム゛水溶液の濃度と負極活物
質である亜鉛に対する電解液の含有量が重要となる。す
なわち、電解液である水酸化カリウム水?′B液の濃度
を32.5〜36.0重工%、負極活物M I AH相
当0)電M液mヲ0.26〜0.36 g (D範囲内
とすることにより放電容量の増大、放電時及・び長期保
存時等における耐漏液特性の向上が図ることができるの
である。Here, the concentration of the aqueous potassium hydroxide solution and the content of the electrolyte relative to zinc, which is the negative electrode active material, are important. In other words, potassium hydroxide water which is an electrolyte? 'By setting the concentration of B solution to 32.5 to 36.0%, equivalent to negative electrode active material M I AH 0) Electron M solution m 0.26 to 0.36 g (within D range, the discharge capacity can be increased. This makes it possible to improve leakage resistance during discharge, long-term storage, and the like.
上記電解液濃度が32.5型費%未満では電池容量の低
下を招き、36.0重量%以上では電解液の漏液を招く
ことになる。また、電解液量については負極活物質1八
!1当りの電解液量がOo・26g未満の場合、亜鉛量
は増加するものの放電時に負極活物質が体積膨張して正
極を圧迫し酸素供給の不足が起こり、負極活物質である
亜鉛が未放電のまま残存してしまい放電容量の低下を招
くことになる。If the electrolyte concentration is less than 32.5% by weight, the battery capacity will decrease, and if it is more than 36.0% by weight, the electrolyte will leak. Also, regarding the amount of electrolyte, the negative electrode active material is 18! If the amount of electrolyte per unit is less than Oo・26g, although the amount of zinc increases, the negative electrode active material expands in volume during discharge and presses the positive electrode, resulting in insufficient oxygen supply, and the zinc, which is the negative electrode active material, becomes undischarged. This will result in a decrease in discharge capacity.
電解液量が0.36 g以上の場合、亜鉛量が減少し高
容量化することができない。When the amount of electrolyte is 0.36 g or more, the amount of zinc decreases and a high capacity cannot be achieved.
正極活物質に酸素、負極活物質に亜鉛 電解液に所定濃
度の水酸化カリウム水溶液を用い、上記負極活物質lA
l1当りの上記電解液量を限定することにより、放電容
量が約lO%程度増加する。Oxygen is used as the positive electrode active material, zinc is used as the negative electrode active material, and a potassium hydroxide aqueous solution of a predetermined concentration is used as the electrolytic solution.
By limiting the amount of electrolyte per liter, the discharge capacity increases by about 10%.
また、電解液量を最適値に規制しているため、放電反応
に伴う負極活物質の膨張が生じても若しくは長期保存に
おいても不要な電解液がなくなり、耐漏液特性が改善さ
れる。In addition, since the amount of electrolyte is regulated to an optimum value, there is no unnecessary electrolyte even if the negative electrode active material expands due to discharge reaction or during long-term storage, and leakage resistance is improved.
以下、本発明の具体的な実施例について説明するが、本
発明はこの実施例に限定されるものではない。Hereinafter, specific examples of the present invention will be described, but the present invention is not limited to these examples.
本実施例は、いわゆる44タイプ(直径11.6真−1
高さ5.4m5)のボタン型空気亜鉛電池に適用したも
のである。This example uses the so-called 44 type (diameter 11.6 cm-1
This was applied to a button-type zinc-air battery with a height of 5.4 m5.
上記ボタン型空気亜鉛電池は、第1図に示すように、負
極活物質の放電反応による膨張を考慮した容積を有する
負極罐(6)内に負極活物質(1)が充填され、セパレ
ータ(4)を介して正極触媒rr!(2)と撲水N(3
)が設けられ、これらに空気取り込み用の空気孔(8)
が形成され空気が存在できる僅かな8禎を有した正極罐
(5)をガスケット(7)を介して、その端部をカシメ
ることにより取り付は構成されるものである。As shown in FIG. 1, the button-type zinc-air battery has a negative electrode active material (1) filled in a negative electrode can (6) having a volume that takes into account the expansion of the negative electrode active material due to a discharge reaction, and a separator (4). ) through the positive electrode catalyst rr! (2) and Bokusui N (3
) are provided with air holes (8) for air intake.
The positive electrode can (5), which has a slight gap where air can exist, is attached via a gasket (7) by caulking its end.
上記ft橿活物M(1)は、亜鉛を主体とするもので、
通常は氷化亜鉛と電解液と亜鉛の自己放電制御のための
酸化亜鉛及び増粘剤を混合したものを用いた。上記水化
亜鉛は水銀含有量2重量%の゛ものを使用した。また、
酸化亜鉛は電解液に51四%添加して使用した。上述の
ような組成からなる負極活物’ff (1)の電池内容
積に対する充填率は85%とした。The above-mentioned ft-shaped active material M(1) is mainly composed of zinc,
Usually, a mixture of frozen zinc, electrolyte, zinc oxide for self-discharge control of zinc, and a thickener is used. The zinc hydride used had a mercury content of 2% by weight. Also,
Zinc oxide was used by adding 514% to the electrolyte. The filling rate of the negative electrode active material 'ff (1) having the composition as described above with respect to the battery internal volume was 85%.
上記正極触媒層(2)は、例えばニッケル多孔質を集電
体とし、ポリテトラフロロエチレン樹脂からなる結合剤
に炭素と二酸化マンガンを混合したものを上記集電体に
圧着して成っている。さらに、正極触媒層(2)の空気
と接触する側に設けられた挨水層(3)は、ポリテトラ
フロロエチレン製の多孔質樹脂等からなるもので、電解
液の漏出を防止する働きをしている。The positive electrode catalyst layer (2) is made of, for example, a porous nickel current collector, and a mixture of carbon and manganese dioxide in a binder made of polytetrafluoroethylene resin is pressed onto the current collector. Furthermore, the water dust layer (3) provided on the side of the positive electrode catalyst layer (2) that comes into contact with air is made of porous resin such as polytetrafluoroethylene, and has the function of preventing electrolyte leakage. are doing.
上記ガスケット(7)は、ナイロン等からなるもので負
極活物質(1)が漏出することによる正極罐(6)との
接触による短絡を防止するものである。The gasket (7) is made of nylon or the like, and is used to prevent short circuits caused by leakage of the negative electrode active material (1) and contact with the positive electrode can (6).
□ また、正極罐(5)には空気を取り込むための空
気孔(8)が直径0.6 amの大きさで2箇所形成さ
れている。□ Furthermore, two air holes (8) each having a diameter of 0.6 am are formed in the positive electrode can (5) to take in air.
実施例1
上述のような措虜で示されるボタン型空気亜鉛電池にお
いて、電解液の濃度を一定にし、負極活物質の容量に対
する電解液の液量を変化させてサンプル電池(試料1〜
試料4.比較試料1)を作製した。尚、各サンプル電池
の電解液濃度、充1眞亜鉛量、電解液量を第1表に示す
。Example 1 In a button-type zinc-air battery as shown in the figure above, sample batteries (Samples 1-
Sample 4. Comparative sample 1) was prepared. Table 1 shows the electrolyte concentration, amount of zinc charged, and amount of electrolyte for each sample battery.
(以下余白)
第1表
作製した各サンプル電池について、電池初期特性、放電
特性、保存後の漏液性を調べた。(The following is a blank space) Table 1 For each of the sample batteries prepared, the initial battery characteristics, discharge characteristics, and leakage properties after storage were investigated.
電池初期特性については開路電圧と内部砥抗を、放電特
性については620Ωの負荷を加えた時の放電容量、平
to電圧、放電後の漏液性を、保存後の漏液性について
はサンプル電池50個について60℃、相対湿度90%
、40日間放T!、後の漏液した個数をそれぞれ調べた
。その結果を第2表に示す。The initial characteristics of the battery are the open circuit voltage and internal abrasive resistance, the discharge characteristics are the discharge capacity when a load of 620 Ω is applied, the flat-to-voltage, and the leakage property after discharge, and the leakage property after storage is the sample battery. 60℃, relative humidity 90% for 50 pieces
, aired for 40 days! , the number of leaked liquids after each test was investigated. The results are shown in Table 2.
以上の結果に基づき電解液■に対する放電容量の特性を
プロットしたのが第2図である。尚、第2図中Aは試料
1.Bは試料2.Cは試料3. Dは試料4. Eは
比較試料1にそれぞれ対応している。Based on the above results, the characteristics of discharge capacity for electrolyte solution (1) are plotted in FIG. 2. In addition, A in FIG. 2 is sample 1. B is sample 2. C is sample 3. D is sample 4. E corresponds to comparative sample 1, respectively.
第2表及び第2図から、電解液量を0.26g/^11
未満とすると亜鉛量は増加するが、放電容量が減少する
ことがわかる。これは放電時に負極活物質が体積膨張し
て正極を圧迫し、酸素供給の不足が起こり負極活物質で
ある亜鉛が未反応のまま残存するために容1が低下する
ものと考えられるからである。また、電解液容量を0.
4g/^H以上とする亜鉛量が減少するため、高容量化
することができなくなる。From Table 2 and Figure 2, the amount of electrolyte is 0.26g/^11
It can be seen that when the amount is less than that, the amount of zinc increases, but the discharge capacity decreases. This is thought to be because the negative electrode active material expands in volume during discharge and presses the positive electrode, resulting in insufficient oxygen supply and zinc, which is the negative electrode active material, remaining unreacted, resulting in a decrease in volume 1. . Also, the electrolyte capacity was set to 0.
Since the amount of zinc is reduced to 4 g/^H or more, it becomes impossible to increase the capacity.
実施例2
次に、負極活物質の容量に対する電解液■を一定にし、
電解液の濃度を変化させてサンプル電池(試料5〜試料
9.比較試料2〜比較試料5)を作製した。尚、各サン
プル電池の電解液濃度、充填亜鉛量、電解液量を第3表
に示す。Example 2 Next, the electrolyte solution (■) with respect to the capacity of the negative electrode active material was kept constant,
Sample batteries (Sample 5 to Sample 9, Comparative Sample 2 to Comparative Sample 5) were prepared by changing the concentration of the electrolytic solution. Table 3 shows the electrolyte concentration, amount of zinc filled, and amount of electrolyte for each sample battery.
第3表 作製した各サンプル電池について電池初期特性。Table 3 Initial battery characteristics for each sample battery produced.
放電特性、保存後の漏液性について調べた。The discharge characteristics and leakage properties after storage were investigated.
電池初期特性については開路電圧と内部抵抗を、放電特
性については620Ωの負荷を加えた時の放電容量、平
坦電圧、放電後の漏液性を、保存後の漏液性については
サンプル電池50個について60℃、相対湿度90%、
40日間放置後の漏液した個数をそれぞれ調べた。その
結果を第4表に示す。The initial characteristics of the battery are the open circuit voltage and internal resistance, the discharge characteristics are the discharge capacity when a load of 620 Ω is applied, the flat voltage, and the leakage property after discharge. The leakage property after storage is measured using 50 sample batteries. About 60℃, relative humidity 90%,
The number of leaked samples after being left for 40 days was determined. The results are shown in Table 4.
(以下余白)
以上の結果に基づき電解液量に対する放電容量の特性を
プロットしたのが第3図である。尚、第3図中Fは比較
J試料2.Cは比較試料3.Hは試料5.■は試料6.
Jは試料?、には試料8. Lは試料9.Mは比較試
料4の結果を、Nは比較試料5にそれぞれ対応している
。(The following is a blank space) Based on the above results, FIG. 3 plots the characteristics of discharge capacity against the amount of electrolyte. In addition, F in FIG. 3 is comparative J sample 2. C is comparative sample 3. H is sample 5. ■ is sample 6.
Is J a sample? , sample 8. L is sample 9. M corresponds to the results of comparative sample 4, and N corresponds to comparative sample 5.
第4表及び第3図から、電解液濃度は34重量%に01
1付近が最も大きな放電容量を示しており、32.5〜
36重量%に011の範囲内が良好な放電容量を示す範
囲と考えられる。電解液濃度が36゜5重量%KOII
以上では漏液が起こり、32.0重量%KOI+未満で
は放電容量が減少してしまう、これは亜鉛粒子の表面層
の水酸化カリウム量が34重量%付近で亜鉛イオンに配
位してZ n (OH)*”−の形態を取りやすくなり
、放電状態が良く不動態化亜鉛に成りにくいと考えられ
るからである。From Table 4 and Figure 3, the electrolyte concentration is 34% by weight.
The area around 1 indicates the largest discharge capacity, and 32.5~
A range of 011 to 36% by weight is considered to be a range showing good discharge capacity. Electrolyte concentration is 36° 5% by weight KOII
If it is above 34% by weight, liquid leakage will occur, and if it is less than 32.0% by weight KOI+, the discharge capacity will decrease. This is because it is thought that it becomes easier to take the form of (OH)*''-, and the discharge state is good and it is difficult to become passivated zinc.
比較例
電解液の濃度を30重重量%OR、充填亜鉛量を430
mAl、電解液量を0.40gとa解液濃度及び電解液
量を本発明の範囲外に設定したサンプル電池を作製した
。Comparative example: The concentration of the electrolyte was 30 wt% OR, and the amount of zinc filled was 430.
A sample battery was produced in which the mAl and the electrolyte amount were set to 0.40 g, and the a solution concentration and the electrolyte amount were set outside the range of the present invention.
作製したサンプル電池について電池初期特性。Initial battery characteristics of the fabricated sample battery.
放電特性、保存後の漏液性について調べた。The discharge characteristics and leakage properties after storage were investigated.
電池初期特性については開路電圧と内部抵抗を、放電特
性については620Ωの負荷を加えた時の放電容量、平
坦電圧、放電後の漏液性を、保存後の漏液性については
サンプル電池50個について60℃、相対温度90%、
40日間放置後の漏液した個数をそれぞれ調べた。The initial characteristics of the battery are the open circuit voltage and internal resistance, the discharge characteristics are the discharge capacity when a load of 620 Ω is applied, the flat voltage, and the leakage property after discharge. The leakage property after storage is measured using 50 sample batteries. about 60℃, relative temperature 90%,
The number of leaked samples after being left for 40 days was determined.
その結果、電池初期特性のうち開路電圧は1.472V
、内部抵抗は1.0Ωであった。また、放電特性のうち
放電容量は490 IIIAH、平坦電圧は1.27V
、放電時の漏液性は良好であった。保存後の漏液性につ
いてはサンプル電池50細巾40個漏液が見られた。As a result, the open circuit voltage of the initial battery characteristics was 1.472V.
, the internal resistance was 1.0Ω. Also, among the discharge characteristics, the discharge capacity is 490 IIIAH, and the flat voltage is 1.27V.
, Leakage property during discharge was good. Regarding leakage after storage, leakage was observed in 50 sample batteries and 40 samples.
これらの結果より、上記比較例においては、電解液濃度
及び電解液量が本発明の範囲外となっているため放電容
量が低く、さらに保存後の漏液性が著しく劣化している
ことがわかる。From these results, it can be seen that in the above comparative example, the electrolyte concentration and amount are outside the range of the present invention, so the discharge capacity is low, and furthermore, the leakage property after storage is significantly deteriorated. .
以上の説明から明らかなように、亜鉛を主体とする負極
活物質と電解液とからなり、空気中の酸素を正極活物質
としてなる空気亜鉛電池において、上記電解液として濃
度32.5〜36.0重ヱ%の水酸化カリウム水溶液を
用いるとともに、該電解液量を負極活物質IA!i相当
量に対して0.26〜0.36gの範囲に限定すること
により、従来電池に比較して放電容量が約10%程度増
加させることが可能となる。As is clear from the above description, in a zinc-air battery consisting of a negative electrode active material mainly containing zinc and an electrolytic solution, and in which oxygen in the air is used as a positive electrode active material, the electrolytic solution has a concentration of 32.5 to 36. A 0% by weight potassium hydroxide aqueous solution is used, and the amount of the electrolyte is adjusted to the negative electrode active material IA! By limiting the i equivalent amount to a range of 0.26 to 0.36 g, it is possible to increase the discharge capacity by about 10% compared to conventional batteries.
しかも、電解液量を最適値に規制しているため、放電反
応に伴う負極活物質の膨張が生じても苦しくは長期保存
時においても耐漏液特性が改善され電解液の漏出が防止
できる。Furthermore, since the amount of electrolyte is regulated to an optimum value, leakage resistance is improved and leakage of electrolyte can be prevented even if the negative electrode active material expands due to discharge reaction or even during long-term storage.
従って、信頼性に優れた空気亜鉛電池を提供することが
できる。Therefore, a zinc-air battery with excellent reliability can be provided.
第1図は本発明を適用した空気亜鉛電池の一拾成例を示
す概略断面図である。
第2図は負極活物質の容量に対する電解液量を変化させ
た時の電解液量と放電容量との関係を示す特性図である
。
第3図は電解液の濃度を変化させた時の電解液濃度と放
電容量との関係を示す特性図である。
l・・・負極活物質
2・・・正極触媒層
3・・・撲水層
4・・・セパレータ
5・・・正極罐
6・・・負極罐
7・・・ガスケット
8・・・空気孔
特許出願人 ソニー株式会社
代理人 弁理士 小部 晃
同 田村 榮−
64碓憔
第1図
1解適量((j/AH)
第2図
を角¥坏延端電月1 (にOH重量6ム)第3図
手続補正書帽発)
昭和62年3月4日FIG. 1 is a schematic cross-sectional view showing one example of a zinc-air battery to which the present invention is applied. FIG. 2 is a characteristic diagram showing the relationship between the amount of electrolyte and the discharge capacity when the amount of electrolyte is changed relative to the capacity of the negative electrode active material. FIG. 3 is a characteristic diagram showing the relationship between electrolytic solution concentration and discharge capacity when the electrolytic solution concentration is changed. l...Negative electrode active material 2...Cathode catalyst layer 3...Water layer 4...Separator 5...Positive electrode can 6...Negative electrode can 7...Gasket 8...Air hole patent Applicant: Sony Corporation Representative, Patent Attorney: Kodo Kobe, Sakae Tamura - 64 Usuka Figure 1 1 Solution Appropriate Amount ((j/AH) Figure 2 Square ¥ An End Electric Moon 1 (to OH Weight 6 mm) Figure 3 Procedural Amendments (Issue) March 4, 1986
Claims (1)
中の酸素を正極活物質としてなる空気亜鉛電池において
、 上記電解液として濃度32.5〜36.0重量%の水酸
化カリウム水溶液を用いるとともに、 該電解液量を負極活物質1AH相当量に対して0.26
〜0.36gとしたことを特徴とする空気亜鉛電池。[Scope of Claims] A zinc-air battery consisting of a negative electrode active material mainly containing zinc and an electrolytic solution, in which oxygen in the air is used as a positive electrode active material, wherein the electrolytic solution has a concentration of 32.5 to 36.0% by weight. of potassium hydroxide aqueous solution, and the amount of the electrolyte was adjusted to 0.26 per 1AH equivalent amount of negative electrode active material.
A zinc-air battery characterized by having a weight of ~0.36g.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62006805A JP2517936B2 (en) | 1987-01-14 | 1987-01-14 | Air zinc battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62006805A JP2517936B2 (en) | 1987-01-14 | 1987-01-14 | Air zinc battery |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63175357A true JPS63175357A (en) | 1988-07-19 |
JP2517936B2 JP2517936B2 (en) | 1996-07-24 |
Family
ID=11648407
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62006805A Expired - Fee Related JP2517936B2 (en) | 1987-01-14 | 1987-01-14 | Air zinc battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2517936B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0461763A (en) * | 1990-06-28 | 1992-02-27 | Matsushita Electric Ind Co Ltd | Air cell |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070224495A1 (en) | 2006-03-22 | 2007-09-27 | Gibbons Daniel W | Zinc/air cell |
US20070224500A1 (en) | 2006-03-22 | 2007-09-27 | White Leo J | Zinc/air cell |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5118610A (en) * | 1975-06-21 | 1976-02-14 | Toshio Takayama | TSUCHITSUKINAENOIKUBYOHOHO |
JPS5246448A (en) * | 1975-10-06 | 1977-04-13 | Unican Electrochem Prod | Zinc air button type cell |
JPS56147375A (en) * | 1980-03-24 | 1981-11-16 | Timex Corp | Air/metal battery |
-
1987
- 1987-01-14 JP JP62006805A patent/JP2517936B2/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5118610A (en) * | 1975-06-21 | 1976-02-14 | Toshio Takayama | TSUCHITSUKINAENOIKUBYOHOHO |
JPS5246448A (en) * | 1975-10-06 | 1977-04-13 | Unican Electrochem Prod | Zinc air button type cell |
JPS56147375A (en) * | 1980-03-24 | 1981-11-16 | Timex Corp | Air/metal battery |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0461763A (en) * | 1990-06-28 | 1992-02-27 | Matsushita Electric Ind Co Ltd | Air cell |
Also Published As
Publication number | Publication date |
---|---|
JP2517936B2 (en) | 1996-07-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0723305B1 (en) | Nickel positive electrode for use in alkaline storage battery. | |
Adler et al. | Low‐zinc‐solubility electrolytes for use in zinc/nickel oxide cells | |
US5340666A (en) | Rechargeable alkaline manganese cell having improved capacity and improved energy density | |
US4552821A (en) | Sealed nickel-zinc battery | |
CN107293733B (en) | Dual-ion battery | |
EP1958278B1 (en) | Rechargeable alkaline manganese cell having reduced capacity fade and improved cycle life | |
JP2001015106A (en) | Alkaline battery | |
AU2020264696B2 (en) | Rechargeable battery cell | |
CA2474164A1 (en) | Alkaline battery | |
CA1232634A (en) | Battery cell | |
CA2281371A1 (en) | Rechargeable nickel-zinc cell | |
US3288642A (en) | Rechargeable dry cell having gelled electrolyte | |
USRE25608E (en) | cahan | |
US3485673A (en) | Nickel-zinc battery system having an aqueous electrolyte consisting of potassium hydroxide and potassium carbonate | |
JPS5928027B2 (en) | Rechargeable chemical battery or storage battery | |
JPS63175357A (en) | Air-zinc cell | |
US5645953A (en) | Secondary battery and method for controlling the self-discharge of a nickel/metal hydride secondary battery | |
US6960409B2 (en) | High discharge rate alkaline battery | |
WO1980002472A1 (en) | Electric storage batteries | |
JP4411860B2 (en) | Storage battery | |
US3457111A (en) | Alkaline storage battery with be(oh)2 in the electrolyte | |
KR100413735B1 (en) | Ni-secondary battery comprising gel alkaline electrolyte | |
JP2000173602A (en) | Cylindrical alkaline battery | |
CA2037744A1 (en) | Rechargeable alkaline manganese cell having improved capacity and improved energy density | |
Lewis | Cells and Batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |