JPS6297469A - Radiograph reader - Google Patents
Radiograph readerInfo
- Publication number
- JPS6297469A JPS6297469A JP60238487A JP23848785A JPS6297469A JP S6297469 A JPS6297469 A JP S6297469A JP 60238487 A JP60238487 A JP 60238487A JP 23848785 A JP23848785 A JP 23848785A JP S6297469 A JPS6297469 A JP S6297469A
- Authority
- JP
- Japan
- Prior art keywords
- light
- image
- stimulated
- irradiation
- intensifying tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Measurement Of Radiation (AREA)
- Radiography Using Non-Light Waves (AREA)
- Facsimile Scanning Arrangements (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分骨う
本発明は輝尽性螢光体層を有する放射線画像変換パネル
(以後変換パネルと略称する)を用いる放射線画像情報
の読取に関し、詳しくは前記放射線画像情報の読取に係
る輝尽発光の集光・伝達及び光電変換に関する。DETAILED DESCRIPTION OF THE INVENTION (Industrial Application) The present invention relates to reading radiation image information using a radiation image conversion panel (hereinafter abbreviated as conversion panel) having a photostimulable phosphor layer. The present invention relates to the collection and transmission of stimulated luminescence and photoelectric conversion related to reading of the radiation image information.
(発明の背景)
X線画像のような放射線画像は病気診断用などに多く用
いられる。このX線画像を得るために、被写体を透過し
たX線を螢光体層(螢光スクリーン)に照射し、これに
より可視光を生じさせてこの可視光を通常の写真をとる
ときと同じように銀塩を使用したフィルムに照射して現
像した、いわゆる放射線写真が利用されている。しかし
、近年銀塩を塗布したフィルムを使用しないで螢光体層
から直接画像を取り出す方法が工夫されるようになった
。(Background of the Invention) Radiographic images such as X-ray images are often used for disease diagnosis. In order to obtain this X-ray image, the X-rays that have passed through the subject are irradiated onto a phosphor layer (fluorescent screen), which generates visible light. So-called radiography is used in which a film using silver salt is irradiated and developed. However, in recent years, methods have been devised to directly extract images from the phosphor layer without using a film coated with silver salt.
この方法としては被写体を透過した放射線を螢光体に吸
収せしめ、しかる後この螢光体を例えば光又は熱エネル
ギーで励起することによりこの螢光体が上記吸収により
蓄積している放射線エネルギーを螢光として放射せしめ
、この螢光を検出して画像化する方法がある。具体的に
は、例えば米国特許3,859,527号及び特開昭5
5−12144号には輝尽性螢光体を用い可視光線又は
赤外線を輝尽励起光とした放射線画像変換方法が示され
ている。この方法は支持体上に輝尽性@光体層を形成し
た変換パネルを使用するもので、この変換パネルの輝尽
性螢光体層に被写体を透過した放射線を当てて被写体各
部の放射線透過度に対応する放射線エネルギーを蓄積さ
せて潜像を形成し、しかる後にこの輝尽性螢光体層を輝
尽励起光で走査することによって各部の蓄積された放射
線エネルギーを放射させてこれを光に変換し、この光の
強弱による光信号により画像を得るものである。This method involves making a phosphor absorb the radiation that has passed through the object, and then exciting the phosphor with, for example, light or thermal energy, so that the phosphor releases the radiation energy accumulated through the absorption. There is a method of emitting it as light, detecting this fluorescent light, and creating an image. Specifically, for example, U.S. Pat.
No. 5-12144 discloses a radiation image conversion method using a photostimulable phosphor and using visible light or infrared rays as photostimulation excitation light. This method uses a conversion panel in which a photostimulable phosphor layer is formed on a support, and the radiation transmitted through the object is applied to the photostimulable phosphor layer of this conversion panel, so that the radiation transmits through each part of the object. A latent image is formed by accumulating radiation energy corresponding to each part, and then by scanning this photostimulable phosphor layer with photostimulation excitation light, the accumulated radiation energy of each part is emitted and the image is illuminated. An image is obtained from an optical signal based on the intensity of this light.
この最終的な画像はハードコピーとして再生しても良い
し、CRT上に再生してもよい。This final image may be reproduced as a hard copy or on a CRT.
前記した方法においては、放射線画像を潜像として蓄積
している変換パネルを輝尽励起用のスポット光で主走査
し、発生する輝尽発光を光電変換し放射線画像情報の読
取りを行っている。In the method described above, a conversion panel that stores radiation images as latent images is main-scanned with a spot light for photostimulation excitation, and the generated stimulated luminescence is photoelectrically converted to read radiation image information.
このスポット光による主走査には、甚だ時間ヲ要する。Main scanning using this spot light requires a considerable amount of time.
例えば変換パネルの読取り面積を400朋×360朋、
画素の大きさを200μm+×20011mとすると3
.6 X l O’個の画素数となり、1画素当り2.
O1lSec間輝尽励起スポット光を照射するとすると
主走査だけで72秒を要する。これは待つ時間の忍容度
としても問題になることである。For example, if the reading area of the conversion panel is 400 x 360,
If the pixel size is 200μm+×20011m, then 3
.. The number of pixels is 6 X l O', and each pixel is 2.
Assuming that the stimulated excitation spot light is irradiated for 011Sec, it will take 72 seconds just for the main scan. This is also a problem in terms of tolerance for waiting time.
スポット光走査のシステムに於て時間短縮を図るとする
ならば、1画素当りの照射時間の短縮以外にはない。し
かし照射時間を短縮すれば輝尽発光量が減少し感度が低
下し良質な読取り画像をうることかできない。The only way to shorten the time in a spot light scanning system is to shorten the irradiation time per pixel. However, if the irradiation time is shortened, the amount of stimulated luminescence decreases and the sensitivity decreases, making it impossible to obtain high-quality read images.
更に輝尽性螢光体の輝尽励起光に対する応答特性、光電
変換器、増幅器等の周波数応答特性の影響を受は易くな
り画像の鮮鋭性が劣化する。Furthermore, the response characteristics of the stimulable phosphor to the stimulable excitation light and the frequency response characteristics of the photoelectric converter, amplifier, etc. become more susceptible to the influence, and the sharpness of the image deteriorates.
これに対し、本出願人は既に特願昭60−151521
号において前述のような変換パネルを用いた放射線画像
読取装置における従来の欠点を改良した新規な放射線画
像変換方法及び装置を提案している。On the other hand, the applicant has already applied for patent application No. 60-151521.
In this issue, a novel radiation image conversion method and device are proposed that improve the conventional drawbacks of radiation image reading devices using conversion panels as described above.
これによれば変換パネルに輝尽励起光を線状に照射し、
発生する輝尽発光をイメージセンサを用いて光電変換し
ているため、画像の鮮鋭性を低下させることなく、高速
に放射線画像の読取りが可能である。According to this, the conversion panel is irradiated with photostimulated excitation light in a linear manner,
Since the generated stimulated luminescence is photoelectrically converted using an image sensor, it is possible to read the radiation image at high speed without reducing the sharpness of the image.
しかしながら、前記放射線画像読取方法及び該装置に於
て、読取り速度の高速化と放射線に対する感度の高感度
化への要求は更に厳しくなって来ている。However, in the radiation image reading method and apparatus, demands for higher reading speed and higher sensitivity to radiation are becoming more severe.
(発明の目的)
本発明は変換パネルを用いた前記提案の放射線iu++
像読取方法及び該装置に関連しこれをさらに改良するも
のであり、本発明の目的は読取速度の速い放射線画像読
取装置(以後読取装置と略称する)を提供することにあ
る。(Object of the Invention) The present invention provides the above-mentioned proposed radiation iu++ using a conversion panel.
The present invention relates to an image reading method and an apparatus for further improving the same, and an object of the present invention is to provide a radiation image reading apparatus (hereinafter abbreviated as a reading apparatus) having a high reading speed.
本発明の他の目的は放射線に対する感度の良い読取装置
を提供することにある。Another object of the present invention is to provide a reading device that is sensitive to radiation.
更に本発明の他の目的は鮮鋭性のよい放射線画像を与え
る読取装置を提供することにある。Still another object of the present invention is to provide a reading device that provides a radiographic image with good sharpness.
(発明の構成〕
前記本発明の目的は、輝尽性螢光体層を有する放射線画
像変換パネルに少なくとも輝尽励起光を線状に照射する
手段と、前記輝尽励起光の照射により発生する輝尽発光
を集光・伝達する手段と、該集光・伝達した輝尽発光を
光電変換する手段とを有する放射線画像読取装置に於て
、前記集光・伝達手段と前記光電変換手段との間に像増
強管を設けたことを特徴とする放射線画像読取装置によ
って達成される。(Structure of the Invention) The object of the present invention is to provide means for linearly irradiating at least photostimulable excitation light to a radiation image conversion panel having a photostimulable phosphor layer, and a means for linearly irradiating at least photostimulable excitation light to a radiation image conversion panel having a photostimulable phosphor layer; In a radiation image reading device having a means for condensing and transmitting stimulated luminescence and a means for photoelectrically converting the condensed and transmitted stimulated luminescence, a combination of the condensing and transmitting means and the photoelectric conversion means is provided. This is achieved by a radiation image reading device characterized by having an image intensifier tube provided between them.
尚本発明に於ては、輝尽発光の集光・伝達手段に集光・
導光部材を用いることが好ましく、更に前記集光・導光
部材が光ファイバ束を有していることが好ましい。In addition, in the present invention, the light collecting and transmitting means for stimulated luminescence is
It is preferable to use a light guiding member, and it is further preferable that the light condensing/light guiding member has an optical fiber bundle.
次に本発明の詳細な説明する。Next, the present invention will be explained in detail.
本発明は従来性われていた輝尽励起に於る画素m位照射
即ちスポット照射の0次元的照射単位を線状照射の一次
元的照射単位即ち画素列単位照射に改め且つ像増強管を
活用導入した所にある。The present invention changes the conventional zero-dimensional irradiation unit of m-pixel irradiation in stimulated excitation, that is, spot irradiation, to a one-dimensional irradiation unit of linear irradiation, that is, pixel row unit irradiation, and utilizes an image intensifier tube. It is located where it was introduced.
必然的に輝尽発光の集光及び光電変換器への伝達も一次
元的集光及び伝達単位となる。Naturally, the collection of stimulated luminescence and transmission to the photoelectric converter also becomes a one-dimensional collection and transmission unit.
本発明に於て変換パネルを線状に照射する方法としては
、例えば
= 6−
(1)線状スリットを有するマスクで変換パネルを蔽い
輝尽励起光で照射するマスク法、
(2)線状の螢光対、]、KD了レイでし射する線状光
源法、
(3)シリンドリカルレンズで線状に収斂照射する線状
収斂光法、
(4)光ファイバを一次元に密に並べた照射端面あるい
は導光性シート材料を用いた照射端面を作り、他端から
輝尽励起光を導入する励起光線状配列法
等が挙げられる。In the present invention, methods for linearly irradiating the conversion panel include, for example, = 6- (1) mask method in which the conversion panel is covered with a mask having linear slits and irradiated with stimulated excitation light, (2) line (3) Linear convergent light method where a cylindrical lens emits convergent light in a line, (4) Optical fibers are closely arranged in one dimension. Examples include an excitation light ray arrangement method in which an irradiation end face is made using a light-guiding sheet material, and stimulated excitation light is introduced from the other end.
細状照射の場合輝尽励起光の変換ノサネル面での幅は画
像に要求される鮮鋭度によって異るが、l1以下、好ま
しくは30〜500μmである。In the case of narrow irradiation, the width of the stimulated excitation light on the conversion nosanel plane varies depending on the sharpness required for the image, but is less than 11, preferably 30 to 500 μm.
前記(4)の輝尽励起光の線状配列法に於て照射導光部
材を用いる場合には照射部の幅、開口数(NA)及び変
換パネルとの間隔を考えて上記輝尽励起光幅となるよう
に調節する。When using an irradiation light guide member in the linear arrangement method of the stimulated excitation light in (4) above, the width of the irradiation part, the numerical aperture (NA), and the distance from the conversion panel are taken into consideration when the stimulated excitation light is Adjust to match the width.
輝尽励起を線状照射によって行えば、輝尽発光も線状に
発光することくなり、従って線状のま\に集光し光電変
換器に伝達することが必要となる。If stimulated excitation is performed by linear irradiation, stimulated luminescence will also emit light in a linear manner, and therefore it is necessary to collect the light in a linear form and transmit it to the photoelectric converter.
また、前記輝尽発光は線状に同時に発光するので、個々
の発光点(画素〕における輝尽発光強度を個別に、しか
も同時に検出する必要性から前記光電変換器は撮像素子
(例えばOCD、撮像管等)であることが要求される。In addition, since the stimulated luminescence is emitted simultaneously in a linear manner, it is necessary to detect the stimulated luminescence intensity at each luminescent point (pixel) individually and simultaneously, so the photoelectric converter is connected to an imaging device (such as an OCD, an imaging device, etc.). pipe, etc.).
さらに前記輝尽発光は微弱光であることと、前記光電変
換器である撮像素子は一般に低感度であることから、輝
尽発光は撮像素子で光電変換される前に像増強管で光信
号のま\増幅されることが必要となる。Furthermore, since the stimulated luminescence is weak light and the image sensor, which is the photoelectric converter, generally has low sensitivity, the stimulated luminescence is converted into an optical signal by an image intensifier tube before being photoelectrically converted by the image sensor. Well, it needs to be amplified.
輝尽発光を線状に集光し、像増強管で増幅した後光電変
換器に受光させる方法としては、例えば(1)ライン型
光電変換器(例えばC0D)を適用して線状の輝尽発光
を光学レンズを用いて集光・伝達し総括的に一次元像と
して受光する一次元像受光方式がある。更に
(2)光ファイバを一次元に密に並べ一次元光ファイバ
束とした集光端面を作り、他端を伝達端面として像増強
管の受光面に臨接させて増幅した後光電変換する点列受
光方式があり、更に細別すれば、
(2) −a、 前記伝達!116而も同様に元ファ
イバを一次元に密に並ベライン型光電変換器(例えばC
aD)に受光させる一次元受光法、
(2) −b、 前記伝達端面の光ファイバを二次元
面に整えた元ファイバ束とし二次元型光電変換器〔例え
ばOO’D、撮像管等〕に受光させる二次元受光法
等が挙げられる。For example, (1) a line-type photoelectric converter (for example, C0D) is used to collect the stimulated luminescence into a line, amplify it with an image intensifier tube, and then receive the light into a photoelectric converter. There is a one-dimensional image reception method that condenses and transmits the emitted light using an optical lens and receives the light as a comprehensive one-dimensional image. Furthermore, (2) the optical fibers are closely arranged one-dimensionally to form a one-dimensional optical fiber bundle with a condensing end face, and the other end is used as a transmission end face and brought into contact with the light-receiving surface of the image intensifier tube for amplification and then photoelectric conversion. There is a column light reception method, which can be further subdivided into (2) -a, the above transmission! 116, the original fiber is also one-dimensionally closely aligned with a vertical photoelectric converter (for example, C
aD) A one-dimensional light reception method in which light is received by a two-dimensional photoelectric converter (e.g. OO'D, image pickup tube, etc.) using the optical fiber at the transmission end surface as an original fiber bundle arranged in a two-dimensional plane. Examples include a two-dimensional light reception method in which light is received.
前記光ファイバ束を用いる前記(2)の点列受光方式の
場合、画像の鮮鋭性は元ファイバ束の幅、光フアイバ素
線の径、開口数(NA)及び集光端面と変換パネル面と
の間隔等によって定まる。In the case of the dot array light reception method (2) using the optical fiber bundle, the sharpness of the image depends on the width of the original fiber bundle, the diameter of the optical fiber, the numerical aperture (NA), and the difference between the condensing end face and the conversion panel surface. It is determined by the interval etc.
本発明に係る放射線画像読取方法は前記した輝尽励起光
を線状に照射する方法と線状の輝尽発光を集光・伝達し
増幅した後光電変換器に受光させる方法の組合せから成
る。従って本発明の読取装置は前記方法の組合せに基い
て構成される。但シ照射導光部材、集光導光部材の態様
は前記の態様に限定されるものではない。The radiation image reading method according to the present invention comprises a combination of the method of linearly irradiating the stimulated excitation light described above and the method of collecting, transmitting and amplifying the linear stimulated luminescence and then receiving the light into a photoelectric converter. The reading device of the invention is therefore constructed based on a combination of the above methods. However, the embodiments of the irradiation light guide member and the light collecting light guide member are not limited to the above embodiments.
更に本発明を構成する照射導光部材及び集光導光部材の
夫々の数には制限はないが、l対lの組合せ、1個の照
射導光部材の両側に2個の集合導光部材を添えて配列し
た1対2の組合せ或は逆に2対1の組合せが実用的であ
る。Further, although there is no limit to the number of irradiation light guide members and light collecting light guide members that constitute the present invention, it is possible to use a 1:1 combination, with two collective light guide members on both sides of one irradiation light guide member. A 1:2 combination or conversely a 2:1 combination arranged side by side is practical.
本発明に係る光ファイバは光通信等に用いられるステッ
プインデックス型、グレーデッドインデックス型等のい
ずれのタイプの元ファイバも使用可能である。集光導光
部材に用いる光ファイバは輝尽発光が完全拡散光に近い
ので受光立体角は大きいことが好ましいが、受光立体角
が大きいほど画像の鮮鋭性は劣化する。The optical fiber according to the present invention can be any type of original fiber used in optical communications, such as a step index type or a graded index type. Since stimulated luminescence of the optical fiber used in the light condensing light guide member is close to completely diffused light, it is preferable that the solid angle of reception is large, but the larger the solid angle of reception, the worse the sharpness of the image becomes.
一般に光ファイバの受光立体角は開口数によって与えら
れ、開口数(NA、l及び受光立体角(θ)は、元ファ
イバを構成する芯材及び鞘材の屈折率が夫々n1及びn
2のとき、次式で与えられる。In general, the acceptance solid angle of an optical fiber is given by the numerical aperture.
2, it is given by the following equation.
NA二fσ=丁
θ= 23in ’(N A ) = 23in ’
(n)従って本発明に係る集光導光部材の光ファイバー
1〇 −
の材質、構成は前記鮮鋭性を満足させるように選ぶこと
が好ましい。NA2fσ=Dingθ=23in'(NA)=23in'
(n) Therefore, it is preferable that the material and structure of the optical fiber 10- of the light collecting and guiding member according to the present invention are selected so as to satisfy the above-mentioned sharpness.
また集光導光部材に用いる光ファイバは開口数が同じ場
合には芯材の外径φ1と鞘材の外径φ2との比(φ1/
φ2)が大きいほど集光効率は向上するがN像の鮮鋭性
は劣化する傾向にある。φ1/φ2はφ1/φ2≧0.
5であれば集光効率の而からは実用」二問題はない。In addition, when the numerical aperture of the optical fiber used for the light condensing light guiding member is the same, the ratio of the outer diameter φ1 of the core material and the outer diameter φ2 of the sheath material (φ1/
As φ2) becomes larger, the light collection efficiency improves, but the sharpness of the N image tends to deteriorate. φ1/φ2 is φ1/φ2≧0.
If it is 5, there is no practical problem in terms of light collection efficiency.
尚集光導光部材に用いる光ファイバの直径φ2(鞘材の
外径に等しい。)も大きいほど集光効率は向上するが画
像の鮮鋭性は劣化する。一般には0.05〜2朋、好ま
しくは0.05〜1間の範囲から選ばれる。Incidentally, the larger the diameter φ2 (equal to the outer diameter of the sheath material) of the optical fiber used in the light collecting light guide member, the more the light collecting efficiency improves, but the sharpness of the image deteriorates. It is generally selected from the range between 0.05 and 2, preferably between 0.05 and 1.
前記開口数の大きい光ファイバを与える素材とシテ導光
性プラスチックがあり、ポリアクリル樹脂、ポリスチレ
ン樹脂、軟質塩化ビニル樹脂、塩化ビニリデン樹脂、透
明ポリ了ミド樹脂、ポリカーボネート樹脂、ポリエステ
ル樹脂、エポキシ樹脂、弗素樹脂、ポリエチレン樹脂等
が挙げられ、nl及びη2に基づいて芯材及び鞘材の樹
脂とじて組合され使用される。There are materials that provide optical fibers with a large numerical aperture and light-guiding plastics, such as polyacrylic resin, polystyrene resin, soft vinyl chloride resin, vinylidene chloride resin, transparent polyamide resin, polycarbonate resin, polyester resin, epoxy resin, Examples include fluororesin and polyethylene resin, which are used in combination as core and sheath resins based on nl and η2.
またプラスチック光ファイバは安価であり且つ加工が容
易である利点を有す。Plastic optical fibers also have the advantage of being inexpensive and easy to process.
前記プラスチック光フアイバ以外に開ロ数ノ大きな光フ
ァイバとしては、前記導光性プラスチックに石英ガラス
とから成る複合光ファイバ、多成分石英ガラスから成る
多成分石英光ファイバ等がある。In addition to the plastic optical fibers, examples of optical fibers with large aperture numbers include composite optical fibers made of the light-guiding plastic and quartz glass, and multicomponent quartz optical fibers made of multicomponent quartz glass.
本発明に係る輝尽励起用光源としては、LHiD。LHiD is used as the light source for photostimulation excitation according to the present invention.
ハロゲンランプ、タングステンランプ、螢光灯、ナトリ
ウムランプ、キセノンランプ、マイク7波を用いる無電
極放電ランプ或はレーザ等が挙げられる。レーザとして
は、He −Nθレーザ、He −Odレーザ、Arイ
オンレーザ、Krイオンレーザ、N2レーザ、YAGレ
ーザ及びその第2高調波、ルビーレーザ、半導体レーザ
、各種の色素レーザ、銅蒸気レーザ等の金属蒸気レーザ
等がある。Examples include a halogen lamp, a tungsten lamp, a fluorescent lamp, a sodium lamp, a xenon lamp, an electrodeless discharge lamp using a seven-wave microphone, or a laser. Examples of lasers include He-Nθ laser, He-Od laser, Ar ion laser, Kr ion laser, N2 laser, YAG laser and its second harmonic, ruby laser, semiconductor laser, various dye lasers, copper vapor laser, etc. There are metal vapor lasers, etc.
光源光に輝尽発光スペクトルと重なる部分が含まれてい
る場合には該スペクトル部分をカットするフィルターを
用いることが好ましい。更に光電変換器には輝尽発光を
通し輝尽励起光をカットするフィルタを併用することが
好ましい。When the light source light includes a portion that overlaps with the stimulated emission spectrum, it is preferable to use a filter that cuts off this spectral portion. Furthermore, it is preferable to use a filter that passes stimulated luminescence and cuts stimulated excitation light in the photoelectric converter.
本発明に係る変換パネルの輝尽性螢光体としては特願昭
59−266912号等に例示されている多数の輝尽螢
光体を用いることができる。As the photostimulable phosphor of the conversion panel according to the present invention, many photostimulable phosphors such as those exemplified in Japanese Patent Application No. 59-266912 can be used.
しかし、前述の螢光体に限られるものではなく、放射線
を照射した後輝尽励起光を照射した場合に輝尽発光を示
す螢光体であればいかなる螢光体であってもよい。However, the phosphor is not limited to the above-mentioned phosphors, and may be any phosphor that exhibits stimulated luminescence when irradiated with radiation and then irradiated with stimulated excitation light.
次に図を用いて本発明を具体的に説明する。Next, the present invention will be specifically explained using figures.
第1図は輝尽励起光照射にLll:Dアレイ(線状光源
法)を用い、輝尽発光の集光・伝達手段に光学レンズ、
光電変換手段にライン型00Dを用いた一次元像受光方
式の本発明の読取装置態様例を示す。同図(a)は斜視
図、同図(b)は線状照射する輝尽励起光と変換パネル
表面との交線A −A’と集光方向とを含む平面で切っ
た断面図である。Figure 1 shows that an Lll:D array (linear light source method) is used for irradiation with stimulated excitation light, and an optical lens is used as a means for focusing and transmitting stimulated luminescence.
An example of an embodiment of a reading device of the present invention of a one-dimensional image reception type using a line type 00D as a photoelectric conversion means is shown. Figure (a) is a perspective view, and figure (b) is a cross-sectional view taken along a plane that includes the intersection line A-A' between the linearly irradiated stimulated excitation light and the conversion panel surface and the light collection direction. .
第1図に於て101は光電変換を行うライン型00D、
102は後述する像増強管であって入力面102bで捕
えた輝尽発光は少くとも数千倍に増強して出力面102
aから前記ライン型C0D101に伝達され、光電変換
される。In Fig. 1, 101 is a line type 00D that performs photoelectric conversion;
Reference numeral 102 is an image intensifier tube to be described later, in which the stimulated luminescence captured by the input surface 102b is intensified at least several thousand times and sent to the output surface 102.
a to the line type C0D 101, where it is photoelectrically converted.
103は線状LED了レイであって変換パネル104を
図に於けるA −A’位置を線状に照射する。Reference numeral 103 is a linear LED light beam that linearly illuminates the conversion panel 104 at the A-A' position in the figure.
尚変換パネル104はY方向へ一定速度で移動し副走査
される。Note that the conversion panel 104 moves at a constant speed in the Y direction and is sub-scanned.
A −A’位置での輝尽発光107は光学レンズ・ 1
05で収斂されフィルタ106を経て像増強管102に
入り、増強された光電子108となりライン型00D’
LOlに一次元像を投影する。The stimulated luminescence 107 at the A-A' position is caused by optical lens 1.
05, passes through a filter 106, enters the image intensifier tube 102, becomes an intensified photoelectron 108, and becomes a line type 00D'
Project a one-dimensional image onto LO1.
この際ライン型C0D101と出力面102aとの間に
レンズを設けて101の画像検出部に出力面102aに
出力された画像を結像させてもよいし、101と102
aとを密着させてもよい。At this time, a lens may be provided between the line type C0D 101 and the output surface 102a, and the image output to the output surface 102a may be formed on the image detection section 101, or
A may be brought into close contact with a.
また、出力面102aを構成する出力螢光面の窓材に元
ファイバを多数束ねたファイバプレートを使用すると窓
材の厚みに起因する出力画像のボケが防止でき、得られ
る画像の鮮鋭性が向上する。In addition, if a fiber plate in which a large number of original fibers are bundled is used as the window material of the output fluorescent surface that constitutes the output surface 102a, blurring of the output image due to the thickness of the window material can be prevented, and the sharpness of the obtained image will be improved. do.
次に本発明の他の態様例を第2図に示す。即ち前記励起
光線状配列法と点列受光方式の二次元受光法との組合せ
による例である。この例では一次元画像が二次元に収納
されるため、情報を乱すことなく一次元画像信号として
再配列する必要がある。Next, another embodiment of the present invention is shown in FIG. That is, this is an example of a combination of the excitation beam array method and the two-dimensional light receiving method of the dot array light receiving method. In this example, since one-dimensional images are stored two-dimensionally, it is necessary to rearrange them as one-dimensional image signals without disturbing the information.
第2図(a)は該読取装置の斜視図、同図(b)は変換
パネル104面上の線状輝尽励起光の作る直線A−A“
と集光方向を含む平面による断面図である。FIG. 2(a) is a perspective view of the reading device, and FIG. 2(b) is a straight line A-A" formed by the linear stimulated excitation light on the surface of the conversion panel 104.
FIG.
第2図(a)及び(b)に於て、104は変換パネル、
206は輝尽励起光源、204は光ファイバまたは導光
性シートを用いた照射導光部材、204bは照射端面、
203は集光導光部材、203bは集光端面、202は
像増強管、更に201は二次元型ccDである。その他
前記の読取装&と機構的には同様である。In FIGS. 2(a) and (b), 104 is a conversion panel;
206 is a stimulated excitation light source, 204 is an irradiation light guide member using an optical fiber or a light guide sheet, 204b is an irradiation end face,
203 is a condensing light guide member, 203b is a condensing end face, 202 is an image intensifier tube, and 201 is a two-dimensional CCD. The rest of the mechanism is the same as that of the above-mentioned reading device &.
図示の例は、照射導光部材と集光導光部材はl:]の組
合を有するが前記したようにその組合せに制限はない。In the illustrated example, the irradiation light guiding member and the condensing light guiding member have a combination of l:], but as described above, there is no limit to the combination.
該組合せ及びその照射端面204b、集光端面203b
付近の形態を第3図(a)、(b)及び(c)に示した
。同図(a)は照射導光部材304及び集光導光部材3
03は押え板によって平行に保たれて変換パネル]−0
4面に臨接しており、同図(b)の例では両者は輝尽励
起光の照射及び輝尽発光の集光に好都合な傾きをもって
相接して保持されている。また同図(Q)は輝尽励起光
照射を2途から行い励起効果を上げ輝尽発光を1途へ集
める例である。This combination, its irradiation end face 204b, and its condensing end face 203b
The morphology of the vicinity is shown in FIGS. 3(a), (b), and (c). The figure (a) shows the irradiation light guide member 304 and the light condensing light guide member 3.
03 is kept parallel by the holding plate and converts the panel ]-0
In the example shown in FIG. 3(b), they are held adjacent to each other at an angle suitable for irradiation of stimulated excitation light and condensation of stimulated luminescence. Further, (Q) in the same figure is an example in which irradiation with stimulated excitation light is performed from two directions to increase the excitation effect and concentrate stimulated luminescence to one direction.
また第4図に照射または集光に用いる光ファイバ束から
なる導光部材401を示す。401a及び401bは照
射導光部材に於ては夫々輝尽励起光の導入端面及び照射
端面となり、集光導光部材では夫々輝尽発光の伝達端面
及び集光端面となる。Further, FIG. 4 shows a light guiding member 401 made of an optical fiber bundle used for irradiation or focusing. In the irradiation light guide member, 401a and 401b serve as an introduction end face and an irradiation end face for stimulated excitation light, respectively, and in the condensing light guide member, they serve as a transmitting end face and a light collecting end face for stimulated luminescence, respectively.
導光部材は遮光或は損傷からの保護のためカバー或はカ
バ一層を設けてもよい。The light guiding member may be provided with a cover or a single layer of cover for blocking light or protecting it from damage.
次に集光導光部材の集光端面について説明する。Next, the light collecting end face of the light collecting light guiding member will be explained.
第2図(c)において203p、203q、203rは
集光導光部材203を構成する光フアイバ素線であり、
集光端面203b側では一次元に密に並んでいる。伝達
端面203a側では2次元に密に並んでいる。In FIG. 2(c), 203p, 203q, and 203r are optical fiber wires constituting the light collecting and guiding member 203,
On the condensing end surface 203b side, they are arranged densely in one dimension. On the transmission end surface 203a side, they are two-dimensionally arranged densely.
光フアイバ素線203 pが変換パネル104上の輝尽
発光を集光できる範囲は光ファイバ素線203pの開口
数(NA)、直径(φ2)、芯材の外径φ1と鞘材の外
形φ2との比(φl/φ、)、集光端面203bと変換
パネル104との間隔(h)によって決まり、図におい
て104pである。同様に203qに対し、104q、
203rに対し104rである。ここで104p、10
4q、104r等は放射線画像の画素に相当する。The range in which the optical fiber wire 203p can focus stimulated luminescence on the conversion panel 104 is determined by the numerical aperture (NA) and diameter (φ2) of the optical fiber wire 203p, the outer diameter φ1 of the core material and the outer diameter φ2 of the sheath material. It is determined by the ratio (φl/φ,) and the distance (h) between the condensing end surface 203b and the conversion panel 104, which is 104p in the figure. Similarly, for 203q, 104q,
It is 104r compared to 203r. Here 104p, 10
4q, 104r, etc. correspond to pixels of a radiation image.
同図からもわかるように、光フアイバ素線の開口数(N
A)、直径(φ2)、変換パネルとの間隔(h)等を適
当に選ぶことによって画素サイズが決定される。As can be seen from the figure, the numerical aperture (N
A), the diameter (φ2), the distance from the conversion panel (h), etc. are appropriately selected to determine the pixel size.
画素サイズは一般に50〜400μmとなるようにする
。また各画素104 p 、 l O4q 、 104
rはそれぞれ独立していることが好ましく、重複してい
ると画像の鮮鋭性が劣化する。The pixel size is generally 50 to 400 μm. Also, each pixel 104p, lO4q, 104
It is preferable that r be independent, and if they overlap, the sharpness of the image will deteriorate.
第2図(c)において例えば、104pからの輝尽発光
は光フアイバ素線203pに入り伝達端面203aに伝
達される。203aから出射した輝尽発光は像増強管で
増幅され撮像素子によって電気信号に変−喚される。該
電気信号は変換パネルの各画素の配列順に再構成される
。In FIG. 2(c), for example, stimulated luminescence from 104p enters optical fiber strand 203p and is transmitted to transmission end surface 203a. Stimulated luminescence emitted from 203a is amplified by an image intensifier tube and converted into an electrical signal by an image sensor. The electrical signals are reconstructed in the order of arrangement of each pixel of the conversion panel.
次に像増強管について説明する。Next, the image intensifier tube will be explained.
第5図(a)は像増強管の1例の断面図である。FIG. 5(a) is a sectional view of an example of an image intensifier tube.
501は像増強管、502は光の入射窓、503は入射
した光を電子に変換する光電面である。501 is an image intensifier tube, 502 is a light entrance window, and 503 is a photocathode that converts incident light into electrons.
504は発生した電子の飛翔方向、例えば発散或は収斂
を制御する電子レンズである。505は電子レンズで制
御された電子を増倍するマイクロチャンネルブレー)(
MOPと標記する〕である。Reference numeral 504 denotes an electron lens that controls the flight direction of the generated electrons, for example, divergence or convergence. 505 is a microchannel brake that multiplies electrons controlled by an electron lens) (
(denoted as MOP).
増倍された電子は螢光面506に入射し再び光に変換さ
れる。尚光電面503から螢光面jQ6は真空管となっ
ている。The multiplied electrons enter the fluorescent surface 506 and are converted into light again. Incidentally, the portion from the photocathode 503 to the fluorescent surface jQ6 is a vacuum tube.
また入射窓502に平面ガラス或は光フアイバプレート
を用い図形低歪タイプとすることもできるし、更に螢光
面506の窓材に元ファイバを用いれば他のイメージ素
子との結合が効率的となる。In addition, the entrance window 502 can be made of flat glass or an optical fiber plate to provide a low-distortion type, and furthermore, if an original fiber is used as the window material for the fluorescent surface 506, coupling with other image elements can be made more efficient. Become.
第5図(b)は像増倍管の作動原理を示す。FIG. 5(b) shows the operating principle of an image intensifier.
レンズL、を通して光電面503上に像を結ばせると像
の明るさに応じて光電子eが飛出し、この光電子像は電
子レンズ504によって拡大され或は縮小されてMOP
5Q5の入方向に結像され、MOPのチャンネル内をチ
ャンネル壁に衝突しながら少くとも数千倍に増強され且
つ加速されながら通過し螢光面5Q6に入射し再び光学
像となり観測される。初期像の明るさに対し最終観測像
の明さは約4万倍に増強されることが可能である。When an image is formed on the photocathode 503 through the lens L, photoelectrons e fly out depending on the brightness of the image, and this photoelectron image is enlarged or reduced by the electron lens 504 and then converted to the MOP.
It is imaged in the entrance direction of 5Q5, passes through the channel of the MOP while being intensified and accelerated at least several thousand times while colliding with the channel wall, enters the fluorescent surface 5Q6, and is observed again as an optical image. The brightness of the final observed image can be increased approximately 40,000 times compared to the brightness of the initial image.
第6図(a)に前記MOPの拡大図、同図(b)に一本
のチャンネルを取出して増強機構を示した。FIG. 6(a) is an enlarged view of the MOP, and FIG. 6(b) shows the enhancement mechanism with one channel taken out.
例示したMOPは直径25朋、厚さ0.48 mmの外
見上は薄いガラス板であるが12μmφの細い穴を15
0万個程度有するハネ−構造をしており、チャンネル内
に光電子θが入射すると電位勾配によって光電子eは内
壁に衝突を開始し、衝突によって二次電子を発生し、夫
々の電子は衝突によって夫々に二次電子を生ずるので入
力光電子に対し出力電子は少くとも数千倍に増強される
。The illustrated MOP is a thin glass plate with a diameter of 25 mm and a thickness of 0.48 mm, but it has 15 thin holes of 12 μmφ.
It has a honey structure with about 10,000 photoelectrons, and when a photoelectron θ enters the channel, the photoelectron e starts colliding with the inner wall due to the potential gradient, and the collision generates secondary electrons. Since secondary electrons are generated, the output electrons are at least several thousand times stronger than the input photoelectrons.
また150万個程度のチャンネルの1つ1つは画像の画
素の1つ1つに対応させることができるので各画素がそ
の明るさに応じて同時に増強される。Furthermore, each of the approximately 1.5 million channels can be made to correspond to each pixel of an image, so each pixel is simultaneously enhanced according to its brightness.
本発明に係る像増強管に於ては、第5図(a)の螢光面
506にCCD等のイメージ素子を臨接させる態様の外
、螢光面506を除いてその機構的位置にCOD或は半
導体装置検出素子を置いて直接に画像に変換する態様と
してもよい。In the image intensifier tube according to the present invention, in addition to the embodiment in which an image element such as a CCD is brought into contact with the fluorescent surface 506 shown in FIG. Alternatively, a mode may be adopted in which a semiconductor device detection element is placed and the image is directly converted into an image.
また本発明に於ては前記MCPを用いない像増強管を用
いてもよい。その例を第5図(c)に示した。Further, in the present invention, an image intensifier tube that does not use the MCP may be used. An example is shown in FIG. 5(c).
この例では電子レンズによる電子像の縮小と電子加速に
よって螢光像の明るさの増強を行っている。In this example, the brightness of the fluorescent image is enhanced by reducing the electron image using an electron lens and accelerating the electrons.
(発明の効果)
輝尽性螢光体を用いる放射線画像読取に於ては、感度、
粒状性及び鮮鋭性に互に相反する特性であってこれら特
性のすべてを同時に向上させることは至難のことであっ
たが、像増強管を用いることによって感度に対する制約
が大幅に除かれ、画質及び調子再現もしくは制御の面が
大きく自由化された。(Effect of the invention) In reading radiation images using a photostimulable phosphor, sensitivity,
Graininess and sharpness are mutually contradictory characteristics, and it was extremely difficult to improve all of these characteristics at the same time. However, by using an image intensifier, restrictions on sensitivity were largely removed, and image quality and sharpness were improved. The aspect of tone reproduction or control has been greatly liberalized.
また、像増強管を用いることによって放射線画像の読取
速度を大幅に向上させることが可能となった。Furthermore, by using an image intensifier tube, it has become possible to significantly improve the reading speed of radiographic images.
第1図は線状光源法−一次元像受光法の組合せの態様を
有する読取装置の1例を示す斜視図及び断面図である。
第2図は励起光線状配列法と点列受光方式の二次元受光
法の組合せの態様を有する読取装置の1例を示す斜視図
及び断面図である。
第3図は照射端面及び集光端面の配置例を示す図である
。また第4図は照射、集光に用いる元ファイバ束からな
る導光部材の例の斜視図である。
第5図は像増強管の1例の断面図及び作動原理説明図、
第6図はMOPの拡大斜視図及び増強機構説明図である
。
101・・・ライン型00D。
102.202・・・像増強管、
103・・・LEDアレイ、
104・・・変換パネル、
105・・・光学レンズ、
106・・・フィルター、
201・・・二次元型COD。
203・・・集光導光部材、
204・・・照射導光部材、
206・・・輝尽励起光源、
501・・・像増強管、
503・・・光電面、
504・・・電子レンズ、
505 ・・・ MOP。
506・・・螢光面、
601・・・チャンネル
出願人 小西六写真工業株式会社
第2図
第3図
(’a>
弘)
01b
第5図
<a>
g、3.光省徊
し
第5図
(α)
(4粂ン
(,1)/FIG. 1 is a perspective view and a sectional view showing an example of a reading device having a combination of a linear light source method and a one-dimensional image reception method. FIG. 2 is a perspective view and a sectional view showing an example of a reading device having a combination of an excitation beam array method and a two-dimensional light reception method using a dot array light reception method. FIG. 3 is a diagram showing an example of the arrangement of the irradiation end face and the condensing end face. Further, FIG. 4 is a perspective view of an example of a light guide member made of a fiber bundle used for irradiation and focusing. FIG. 5 is a cross-sectional view of an example of an image intensifier tube and a diagram explaining the operating principle;
FIG. 6 is an enlarged perspective view of the MOP and an explanatory diagram of the reinforcement mechanism. 101...Line type 00D. 102.202... Image intensifier tube, 103... LED array, 104... Conversion panel, 105... Optical lens, 106... Filter, 201... Two-dimensional COD. 203... Light collecting light guide member, 204... Irradiation light guide member, 206... Stimulating excitation light source, 501... Image intensifier tube, 503... Photocathode, 504... Electron lens, 505 ...MOP. 506... Fluorescent surface, 601... Channel applicant Konishi Roku Photo Industry Co., Ltd. Figure 2 Figure 3 ('a> Hiroshi) 01b Figure 5 <a> g, 3. Figure 5 (α) (4 粂 in(,1)/
Claims (2)
少なくとも輝尽励起光を照射する手段と、前記輝尽励起
光の照射により発生する輝尽発光を集光・伝達する手段
と、該集光・伝達した輝尽発光を光電変換する手段とを
有する放射線画像読取装置に於て前記集光・伝達手段と
前記光電変換手段との間に像増強管を設けたことを特徴
とする放射線画像読取装置。(1) means for irradiating at least photostimulable excitation light onto a radiation image conversion panel having a photostimulable phosphor layer; and means for collecting and transmitting stimulated luminescence generated by the irradiation with the photostimulable excitation light; A radiation image reading device having a means for photoelectrically converting the focused and transmitted stimulated luminescence is characterized in that an image intensifier tube is provided between the light collecting and transmitting means and the photoelectric converting means. Radiographic image reading device.
集光・導光部材であることを特徴とする特許請求の範囲
第1項記載の放射線画像読取装置。(2) The radiation image reading device according to claim 1, wherein the light collecting/transmitting means is a light collecting/light guiding member having an optical fiber bundle.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60238487A JPS6297469A (en) | 1985-10-23 | 1985-10-23 | Radiograph reader |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60238487A JPS6297469A (en) | 1985-10-23 | 1985-10-23 | Radiograph reader |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6297469A true JPS6297469A (en) | 1987-05-06 |
Family
ID=17030973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60238487A Pending JPS6297469A (en) | 1985-10-23 | 1985-10-23 | Radiograph reader |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6297469A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63304189A (en) * | 1987-04-10 | 1988-12-12 | ブリテッシュ エアロスペース パブリック リミテッド カンパニー | Camera |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS502811A (en) * | 1973-05-09 | 1975-01-13 | ||
JPS5611394A (en) * | 1979-07-11 | 1981-02-04 | Fuji Photo Film Co Ltd | Radiation image imformation writeereading device |
JPS60102078A (en) * | 1983-11-08 | 1985-06-06 | Hamamatsu Photonics Kk | Image pickup device picking up weak video image |
-
1985
- 1985-10-23 JP JP60238487A patent/JPS6297469A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS502811A (en) * | 1973-05-09 | 1975-01-13 | ||
JPS5611394A (en) * | 1979-07-11 | 1981-02-04 | Fuji Photo Film Co Ltd | Radiation image imformation writeereading device |
JPS60102078A (en) * | 1983-11-08 | 1985-06-06 | Hamamatsu Photonics Kk | Image pickup device picking up weak video image |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63304189A (en) * | 1987-04-10 | 1988-12-12 | ブリテッシュ エアロスペース パブリック リミテッド カンパニー | Camera |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5801391A (en) | Radiation image read-out apparatus | |
US5017782A (en) | X-ray detector for radiographic imaging | |
JPH0572344A (en) | Radiation detecting apparatus | |
US4814616A (en) | Radiation image recording and read-out apparatus | |
US4816690A (en) | Method and apparatus for radiation image recording and read-out including control of read-out in accordance with irradiation field definition | |
JPS6297469A (en) | Radiograph reader | |
EP0151717B1 (en) | Method and apparatus for radiation image recording and read-out | |
JP2551449B2 (en) | Radiation image information reader | |
JPH01211851A (en) | Lengthy photoelectron multiplier tube | |
US5920604A (en) | Optical arrangement and process for transmitting and converting primary X-ray images | |
JPS6216666A (en) | Image information reader | |
JPH04225342A (en) | Radiograph reader | |
JP4108915B2 (en) | Radiation image reader | |
JPH05244506A (en) | X-ray image pickup device | |
JP2952453B2 (en) | Double-sided condensing phosphor sheet reading method | |
JPH06130523A (en) | Both side light condensing and reading method for stimulable phosphor sheet | |
JPS6163152A (en) | Reader of radial ray picture information | |
JPS62276956A (en) | Picture information reader | |
JPH0412970B2 (en) | ||
JPS6294066A (en) | Image information reader | |
JPH07248554A (en) | Radiation picture reader | |
JPS60194440A (en) | X-ray image pickup device | |
JPH06130525A (en) | Radiation image conversion method | |
JPH05154139A (en) | Radiation image reader | |
JPH059898B2 (en) |