JPS63129020A - Method for recovering cobalt carbonate in zinc refining stage - Google Patents

Method for recovering cobalt carbonate in zinc refining stage

Info

Publication number
JPS63129020A
JPS63129020A JP61271870A JP27187086A JPS63129020A JP S63129020 A JPS63129020 A JP S63129020A JP 61271870 A JP61271870 A JP 61271870A JP 27187086 A JP27187086 A JP 27187086A JP S63129020 A JPS63129020 A JP S63129020A
Authority
JP
Japan
Prior art keywords
residue
added
sulfuric acid
soln
cleaned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61271870A
Other languages
Japanese (ja)
Inventor
Hiromi Kubo
久保 博海
Tetsuo Sekiya
関屋 鉄雄
Daisaku Matsukura
松倉 大作
Motomi Furuta
古田 基美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kamioka Mining and Smelting Co Ltd
Original Assignee
Kamioka Mining and Smelting Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kamioka Mining and Smelting Co Ltd filed Critical Kamioka Mining and Smelting Co Ltd
Priority to JP61271870A priority Critical patent/JPS63129020A/en
Publication of JPS63129020A publication Critical patent/JPS63129020A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

PURPOSE:To easily recover cobalt carbonate at a low cost and to obtain a high-grade copper refining material by removing zinc from the clarified residue obtained from a zinc refining stage, then removing copper from the obtained acid-cleaned residue, adding H2S to the soln. to remove As, Cd, and Cu, adding soda ash to the cleaned soln., and filtering the precipitate. CONSTITUTION:Water and sulfuric acid are added to the clarified residue produced from the clarifying stage of zinc refining and contg. Cu, Zn, Cd, and As as the essential components in addition to Co to control the pH to 2-4, the liq. is agitated and cleaned with an acid, the precipitate is filtered and washed with water to elute the greater part of Cd, and the obtained acid-cleaned soln. is separated to obtain the acid-cleaned residue. Water and sulfuric acid are added to the residue to control the pH to 2-3, the soln. is heated to 50-60 deg.C, air is blown in to selectively dissolve Co, the precipitate is filtered and washed to separate a copper-contg. residue, and a soln. contg. Co, etc., is obtained. Na2S and sulfuric acid are then added to the soln. and heated to about 60 deg.C to precipitate AsS, CdS, and CuS by the generated H2S, the precipitated sulfides are separated and removed, sulfuric acid is added to the filtrate to control the pH to <=3, hence the filtrate is clarified, soda ash is added to the clarified filtrate at 60-80 deg.C to adjust the pH to 6-9, and the obtained precipitate is filtered and washed with water.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は、亜鉛製錬における清浄工程で産出される清浄
残渣から、炭酸コバルトを回収する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION <Industrial Application Field> The present invention relates to a method for recovering cobalt carbonate from a clean residue produced in a cleaning step in zinc smelting.

〈従来の技術と問題点〉 亜鉛製錬は、第6図に示すように、亜鉛精鉱からイオウ
(S)を除去する焙焼工程、含有金属を硫酸に溶解させ
る熔解工程、亜鉛(Zn)以外の金属を除去する清浄工
程、Znを電解採取する電解工程から構成されている。
<Prior art and problems> As shown in Figure 6, zinc smelting involves a roasting process to remove sulfur (S) from zinc concentrate, a melting process to dissolve the contained metal in sulfuric acid, and zinc (Zn). The process consists of a cleaning process to remove other metals, and an electrolytic process to electrolytically extract Zn.

上記清浄工程は、第7図に示すように、幾つかの清浄工
程から構成され、最終的にZn濃度の高い第三清浄液を
電解工程へ供給する。
As shown in FIG. 7, the cleaning process is comprised of several cleaning processes, and finally a third cleaning solution with a high Zn concentration is supplied to the electrolytic process.

ここで、第一清浄工程で生成される第一清浄残渣は第1
表に示すような組成であり、高価なコバルト(Co)を
含有している。
Here, the first cleaning residue generated in the first cleaning step is the first cleaning residue.
It has the composition shown in the table and contains expensive cobalt (Co).

しかしながら、この第一清浄残渣は、COの含有率が低
いことや相互分離が容易ではないことから、そのまま銅
製錬の原料として用いられており、COを回収すること
は行われていなかった。また、この第一清浄残渣を銅製
錬原料として用いる場合にあっても、毒性の強い砒素(
As)等多くの不純物を含んでいるため、その価値が低
いものであった。
However, since the first cleaned residue has a low CO content and is not easy to separate from each other, it has been used as a raw material for copper smelting, and CO has not been recovered. In addition, even if this first-purification residue is used as a raw material for copper smelting, highly toxic arsenic (
Because it contains many impurities such as As), its value is low.

本発明は上記従来の事情に鑑みなされたもので、亜鉛製
錬の清浄工程で得られる清浄残渣からのCo回収を実現
し、更にその中間で銅品位の高い有利な銅製錬原料を生
成する方法を提供することを目的とする。
The present invention has been made in view of the above-mentioned conventional circumstances, and is a method for realizing Co recovery from the clean residue obtained in the cleaning process of zinc smelting, and further producing an advantageous copper smelting raw material with a high copper grade in the intermediate stage. The purpose is to provide

く問題点を解決するための手段〉 本発明に係る炭酸コバルトの回収方法は、亜鉛製錬工程
で得られてCoの他に主にCu、 Zn。
Means for Solving Problems> The method for recovering cobalt carbonate according to the present invention mainly collects Cu and Zn in addition to Co obtained in the zinc smelting process.

Cd、 Asを含む清浄残渣に水と硫酸とを加え、主に
Znを含んだ酸洗液を分離してCoを含んだ酸洗液を生
成し、該酸洗液に水と硫酸とを加え更に空気を吹込むこ
とにより主にCuを含んだ溶解残渣を分離してCoを含
んだ溶解液を生成し、該溶解液に硫化水素ガスを加える
ことにより主にAs、 Cd、 Cuの硫化物を含む清
浄残渣を分離してCoを含んだ清浄液を生成し、該清浄
液にソーダ灰を加えて濾過することにより炭酸コバルト
を回収することを特徴とする。
Water and sulfuric acid are added to the cleaned residue containing Cd and As, a pickling solution containing mainly Zn is separated to produce a pickling solution containing Co, and water and sulfuric acid are added to the pickling solution. Furthermore, by blowing air, a dissolved residue containing mainly Cu is separated to produce a dissolved solution containing Co, and by adding hydrogen sulfide gas to the dissolved solution, sulfides of mainly As, Cd, and Cu are produced. The method is characterized in that a cleaning residue containing Co is separated to produce a cleaning solution containing Co, and the cleaning solution is added with soda ash and filtered to recover cobalt carbonate.

すなわち、この炭酸コバルトの回収は第1図に示す各工
程を実施することによりなされる。
That is, this cobalt carbonate is recovered by carrying out the steps shown in FIG.

まず、前述した亜鉛製錬によって生成されて第1表に示
す組成を有した第一清浄残渣を、酸洗工程において、水
でリパルプすると共に硫酸でP)12〜4好ましくはP
H3程度に調整し、約2時間攪拌した後に濾過・水洗し
て第−清浄残渣中のZnの大部分とカドミウム(Cd)
の一部が溶は出た酸洗液とCo等の他の成分を含んだ酸
洗液とに分離する。
First, in the pickling process, the first cleaned residue produced by the zinc smelting described above and having the composition shown in Table 1 is repulped with water and sulfuric acid (preferably P12 to P4).
After adjusting the temperature to about H3 and stirring for about 2 hours, it is filtered and washed with water to remove most of the Zn and cadmium (Cd) in the first cleaning residue.
The pickling solution is separated into a pickling solution in which a part of the solution is released and a pickling solution containing other components such as Co.

次いで、コバルト溶解工程において、上記酸洗液を水で
リパルプすると共に硫酸でPH2〜3に調整し、液温を
約50〜60℃に加熱して空気を吹込みながら約20時
間攪拌する。
Next, in the cobalt dissolution step, the pickling solution is repulped with water, adjusted to pH 2 to 3 with sulfuric acid, heated to a temperature of about 50 to 60° C., and stirred for about 20 hours while blowing air.

この結果、時間とともに液中のCot1度が上昇する一
方、銅(Cu)濃度が低下し、Coが選択的に溶解され
る。そして、このスラリーを濾過・水洗して、第2表に
示すように主にCuを含んだ溶解残渣と、Co等の他の
成分を含んだ溶解液とに分離する。
As a result, the Cot1 degree in the liquid increases with time, while the copper (Cu) concentration decreases, and Co is selectively dissolved. This slurry is then filtered and washed with water to separate it into a dissolved residue mainly containing Cu and a dissolved solution containing other components such as Co, as shown in Table 2.

(第2表) 次いで、清浄工程において、上記溶解液に硫化ソーダと
硫酸とを加えて液温約60℃で約1時間攪拌し、硫化ソ
ーダと硫酸との反応により生ずる硫化水素ガスで液中か
ら主にAs。
(Table 2) Next, in the cleaning step, sodium sulfide and sulfuric acid were added to the above solution and stirred for about 1 hour at a temperature of about 60°C. Mainly from As.

Cd、 Cuを硫化物として沈殿させて除去する。Cd and Cu are precipitated and removed as sulfides.

尚、硫化ソーダと硫酸とを反応させる代りに、硫化水素
ガスを直接加えても良い、そして、この溶解液をそのま
ま清浄しても良いが、清浄でのCoの損失を少なくする
ために硫酸を添加して溶解液のPHを3以下、好ましく
はPH1程度に調整してから清浄する。これは、PHを
1以下に下げるとCoの損失は減少するが後述する炭酸
コバルト回収時にソーダ灰の添加量が増すためであり、
このCo損失とソーダ灰添加量との経済性からPH1程
度が好ましい、そして、清浄が終了した溶解液を濾過し
て上記硫化物を含む清浄残渣とCoを含む清浄液とに分
離する。
Note that instead of reacting sodium sulfide and sulfuric acid, hydrogen sulfide gas may be added directly, and this solution may be cleaned as it is, but in order to reduce the loss of Co during cleaning, sulfuric acid may be added. The pH of the solution is adjusted to 3 or less, preferably about 1, and then cleaned. This is because when the pH is lowered to 1 or less, the loss of Co decreases, but the amount of soda ash added increases during the recovery of cobalt carbonate, which will be described later.
A pH of about 1 is preferable in view of the economics of this Co loss and the amount of added soda ash, and the cleaned solution is filtered to separate it into the cleaning residue containing the sulfide and the cleaning liquid containing Co.

次いで、上記清浄液を液温約60〜80℃に加熱してソ
ーダ灰を加え、約2時間攪拌して最終的にPFIを6〜
9にする。そして、得られた沈殿物を濾過・水洗して第
3表に示すような組成の炭酸コバルトを回収する。ここ
で、炭酸コバルトは溶解度が低く且つ沈降性及びが過性
が良好であるため、極めて良好な採取率で回収できる。
Next, the above cleaning solution is heated to a liquid temperature of about 60-80°C, soda ash is added, and stirred for about 2 hours to finally reach a PFI of 6-80°C.
Make it 9. Then, the obtained precipitate is filtered and washed with water to recover cobalt carbonate having the composition shown in Table 3. Here, since cobalt carbonate has low solubility and good sedimentation and permeability, it can be recovered at an extremely good collection rate.

(第3表) 尚、上記酸洗工程で得られた酸洗液は多量のZnを含む
ため、亜鉛製錬の原料に供せられる。また、上記コバル
ト溶解工程で得られた溶解残渣は、Zn、 Cd、 C
o、 Asがかなり除去されているため、従来に比して
高品位な原料として銅製錬に供せられる。
(Table 3) Note that the pickling solution obtained in the above pickling step contains a large amount of Zn, and therefore is used as a raw material for zinc smelting. In addition, the dissolution residue obtained in the above cobalt dissolution step contains Zn, Cd, C
Since a large amount of As has been removed, it can be used in copper smelting as a higher quality raw material than before.

〈実 施 例〉 本発明の実施例を以下に示す。<Example> Examples of the present invention are shown below.

(実施例1) 第一清浄残渣を酸洗して得られた酸洗源40kgをステ
ンレス製の槽内で水1201でリパルプして硫酸を加え
てPHを調整し、液温50〜60℃で空気を600j!
/分吹込みながら6時間処理した。尚、処理PHは硫酸
を滴下しながら6時間一定に保持した。
(Example 1) 40 kg of the pickling source obtained by pickling the first cleaning residue was repulped with water 1201 in a stainless steel tank, sulfuric acid was added to adjust the pH, and the liquid temperature was 50 to 60°C. 600j of air!
The treatment was carried out for 6 hours while blowing at 1/min. The pH of the treatment was kept constant for 6 hours while adding sulfuric acid dropwise.

試験はそれぞれ処理P)lを変えて5回行い、第−清浄
残渣及び溶解残渣と溶解液の分析値からCo、 Cu、
 Asの溶解率を算出し、第2図に示す結果を得た。こ
の実施例にあってはPI(を3程度とするのが最も好ま
しく、COとCu、 Asとの分離及びCoの溶解が最
も効率的になされることが判る。
The test was conducted five times by changing the treatment P), and from the analytical values of the first clean residue, dissolved residue, and dissolved solution, Co, Cu,
The dissolution rate of As was calculated, and the results shown in FIG. 2 were obtained. In this example, it is most preferable to set PI to about 3, and it can be seen that the separation of CO from Cu and As and the dissolution of Co are achieved most efficiently.

(実施例2) 実施例1と同様な試験で、硫酸を加えて初期PHを1.
5とした後に24時間処理した。
(Example 2) In a test similar to Example 1, sulfuric acid was added and the initial pH was adjusted to 1.
5 and then treated for 24 hours.

この試験による、溶解液中のCoとCuとの濃度及びP
Hの経時変化を第3図に、また第一清浄残渣と溶解残渣
との分析値を第4表に示す。
The concentration of Co and Cu in the solution and P according to this test
Figure 3 shows the change in H over time, and Table 4 shows the analytical values for the first cleaning residue and the dissolved residue.

この実施例にあっては、時間とともにco′a度が上昇
する一方Cu濃度が低下し、またPHも増大することが
判る。尚、Coの溶解率は87%。
In this example, it can be seen that the co'a degree increases with time, while the Cu concentration decreases and the pH also increases. The dissolution rate of Co was 87%.

Cuの溶解率は13%であった。The dissolution rate of Cu was 13%.

(第4表) (実施例3) コバルト溶解工程で得られた溶解液2iをガラスビーカ
ーに入れ、硫酸でPHを調整して50〜60℃に加熱し
た後、硫化ソーダと硫酸とを加えて清浄処理を行い、清
浄液を得た。
(Table 4) (Example 3) Put the solution 2i obtained in the cobalt dissolution process into a glass beaker, adjust the pH with sulfuric acid and heat it to 50 to 60°C, then add sodium sulfide and sulfuric acid. A cleaning treatment was performed to obtain a cleaning solution.

更に、この清浄液にソーダ灰を加えて最終PHを8とし
て濾過し、炭酸コバルトを得た。
Furthermore, soda ash was added to this cleaning solution to adjust the final pH to 8, and the solution was filtered to obtain cobalt carbonate.

上記の清浄PHを変えて行った6回の試験結果を第5表
に示す、この実施例にあっては、清浄を行うとある程度
Coが損失して採取率が低下するが、炭酸コバルト中の
Co含有率が大幅に向上することが判り、これら両者を
考慮すると清浄処理の初期PHは小さい程好ましいこと
が判る。
Table 5 shows the results of six tests conducted at different cleaning pHs. In this example, cleaning results in a certain amount of Co loss and a decrease in the collection rate, but the It was found that the Co content was significantly improved, and considering both of these factors, it was found that the lower the initial pH of the cleaning treatment, the better.

(第5表) 〈応 用 例〉 (応用例1) 第1図で示した清浄工程で得られた清浄液を第4図に従
って更なる有機溶媒を用いて処理し、亜鉛(Zn) 、
ニッケル(Ni)等の不純物を除去して蓚酸コバルトと
して回収し、更にこの蓚酸コバルトを水素ガス気流中で
加熱分解するとコバルト粉を回収することができる。こ
の処理を実施すると、例えば平均粒径約1μで第6表に
示すような成分比のコバルト粉を得ることができる。
(Table 5) <Application example> (Application example 1) The cleaning solution obtained in the cleaning process shown in Fig. 1 was treated with an additional organic solvent according to Fig. 4, and zinc (Zn),
Cobalt powder can be recovered by removing impurities such as nickel (Ni) and recovering cobalt oxalate, and then thermally decomposing the cobalt oxalate in a hydrogen gas stream. By carrying out this treatment, it is possible to obtain cobalt powder having an average particle size of about 1 μm and a component ratio as shown in Table 6, for example.

(第6表) (応用例2) 第1図で示したコバルト溶解工程で得られた溶解残渣を
第5図に従って苛性ソーダで処理して溶解し、これを−
過して溶解液と溶解残渣とに分離する。この結果得られ
た溶解残渣は第1図のコバルト溶解工程で得られた溶解
残渣より更に銅品位が高く、更に有利な原料として銅製
錬に供することができる。更にこれと共に、溶解液に第
5図に示す処理を施すことによって^Sを亜砒酸として
回収することもできる。
(Table 6) (Application example 2) The dissolution residue obtained in the cobalt dissolution process shown in Fig. 1 is treated and dissolved with caustic soda according to Fig. 5, and then -
The solution is separated into a dissolved solution and a dissolved residue. The resulting melted residue has a higher copper grade than the melted residue obtained in the cobalt melting process shown in FIG. 1, and can be used as a more advantageous raw material for copper smelting. Furthermore, by subjecting the solution to the treatment shown in FIG. 5, ^S can also be recovered as arsenous acid.

上記コバルト溶解工程で得られた溶解残渣300gを水
1.5 jでスラリー化し、含有されるAsの理論量の
2倍量の苛性ソーダを加えて80〜90℃で4時間処理
した。この結果、水洗・濾過して得られた溶解残渣のA
s品位は約2%で、Cu品位は60%を越えた。また、
第5図に従って回収した亜砒酸のへSt’s品位は99
%を越えた。
300 g of the dissolution residue obtained in the above cobalt dissolution step was slurried with 1.5 J of water, and twice the theoretical amount of As contained in caustic soda was added thereto and treated at 80 to 90° C. for 4 hours. As a result, A of the dissolved residue obtained by washing with water and filtration.
The S grade was about 2%, and the Cu grade was over 60%. Also,
The grade of arsenous acid recovered according to Figure 5 is 99.
exceeded %.

〈発明の効果〉 本発明によれば、亜鉛製錬で得られる清浄残渣から極め
て簡単な手法により低コストで炭酸コバルトを回収する
ことができる。更に、炭酸コバルト回収の中間において
品位の高い銅製錬原料も得ることができる。
<Effects of the Invention> According to the present invention, cobalt carbonate can be recovered at low cost by an extremely simple method from the clean residue obtained from zinc smelting. Furthermore, high-grade copper smelting raw materials can also be obtained during the cobalt carbonate recovery process.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の系統図、第2図はPRによるCo、 
Cu、^Sの溶解率変化を示すグラフ、第3図は溶解液
中のCo、 Cu濃度とPHとの経時変化を示すグラフ
、第4図、第5図はそれぞれ本発明の応用例の系統図、
第6図は亜鉛製錬の系統図、第7図は亜鉛製錬における
清浄工程の系統図である。
Figure 1 is a system diagram of the present invention, Figure 2 is Co by PR,
A graph showing changes in the dissolution rate of Cu and ^S, Figure 3 is a graph showing changes over time in Co and Cu concentrations in the solution, and PH, and Figures 4 and 5 are systems of application examples of the present invention, respectively. figure,
FIG. 6 is a system diagram of zinc smelting, and FIG. 7 is a system diagram of a cleaning process in zinc smelting.

Claims (1)

【特許請求の範囲】[Claims] 亜鉛製錬工程で得られてCoの他に主にCu、Zn、C
d、Asを含む清浄残渣に水と硫酸とを加え、主にZn
を含んだ酸洗液を分離してCoを含んだ酸洗渣を生成し
、該酸洗渣に水と硫酸とを加え更に空気を吹込むことに
より主にCuを含んだ溶解残渣を分離してCoを含んだ
溶解液を生成し、該溶解液に硫化水素ガスを加えること
により主にAs、Cd、Cuの硫化物を含む清浄残渣を
分離してCoを含んだ清浄液を生成し、該清浄液にソー
ダ灰を加えて濾過することにより炭酸コバルトを回収す
ることを特徴とする亜鉛製錬工程における炭酸コバルト
の回収方法。
In addition to Co, mainly Cu, Zn, and C are obtained in the zinc smelting process.
d. Add water and sulfuric acid to the clean residue containing As, and remove mainly Zn.
A pickling solution containing Co is separated to produce a pickling residue containing Co, and by adding water and sulfuric acid to the pickling residue and further blowing air, a dissolved residue mainly containing Cu is separated. to generate a solution containing Co, and by adding hydrogen sulfide gas to the solution, a cleaning residue mainly containing sulfides of As, Cd, and Cu is separated to generate a cleaning solution containing Co, A method for recovering cobalt carbonate in a zinc smelting process, the method comprising recovering cobalt carbonate by adding soda ash to the cleaning liquid and filtering it.
JP61271870A 1986-11-17 1986-11-17 Method for recovering cobalt carbonate in zinc refining stage Pending JPS63129020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61271870A JPS63129020A (en) 1986-11-17 1986-11-17 Method for recovering cobalt carbonate in zinc refining stage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61271870A JPS63129020A (en) 1986-11-17 1986-11-17 Method for recovering cobalt carbonate in zinc refining stage

Publications (1)

Publication Number Publication Date
JPS63129020A true JPS63129020A (en) 1988-06-01

Family

ID=17506045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61271870A Pending JPS63129020A (en) 1986-11-17 1986-11-17 Method for recovering cobalt carbonate in zinc refining stage

Country Status (1)

Country Link
JP (1) JPS63129020A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243178A (en) * 2008-03-31 2009-10-22 Otis:Kk Horizontally draining device
CN108140909A (en) * 2015-07-06 2018-06-08 阿特罗循环私营有限责任公司 The method that metal is recycled from used Li ion cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009243178A (en) * 2008-03-31 2009-10-22 Otis:Kk Horizontally draining device
CN108140909A (en) * 2015-07-06 2018-06-08 阿特罗循环私营有限责任公司 The method that metal is recycled from used Li ion cell
JP2018528593A (en) * 2015-07-06 2018-09-27 アッテロ リサイクリング ピーヴィティ. リミテッド Method for recovering metal from used Li-ion batteries

Similar Documents

Publication Publication Date Title
US4405569A (en) Hydrometallurgical process for extracting metal values from complex ores containing arsenic and sulfur
JP4016680B2 (en) Method for dissolving selenium platinum group element-containing material
CN113355527B (en) Treatment method of high-sulfur smelting slag
CN101195478A (en) Method for removing foreign matter selenium in solid tellurium powder
US5939042A (en) Tellurium extraction from copper electrorefining slimes
JPS63129020A (en) Method for recovering cobalt carbonate in zinc refining stage
US2131045A (en) Silver recovery
US4299810A (en) Process for separating selenium and telurium from each other
EP0056715B1 (en) Chemical treatment of low-grade wolframite concentrate having high mo/w03 ratio
JPS58113331A (en) Leaching method for copper and arsenic
JPH10280059A (en) Separation of gold and silver from noble metal alloy
JPS6134495B2 (en)
JP3937273B2 (en) Method for treating slurry containing colloidal silica
RU2131474C1 (en) Method of lead recovery from lead-containing raw materials
JPS61151027A (en) Selective leaching of antimony and/or arsenic
RU2789528C1 (en) Method for processing industrial products containing precious metals obtained in the production of cathode nickel (options)
JPH10158752A (en) Method for extracting and recovering silver
JP2970095B2 (en) Manufacturing method of high-purity thallium
US1839800A (en) Process for the recovery of indium
JPS5919048B2 (en) How to separate thallium from thallium-containing substances
CN117127015A (en) Method for separating different components of nickel anode slime
JPH01230733A (en) Manufacture of high purity thallium
JPS6056031A (en) Method for recovering ge, ga and in from substance containing trace of ge, ga and in
JP2701051B2 (en) Purification method of low-purity metallic gallium
JPH07126772A (en) Production of high purity metallic selenium