JPS6296744A - Exhaust gas reflux device for mutlicylidner engine - Google Patents

Exhaust gas reflux device for mutlicylidner engine

Info

Publication number
JPS6296744A
JPS6296744A JP60237056A JP23705685A JPS6296744A JP S6296744 A JPS6296744 A JP S6296744A JP 60237056 A JP60237056 A JP 60237056A JP 23705685 A JP23705685 A JP 23705685A JP S6296744 A JPS6296744 A JP S6296744A
Authority
JP
Japan
Prior art keywords
cylinders
exhaust gas
passage
cylinder
supercharged
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60237056A
Other languages
Japanese (ja)
Inventor
Mitsuo Hitomi
光夫 人見
Toshiki Okazaki
俊基 岡崎
Junzo Sasaki
潤三 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP60237056A priority Critical patent/JPS6296744A/en
Publication of JPS6296744A publication Critical patent/JPS6296744A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/59Systems for actuating EGR valves using positive pressure actuators; Check valves therefor
    • F02M26/60Systems for actuating EGR valves using positive pressure actuators; Check valves therefor in response to air intake pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/03EGR systems specially adapted for supercharged engines with a single mechanically or electrically driven intake charge compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/38Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with two or more EGR valves disposed in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/52Systems for actuating EGR valves
    • F02M26/55Systems for actuating EGR valves using vacuum actuators
    • F02M26/56Systems for actuating EGR valves using vacuum actuators having pressure modulation valves
    • F02M26/57Systems for actuating EGR valves using vacuum actuators having pressure modulation valves using electronic means, e.g. electromagnetic valves

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Supercharger (AREA)
  • Exhaust-Gas Circulating Devices (AREA)

Abstract

PURPOSE:To aim at improvement in engine output with a small-sized supercharger, by connecting a natural suction passage to partial cylinders and a super charging suction passage to remaining cylinders, respectively, and constituting these passages so as to make more plenty exhaust gas flow back to these partial cylinders than that to the remaining ones. CONSTITUTION:There are provided with a supercharging suction passage 3, which is extended from an outlet pipe 2A of an air cleaner 2 and interconnected to both first and fourth cylinders as branched off in the midway, and natural suction passage 4 which is extended from the outlet pipe 2A and interconnected to both second and third cylinders as branched off in the midway. Also there is provided with an exhaust gas recirculation (EGR) passage 21 which is extended from an exhaust passage 20, branched off at a branch box 21A, and interconnected to surge tanks 3A and 4A formed in the downstream of throttle valves 8a and 8b in these suction passage 3 and 4. And, at the branch box 21, each of EGR valves 24a and 24b is to be installed between outlet chamber 22a and 22b to be interconnected to these tanks 3A and 4A and an inlet chamber in common with these outlet chambers, and these valves 24a and 24b are constituted so as to make an EGR quantity to the surge tank 4A more plenty than that to the surge tank 3A.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、多気筒エンジンの排気ガス還流装置に関し、
特に一部の気筒にのみ過給するようにした過給機付多気
筒エンジンの排気ガス還流装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an exhaust gas recirculation device for a multi-cylinder engine.
In particular, the present invention relates to an exhaust gas recirculation system for a supercharged multi-cylinder engine that supercharges only some cylinders.

(従来技術) 従来、エンジンの高出力化のため、ターボチャージャや
機械式スーパーチャージャで過給するようにしたものは
一般に広く実用化されている。
(Prior Art) Conventionally, in order to increase the output of an engine, engines that are supercharged using a turbocharger or a mechanical supercharger have generally been widely put into practical use.

上記ターボチャージャや機械式過給機などの過給機を備
えた多気筒エンジンでは、一般に吸気マニホールドの上
流側に過給機を介設し、全部の気筒に対して過給するよ
うになっていた。
In multi-cylinder engines equipped with a supercharger such as the turbocharger or mechanical supercharger mentioned above, the supercharger is generally installed upstream of the intake manifold to supercharge all cylinders. Ta.

ところで、過給機付エンジンでは、ノッキング防止のた
め圧縮比を下げる必要があることから、特に低負荷時に
はエンジンの出力性能が低下し、燃焼消費率が悪化する
という問題がある。
By the way, in a supercharged engine, since it is necessary to lower the compression ratio to prevent knocking, there is a problem that the output performance of the engine decreases and the combustion consumption rate worsens, especially at low load.

そこで、低負荷時には過給せずに中乃至高負荷時にのみ
過給することが出来るように、例えば特開昭59−20
0014号公報には、主吸気通路の他に補助吸気通路を
設け、補助吸気通路に過給機を介設し、補助吸気通路に
吸気行程の終期乃至圧縮行程の初期に開弁されるタイミ
ングパルプを設け、また排気通路から補助吸気通路へ排
気ガスを還流するEGR通路を設け、低負荷時には主吸
気通路から自然吸気により吸気を供給する一方、中乃至
高負荷時には補助吸気通路へ排気ガスを還流しながら過
給機を駆動させて補助吸気通路からも過給吸気を吸入行
程の終期乃至圧縮行程の初期に供給するようにしたエン
ジンの吸気装置が記載されている。
Therefore, in order to be able to supercharge only at medium to high loads without supercharging at low loads, for example, Japanese Patent Laid-Open No. 59-20
Publication No. 0014 discloses that an auxiliary intake passage is provided in addition to the main intake passage, a supercharger is interposed in the auxiliary intake passage, and a timing pulp valve that is opened at the end of the intake stroke or the beginning of the compression stroke is installed in the auxiliary intake passage. In addition, an EGR passage is provided to recirculate exhaust gas from the exhaust passage to the auxiliary intake passage.At low loads, intake air is supplied by natural intake from the main intake passage, while at medium to high loads, exhaust gas is recirculated to the auxiliary intake passage. However, an intake system for an engine is described in which a supercharger is driven to supply supercharged intake air from an auxiliary intake passage from the end of the intake stroke to the beginning of the compression stroke.

更に、従来よりエンジンの排気ガス中のNO。Furthermore, NO in engine exhaust gas has been conventionally used.

の低減を図るため、軽乃至中負荷時に吸気通路内へ排気
ガスの一部を還流して気筒内での燃焼温度を低下させる
ようにした多気筒エンジンの排気ガス還流装置も広く実
用化されている。
Exhaust gas recirculation systems for multi-cylinder engines have been widely put into practical use in order to reduce the combustion temperature in the cylinders by recirculating part of the exhaust gas into the intake passage during light to medium loads. There is.

(発明が解決しようとする問題点) 一般に、過給機付多気筒エンジンでは、次のような問題
がある。
(Problems to be Solved by the Invention) Generally, supercharged multi-cylinder engines have the following problems.

上記過給機としてターボチャージャを用いる場合にもま
た機械式過給機を用いる場合にも、ノッキング防止のた
めに圧縮比を低下させる関係上燃焼消費率が悪化する。
Both when a turbocharger is used as the supercharger and when a mechanical supercharger is used, the combustion consumption rate deteriorates because the compression ratio is lowered to prevent knocking.

一方、ターボチャージャを設ける場合には、低速時にお
ける加速時にタービンのイナーシャのためにタイムラグ
が生じ加速と同時に十分な過給が出来ず、低い一圧縮比
故に自然吸気の場合よりも出力性能に劣り、加速応答性
に欠けることになる。
On the other hand, when a turbocharger is installed, there is a time lag due to the inertia of the turbine when accelerating at low speeds, making it impossible to provide sufficient supercharging at the same time as acceleration, and the output performance is inferior to that of a naturally aspirated system due to the low compression ratio. , the acceleration response will be lacking.

また、高速運転時にウェストゲートから排気ガスを1気
筒分以上バイパスさせる領域では、金気筒に高い排気圧
をかけてバイパスさせるため排気損失の増大を招くこと
になる。
Furthermore, in a region where exhaust gas for one or more cylinders is bypassed from the wastegate during high-speed operation, high exhaust pressure is applied to the golden cylinder to bypass it, resulting in an increase in exhaust loss.

また、機械式過給機を設ける場合には、クラッチ機構に
より過給機を断続して中乃至高負荷時にのみ過給機を駆
動するようにしないと燃料消費率の著しい悪化を招くが
、この場合クラッチ機構接続時にトルクショックが生じ
、クラッチ機構も大型化するため自動車への搭載性の面
でも不利となるし、機械式過給機は全体的に大型で搭載
性の面で不利である。
In addition, when installing a mechanical supercharger, unless the supercharger is operated intermittently using a clutch mechanism to drive the supercharger only during medium to high loads, the fuel consumption rate will significantly deteriorate. In this case, a torque shock occurs when the clutch mechanism is connected, and the clutch mechanism also becomes large, which is disadvantageous in terms of installation in a car.Mechanical superchargers are generally large and disadvantageous in terms of installation.

従来の過給機付多気筒エンジンでは、全気筒に対して過
給するようにしていたので、前述のように過給機を設け
る場合の欠点を解消することば困難で、過給機も大型化
し、それだけ搭載性の面で不利となり、燃焼消費率も悪
化し、加速応答性の低下を来すなどの問題があった。
In conventional multi-cylinder engines with a supercharger, all cylinders were supercharged, so it was difficult to eliminate the disadvantages of installing a supercharger as mentioned above, and the supercharger also became larger. However, there were problems such as a disadvantage in terms of mountability, a worsening of the combustion consumption rate, and a decrease in acceleration response.

ところで、本願出願人は先の出願において、多気筒エン
ジンにおいて一部の気筒に連通ずる自然吸気通路と、残
りの気筒に連通する過給吸気通路とを夫々独立に設け、
上記過給吸気通路に過給機を介設して、上記残りの気筒
にのみ過給吸気を供給するようにした多気筒エンジンの
吸気装置を提案した。
By the way, in a previous application, the applicant of the present application separately provided natural intake passages communicating with some cylinders and supercharging intake passages communicating with the remaining cylinders in a multi-cylinder engine,
An intake system for a multi-cylinder engine has been proposed in which a supercharger is interposed in the supercharged intake passage to supply supercharged intake air only to the remaining cylinders.

上記吸気装置を備えた多気筒エンジンにおいては、過給
気筒のノッキング防止のため過給気筒の圧縮比は自然吸
気気筒の圧縮比よりも低く設定する必要があるが、上記
多気筒エンジンに排気ガス還流装置を設ける場合に自然
吸気気筒と過給気筒とに一律に同一条件で排気ガス還流
を行うと、一般に要求排気ガス還流量は圧縮比の増大に
応じて増加することから、過給気筒については要求排気
ガス還流量よりも過剰の排気ガスが供給されて燃焼性能
が低下し、出力低下を招く一方、自然吸気気筒について
は要求排気ガス還流量よりも過少の排気ガスが供給され
NOX排出量を十分低下させることが困難になる。
In a multi-cylinder engine equipped with the above-mentioned intake system, the compression ratio of the supercharged cylinder must be set lower than that of the naturally aspirated cylinder to prevent knocking in the supercharged cylinder. When installing a recirculation device, if exhaust gas is recirculated uniformly under the same conditions to naturally aspirated cylinders and supercharged cylinders, the required exhaust gas recirculation amount will generally increase as the compression ratio increases. In the case of naturally aspirated cylinders, exhaust gas is supplied in excess of the required exhaust gas recirculation amount, resulting in a decrease in combustion performance and output, while in the case of naturally aspirated cylinders, exhaust gas is supplied in excess of the required exhaust gas recirculation amount, resulting in NOx emissions. It becomes difficult to lower the level sufficiently.

尚、前記公報に記載されたエンジンの吸気装置では、補
助吸気通路や補助吸気ポートを設けるなど、構造的に複
雑化するにも拘らず、主吸気弁と補助吸気弁との開弁う
・ノブ期間には例えば補助吸気ポートだけから吸気され
ることになるため、吸気行程の初期において主吸気ボー
トからの吸入量が余り増加せず、費用対効果の面で余り
有利なものではない。
In addition, the engine intake system described in the above publication has a complicated structure such as the provision of an auxiliary intake passage and an auxiliary intake port, but it is difficult to open the main intake valve and the auxiliary intake valve. During this period, air is taken only from the auxiliary intake port, for example, so the amount of intake from the main intake boat does not increase much at the beginning of the intake stroke, which is not very advantageous in terms of cost effectiveness.

(問題点を解決するための手段) 本発明に係る多気筒エンジンの排気ガス還流装置は、多
気筒エンジンにおいて、一部の気筒へ連通する自然吸気
通路と、残りの気筒へ連通し且つ自然吸気通路とは独立
の過給吸気通路とを設け、上記過給吸気通路に過給機を
介設し、上記自然吸気通路の連通ずる気筒と過給吸気通
路の連通ずる気筒とに排気ガスを供給する排気ガス還流
通路とを設け、上記一部の気筒の圧縮比よりも残りの気
筒の圧縮比を低く設定するとともに、上記排気ガス還流
通路は上記残りの気筒への排気ガス流量よりも上記一部
の気筒への排気ガス流量が多くなるように構成したもの
である。
(Means for Solving the Problems) The exhaust gas recirculation device for a multi-cylinder engine according to the present invention has a natural intake passage that communicates with some of the cylinders and a naturally intake passage that communicates with the remaining cylinders in the multi-cylinder engine. A supercharging intake passage independent of the passage is provided, a supercharger is interposed in the supercharging intake passage, and exhaust gas is supplied to the communicating cylinder of the natural intake passage and the communicating cylinder of the supercharging intake passage. The compression ratio of the remaining cylinders is set to be lower than the compression ratio of some of the cylinders. The exhaust gas flow rate to each cylinder is increased.

(作用) 本発明に係る多気筒エンジンの排気ガス還流装置におい
ては、以上のように、一部の気筒へは自然吸気通路を介
して自然吸気(過給しない吸気)が供給され、残りの気
筒へは過給機を有する過給吸気通路を介して過給吸気が
供給されることになる。
(Function) In the exhaust gas recirculation system for a multi-cylinder engine according to the present invention, as described above, natural intake air (intake air that is not supercharged) is supplied to some cylinders via the natural intake passage, and the remaining cylinders are supplied with natural intake air (intake air that is not supercharged). Supercharged intake air is supplied to the engine through a supercharged intake passage having a supercharger.

そして、自然吸気通路に連なる一部の気筒の圧縮比より
も過給吸気通路に連なる残りの気筒の圧縮比が低く設定
され、排気ガス還流通路により一部の気筒と残りの気筒
とに排気ガスが還流され、上記圧縮比に応じて一部の気
筒へは残りの気筒へよりも多くの排気ガスが還流される
ことになる。
Then, the compression ratio of the remaining cylinders connected to the supercharged intake passage is set lower than the compression ratio of some cylinders connected to the natural intake passage, and the exhaust gas is transferred to some cylinders and the remaining cylinders by the exhaust gas recirculation passage. According to the compression ratio, more exhaust gas is recirculated to some cylinders than to the remaining cylinders.

(発明の効果) 本発明に係る多気筒エンジンの排気ガス還流装置によれ
ば、以上説明したように、多気筒エンジンにおいて一部
の気筒へは自然吸気を供給しまた残りの気筒へは過給吸
気を供給するように構成しであるので、−比較的小型の
過給機でもってエンジン出力の向上を図ることが出来、
小型の過給機故に搭載性の面で有利となり、自然吸気を
行なう気筒については圧縮比を低下させな(ともよいの
で燃料消費率の低下を防ぐことが出来る。
(Effects of the Invention) According to the exhaust gas recirculation device for a multi-cylinder engine according to the present invention, as explained above, in a multi-cylinder engine, natural intake air is supplied to some cylinders, and supercharging is supplied to the remaining cylinders. Since it is configured to supply intake air, it is possible to improve engine output with a relatively small supercharger,
Since the supercharger is small, it is advantageous in terms of installation, and the compression ratio of naturally aspirated cylinders does not have to be lowered, so it is possible to prevent a decrease in fuel consumption.

つまり、一部の気筒にのみ過給することによって、全部
の気筒に過給する場合と全部の気筒に自然吸気する場合
との中間的な特性を発揮させ、比較的小型且つ効率・耐
久性に優れた過給機でもって、過給による特性と自然吸
気による特性とを併有させることが出来る。
In other words, by supercharging only some cylinders, it is possible to achieve intermediate characteristics between supercharging all cylinders and naturally aspirating all cylinders, resulting in a relatively small size, efficiency, and durability. With a superior supercharger, it is possible to have both the characteristics of supercharging and the characteristics of naturally aspirated air.

しかも、自然吸気気筒の圧縮比を過給気筒の圧縮比より
も高く設定し、自然吸気気筒へは過給気筒よりも多くの
排気ガスを還流させるようにしたことにより、自然吸気
気筒へも過給気筒へも適正量の排気ガスを還流させてエ
ンジンの出力低下及び燃費の悪化を防ぎながらNo、の
低減を図ることが出来る。
Moreover, by setting the compression ratio of the naturally aspirated cylinders higher than that of the supercharged cylinders, and allowing more exhaust gas to recirculate to the naturally aspirated cylinders than to the supercharged cylinders, the By recirculating an appropriate amount of exhaust gas to the feed cylinder, it is possible to reduce No. while preventing a decrease in engine output and deterioration of fuel efficiency.

(実施例) 以下、本発明の実施例を図面に基いて説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

本実施例は、本発明の多気筒エンジンの排気ガス還流装
置を、立型直列4気筒点火式エンジン已に適用した場合
のものである。
This embodiment is a case where the exhaust gas recirculation device for a multi-cylinder engine of the present invention is applied to a vertical in-line four-cylinder ignition type engine.

第1図・第2図に示すように、エアクリーナ2の出口管
2Aから延び途中で分岐して第1気筒1aと第4気筒1
dとに連通ずる過給吸気通路3と、エアクリーナ2の出
口管2Aから延び途中で分岐して第2気筒1bと第3気
筒1cとに連通ずる自然吸気通路4とが設けられ、上記
過給吸気通路3の途中部には例えばラジアル圧縮機等か
らなる機械式過給m6が介設されクランク軸19にベル
ト6aで連動連結されるとともに、上記過給機6よりも
下流側において過給吸気通路3と自然吸気通路4と連通
ずるバイパス通路3aにはリリーフバルブ7が介設され
ている。
As shown in FIGS. 1 and 2, it extends from the outlet pipe 2A of the air cleaner 2 and branches midway into the first cylinder 1a and the fourth cylinder 1.
d, and a natural intake passage 4 that extends from the outlet pipe 2A of the air cleaner 2, branches midway, and communicates with the second cylinder 1b and the third cylinder 1c. A mechanical supercharging m6 consisting of, for example, a radial compressor is interposed in the middle of the intake passage 3, and is interlocked and connected to the crankshaft 19 with a belt 6a. A relief valve 7 is interposed in a bypass passage 3a that communicates with the passage 3 and the natural intake passage 4.

上記バイパス通路3a及びリリーフバルブ7は、エンジ
ン負荷が小さいときに過給機6で加圧された吸気の一部
を過給吸気通路3から自然吸気通路4ヘバイパスさせる
ためのものであり、エンジン負荷の増加に応じて上記リ
リーフバルブ7の開度を小さくして第1及び第4気筒1
a・1dへ流れる過給吸気の流量を増加させるために、
第2吸気通路4のスロットル弁8bよりも下流側の吸気
負圧を受けてリリーフバルブ7の開度を調節するアクチ
ュエータ9が設けられている。
The bypass passage 3a and the relief valve 7 are for bypassing a part of the intake air pressurized by the supercharger 6 from the supercharged intake passage 3 to the natural intake passage 4 when the engine load is low. The opening degree of the relief valve 7 is reduced in accordance with the increase in the first and fourth cylinders 1.
In order to increase the flow rate of supercharged intake air flowing to a and 1d,
An actuator 9 is provided that adjusts the opening degree of the relief valve 7 in response to intake negative pressure downstream of the throttle valve 8b in the second intake passage 4.

上記リリーフバルブ7は自然吸気通路4の吸気負圧を受
けるアクチュエータ9により第3図に示すように制御さ
れる。
The relief valve 7 is controlled by an actuator 9 that receives negative intake pressure in the natural intake passage 4, as shown in FIG.

即ち、エンジン負荷が低負荷の所定値になるまでは、リ
リーフバルブ7が全開状態に保持され、その後エンジン
負荷の増加に応じてリリーフバルブ7の開度が減少し、
スロットル弁8a・8bの全開時にはリリーフバルブ7
が全閉するようになっている。
That is, the relief valve 7 is kept fully open until the engine load reaches a predetermined low load value, and then the opening degree of the relief valve 7 decreases as the engine load increases.
When the throttle valves 8a and 8b are fully open, the relief valve 7
is now fully closed.

従って、低負荷時には過給吸気通路3から自然吸気通路
4へ温度の高い過給吸気の一部が流れて第2及び第3気
筒lb・1cへ供給されるので、第2及び第3気筒1b
・IC内での燃焼性が向上し、過給吸気通路3内の過給
吸気の圧力・温度上昇が抑制されることになる。
Therefore, at low load, a part of the supercharged intake air with high temperature flows from the supercharged intake passage 3 to the natural intake passage 4 and is supplied to the second and third cylinders lb and 1c.
- The combustibility within the IC is improved, and the rise in pressure and temperature of the supercharged intake air in the supercharged intake passage 3 is suppressed.

尚、符号18は過給吸気通路3内の吸気の圧力が所定値
以上になったときに開弁して、過給吸気通路3から自然
吸気通路4へ吸気を逃すチェック弁である。
Reference numeral 18 is a check valve that opens when the pressure of intake air in the supercharged intake passage 3 exceeds a predetermined value, and releases intake air from the supercharged intake passage 3 to the natural intake passage 4.

更に、第2図に示すように、上記自然吸気通路4のスロ
ットル弁8bよりも下流側のサージタンク4Aと過給吸
気通路3のスロットル弁8aよりも下流側のサージタン
ク3Aとに排気ガスを還流するため、排気通路20から
延び分岐箱21Aで分岐してサージタンク、3Aとサー
ジタンク4Aとに連なる排気ガス還流通路21が設けら
れ、上記分岐箱21A内は第1分岐還流通路21aによ
りサージタンク3Aに連なる第1出口室22aと第2分
岐還流通路21bによりサージタンク4Aに連なる第2
出口室22bと排気通路20に連なる入口室23とに区
画され、第1出口室22aと入口室23間の仕切壁には
第1EGRバルブ24aがまた第2出口室22bと入口
室23間の仕切壁には第2EGRバルブ24bが介設さ
れ、第1EGRバルブ24a及び第2 EGRパルプ2
4bを夫々開閉駆軌するダイヤフラム式の第1アクチユ
エータ25aと第2アクチユエータ25bとが設けられ
、それらの負圧室が負圧導入路26でサージタンク4A
へ連通連結され、上記負圧導入路26の途中部にはその
通路面積を制御するソレノイド駆動式のコントロールバ
ルブ27が介装されている。
Furthermore, as shown in FIG. 2, exhaust gas is supplied to a surge tank 4A downstream of the throttle valve 8b of the natural intake passage 4 and a surge tank 3A downstream of the throttle valve 8a of the supercharged intake passage 3. For reflux, an exhaust gas recirculation passage 21 is provided that extends from the exhaust passage 20, branches at a branch box 21A, and connects to a surge tank 3A and a surge tank 4A. A second outlet chamber connected to the surge tank 4A is formed by a first outlet chamber 22a connected to the tank 3A and a second branch reflux passage 21b.
It is divided into an outlet chamber 22b and an inlet chamber 23 connected to the exhaust passage 20, and a first EGR valve 24a is installed on the partition wall between the first outlet chamber 22a and the inlet chamber 23. A second EGR valve 24b is interposed on the wall, and the first EGR valve 24a and the second EGR pulp 2
A diaphragm-type first actuator 25a and a second actuator 25b are provided to open and close the 4b, respectively, and their negative pressure chambers are connected to the surge tank 4A through the negative pressure introduction path 26.
A solenoid-driven control valve 27 is interposed in the middle of the negative pressure introduction passage 26 to control the area of the passage.

そして、後述のように自然吸気気筒の圧縮比が過給気筒
の圧縮比よりも高く設定される関係上、自然吸気通路4
のサージタンク4Aへ還流される排気ガス流量が過給吸
気通路3のサージタンク3Aへ還流される排気ガス流量
よりも多くなるように、第1EGRバルブ24aと第2
EGRパルプ24bのバルブリフト量と通路開口面積と
の関係は例えば第4図のように設定される。
As will be described later, since the compression ratio of the naturally aspirated cylinder is set higher than that of the supercharged cylinder, the naturally aspirated passage 4
The first EGR valve 24a and the second
The relationship between the valve lift amount of the EGR pulp 24b and the passage opening area is set as shown in FIG. 4, for example.

また、各気筒1a〜1dの吸気ボート近傍の分岐吸気通
路へ燃料を噴射するインジェクタ10が設けられ、また
過給吸気通路3のサージタンク3A及び自然吸気通路4
のサージタンク4Bには夫々圧力センサ5a・5bが設
けられ、エンジンEのシリンダブロックにはエンジン振
動を検出するノックセンサ11が設けられ、前記圧力セ
ンサ5a・5bやノックセンサ11やエンジン回転数セ
ンサ12からの検出信号は夫々コントロールユニット1
3へ出力され、コントロールユニット13から上記各イ
ンジェクタ10及びイグナイタ14及びコントロールバ
ルブ27へ夫々操作信号が出力される。
In addition, an injector 10 for injecting fuel into a branch intake passage near the intake boat of each cylinder 1a to 1d is provided, and a surge tank 3A of the supercharging intake passage 3 and a natural intake passage 4 are provided.
The surge tank 4B is provided with pressure sensors 5a and 5b, respectively, and the cylinder block of the engine E is provided with a knock sensor 11 that detects engine vibration. The detection signals from 12 are sent to the control unit 1, respectively.
3, and the control unit 13 outputs operation signals to each of the injectors 10, igniters 14, and control valves 27, respectively.

更に、過給吸気が供給される第1及び第4気筒1a・1
dについては自然吸気が供給される第2及び第3気筒l
b・ICよりも点火時期を遅らせる必要があることから
、イグナイタ14からの出力を受けて第1気筒1aの点
火プラグと第4気筒1dの点火プラグとに出力する第1
デイストリビユータ15aと、イグナイタ14からの出
力を受けて第2気筒lbの点火プラグと第3気筒ICの
点火プラグとに夫々出力する第2デイストリビユータ1
5bとが設けられている。
Furthermore, the first and fourth cylinders 1a and 1 to which supercharged intake air is supplied
For d, the second and third cylinders l are supplied with naturally aspirated air.
b. Since it is necessary to delay the ignition timing compared to the IC, the first spark plug receives the output from the igniter 14 and outputs it to the spark plug of the first cylinder 1a and the spark plug of the fourth cylinder 1d.
A second distributor 1 receives the output from the distributor 15a and the igniter 14 and outputs the output to the spark plug of the second cylinder lb and the spark plug of the third cylinder IC, respectively.
5b is provided.

ここで、上記4気筒エンジンEの点火順序は、第1気筒
1a−第3気筒1c−第4気筒1d−第2気筒1bの順
であり、点火順序においても隣接せずまた配置において
もクランク軸方向に隣接しない第1気筒1aと第4気筒
1dとに過給吸気を供給するようになっている。
Here, the ignition order of the four-cylinder engine E is the first cylinder 1a, the third cylinder 1c, the fourth cylinder 1d, and the second cylinder 1b. Supercharged intake air is supplied to the first cylinder 1a and the fourth cylinder 1d which are not adjacent in the direction.

即ち、過給気筒(第1及び第4気筒1a・1d)の出力
が大きいことから、過給気筒と自然吸気気筒(第2及び
第3気筒lb・IC)とを交互に点火することによりト
ルク変動を極力抑制するようにし、また過給気筒におい
ては特に高負圧時吸気の充填量も多く燃料吸入量も多い
ため燃焼温度が高くなることから、熱負荷の集中を避け
るために過給気筒同士を隣接させないようにしである。
That is, since the output of the supercharged cylinders (first and fourth cylinders 1a and 1d) is large, the torque is increased by alternately igniting the supercharged cylinders and naturally aspirated cylinders (second and third cylinders lb and IC). In order to suppress the fluctuations as much as possible, and to avoid concentration of heat load, the supercharged cylinder should be Make sure they are not adjacent to each other.

更に、自然吸気気筒に対しては圧縮比が例えば9〜10
程度に設定され、過給気筒に対してはノンキング防止の
ため圧縮比が例えば7〜8程度に設定され、またノッキ
ング防止のため過給気筒では自然吸気気筒よりも点火時
期が幾分遅く設定される。
Furthermore, for naturally aspirated cylinders, the compression ratio is, for example, 9 to 10.
The compression ratio for supercharged cylinders is set to about 7 to 8, for example, to prevent non-knocking, and the ignition timing is set somewhat later in supercharged cylinders than in naturally aspirated cylinders to prevent knocking. Ru.

以上の構成において、第1気筒1aと第4気筒1dへの
燃料噴射量は圧力センサ5aで検出される吸気負圧とエ
ンジン回転数とに基いてコントロールユニット13によ
り設定され、第2気筒lbと第3気筒1cへの燃料噴射
量は圧力センサ5bで検出される吸気負圧とエンジン回
転数とに基いてコントロールユニット13により設定さ
れる。
In the above configuration, the fuel injection amount to the first cylinder 1a and the fourth cylinder 1d is set by the control unit 13 based on the intake negative pressure detected by the pressure sensor 5a and the engine speed, The amount of fuel injected into the third cylinder 1c is set by the control unit 13 based on the intake negative pressure detected by the pressure sensor 5b and the engine speed.

そして、エンジンEの稼動時過給機6はクランクシャフ
トからの動力で駆動されるので、過給吸気通路3へ流れ
る吸気は過給機6で約1.5〜2.0kg / crA
 G程度に加圧され、この過給吸気が第1及び第4気筒
1a・1dへ吸入される一方、自然吸気通路4からの自
然吸気は第2及び第3気筒lb・ICへ吸入される。
When the engine E is running, the supercharger 6 is driven by the power from the crankshaft, so the intake air flowing into the supercharging intake passage 3 is approximately 1.5 to 2.0 kg/crA in the supercharger 6.
The supercharged intake air is pressurized to approximately G and is taken into the first and fourth cylinders 1a and 1d, while the natural intake air from the natural intake passage 4 is taken into the second and third cylinders lb and IC.

エンジン負荷が小さいときには、自然吸気通路4のスロ
ー/ トル弁8bの下流側の吸気負圧が大きいためアク
チュエータ9によりリリーフバルブ7が第3図に基いて
説明したように吸気負圧に応じて開かれ、過給機6の下
流側の過給吸気がバイパス通路3aを経て自然吸気通路
4ヘバイパスされることになるから、過給機6とスロッ
トル弁8a間の圧力温度上昇が抑制され、過給機6が保
護されることになる。
When the engine load is small, the intake negative pressure on the downstream side of the slow/torque valve 8b in the natural intake passage 4 is large, so the relief valve 7 is opened by the actuator 9 in response to the intake negative pressure as explained based on FIG. Since the supercharged intake air on the downstream side of the supercharger 6 is bypassed to the natural intake passage 4 via the bypass passage 3a, the rise in pressure and temperature between the supercharger 6 and the throttle valve 8a is suppressed, and the supercharging Aircraft 6 will be protected.

次に、排気ガス還流について説明する。Next, exhaust gas recirculation will be explained.

先ず、排気ガス還流はエンジン負荷が軽乃至中負荷の所
定の運転状態のときに行われ、この排気ガス還流時にお
ける排気ガスの新気に対する比率はコントロールユニッ
ト13のメモリ内に予めマツプ等の形で格納されており
、回転数センサ12及び圧力センサ5bからの検出信号
に基いて所定の排気ガス還流比率となるようにコントロ
ールユニット13によりコントロールバルブ27が制御
され、コントロールバルブ27の開度及びサージタンク
4A内の吸気負圧に応じて第1及び第2EGRバルブ2
4a・24bが開き、排気ガス還流通路21を介して排
気ガスが両サージタンク3A・4Aへ還流することにな
る。
First, exhaust gas recirculation is performed when the engine load is light to medium load in a predetermined operating state, and the ratio of exhaust gas to fresh air during this exhaust gas recirculation is stored in advance in the memory of the control unit 13 in the form of a map or the like. The control valve 27 is controlled by the control unit 13 so that a predetermined exhaust gas recirculation ratio is achieved based on the detection signals from the rotation speed sensor 12 and the pressure sensor 5b, and the opening degree and surge of the control valve 27 are The first and second EGR valves 2 depending on the intake negative pressure in the tank 4A.
4a and 24b are opened, and exhaust gas is recirculated to both surge tanks 3A and 4A via the exhaust gas recirculation passage 21.

このとき、両EGRバルブ24a・24bの通路開口面
積は第4図のように設定されるので、自然吸気通路4の
サージタンク4Aへの排気ガス流量が過給吸気通路3の
サージタンク3Aへの排気ガス流量よりも多くなる。
At this time, the passage opening areas of both EGR valves 24a and 24b are set as shown in FIG. It will be higher than the exhaust gas flow rate.

つまり、自然吸気気筒へも過給気筒へも夫々の圧縮比に
応じた適正量の排気ガスが還流されるため、燃費及び出
力が悪化することなくNo、が低減することになる。
In other words, since an appropriate amount of exhaust gas is recirculated to both the naturally aspirated cylinder and the supercharged cylinder according to the respective compression ratios, No. is reduced without deteriorating the fuel efficiency and output.

次に、上記実施例の一部を次のように変更してもよい。Next, a part of the above embodiment may be modified as follows.

第1変形例:第5図に示すように、分岐箱31A内に分
岐還流通路21aと分岐還流通路21bとに連通ずる出
口室32と、排気通路20に連通ずる入口室33とが設
けられ、出口室32と入口室33間の仕切壁にEGRバ
ルブ34が介設され、EGRパルプ34のアクチュエー
タ35の負圧室が負圧導入路26を介してサージタンク
4Aへ連通連結され、上記負圧導入路26の途中部にコ
ントロールバルブ27が介装される。
First modification: As shown in FIG. 5, an outlet chamber 32 communicating with the branch reflux passage 21a and the branch reflux passage 21b and an inlet chamber 33 communicating with the exhaust passage 20 are provided in the branch box 31A, An EGR valve 34 is interposed in the partition wall between the outlet chamber 32 and the inlet chamber 33, and the negative pressure chamber of the actuator 35 of the EGR pulp 34 is connected to the surge tank 4A via the negative pressure introduction path 26, and the negative pressure is A control valve 27 is interposed in the middle of the introduction path 26.

そして、上記分岐還流通路21bの通路面積が分岐還流
通路21aの通路面積よりも大きく形成されている。
The branch reflux passage 21b has a larger passage area than the branch reflux passage 21a.

従って、排気ガス還流時、サージタンク4Aへの排気ガ
ス流量がサージタンク3Aへの排気ガス流量よりも多く
なる。
Therefore, during exhaust gas recirculation, the flow rate of exhaust gas to the surge tank 4A is greater than the flow rate of exhaust gas to the surge tank 3A.

第2変形例:前記インジェクタ10に代えて過給吸気通
路3及び自然吸気通路4に夫々気化器を介設する。
Second modification: Instead of the injector 10, a carburetor is provided in the supercharging intake passage 3 and the natural intake passage 4, respectively.

第3変形例:上記過給機6に代えてターボチャージャを
設ける。即ち、過給気筒からの排気ガス通路合流部にタ
ービンを、また過給吸気通路3にコンプレッサを介設す
る。
Third modification: A turbocharger is provided in place of the supercharger 6. That is, a turbine is provided at the confluence of the exhaust gas passages from the supercharged cylinders, and a compressor is provided in the supercharged intake passage 3.

尚、本発明は4気筒エンジン以外に、5気筒又は6気筒
エンジンにも適用し得ることは言うまでもない。
It goes without saying that the present invention can be applied to not only 4-cylinder engines but also 5- or 6-cylinder engines.

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の実施例を示すもので、第1図は直列4気
筒エンジンとその制御系の全体構成図(平面図)、第2
図は同上全体構成図(正面図)、第3図はリリーフバル
ブの開度を示す線図、第4図は第1及び第22GRパル
プのリフ)Iと通路開口面積との関係を示す線図、第5
図は変形例の第2図相当図である。 E・・エンジン、 la〜1d・・気筒、3・・過給吸
気通路、 4・・自然吸気通路、6・・過給機、 8a
・8b・・スロットル弁、21・・排気ガス還流通路、
 21a・21b・・分岐還流通路。 特 許 出 願 人  マツダ株式会社代 理 人 岡
村俊雄
The drawings show an embodiment of the present invention, and FIG. 1 is an overall configuration diagram (plan view) of an in-line four-cylinder engine and its control system, and FIG.
The figure is a diagram showing the overall configuration of the same as above (front view), Figure 3 is a diagram showing the opening degree of the relief valve, and Figure 4 is a diagram showing the relationship between the rift I of the 1st and 22nd GR pulps and the passage opening area. , 5th
The figure is a diagram corresponding to FIG. 2 of a modified example. E...Engine, la~1d...Cylinder, 3...Supercharged intake passage, 4...Natural intake passage, 6...Supercharger, 8a
・8b...Throttle valve, 21...Exhaust gas recirculation passage,
21a, 21b... Branch reflux passage. Patent applicant: Mazda Motor Corporation Agent: Toshio Okamura

Claims (1)

【特許請求の範囲】[Claims] (1)多気筒エンジンにおいて、 一部の気筒へ連通する自然吸気通路と、残りの気筒へ連
通し且つ自然吸気通路とは独立の過給吸気通路と、上記
過給吸気通路に介設された過給機と、上記自然吸気通路
の連通する気筒と過給吸気通路の連通する気筒とに排気
ガスを供給する排気ガス還流通路とを備え、上記一部の
気筒の圧縮比よりも残りの気筒の圧縮比を低く設定する
とともに、上記排気ガス還流通路は上記残りの気筒への
排気ガス流量よりも上記一部の気筒への排気ガス流量が
多くなるように構成したことを特徴とする多気筒エンジ
ンの排気ガス還流装置。
(1) In a multi-cylinder engine, a naturally aspirated passage that communicates with some of the cylinders, a supercharged intake passage that communicates with the remaining cylinders and is independent of the naturally aspirated passage, and a supercharged intake passage that is interposed in the supercharged intake passage. a supercharger, and an exhaust gas recirculation passage that supplies exhaust gas to the cylinders with which the natural intake passage communicates and the cylinders with which the supercharged intake passage communicates; The compression ratio of the cylinder is set low, and the exhaust gas recirculation passage is configured such that the flow rate of exhaust gas to some of the cylinders is larger than the flow rate of exhaust gas to the remaining cylinders. Engine exhaust gas recirculation device.
JP60237056A 1985-10-23 1985-10-23 Exhaust gas reflux device for mutlicylidner engine Pending JPS6296744A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60237056A JPS6296744A (en) 1985-10-23 1985-10-23 Exhaust gas reflux device for mutlicylidner engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60237056A JPS6296744A (en) 1985-10-23 1985-10-23 Exhaust gas reflux device for mutlicylidner engine

Publications (1)

Publication Number Publication Date
JPS6296744A true JPS6296744A (en) 1987-05-06

Family

ID=17009762

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60237056A Pending JPS6296744A (en) 1985-10-23 1985-10-23 Exhaust gas reflux device for mutlicylidner engine

Country Status (1)

Country Link
JP (1) JPS6296744A (en)

Similar Documents

Publication Publication Date Title
EP0489263B1 (en) Exhaust gas recirculation system for an internal combustion engine
US5357936A (en) Engine of a spark ignition type
US5121733A (en) Air intake system for supercharged engine
US5309886A (en) Supercharged internal combustion engine
JP4032398B2 (en) Power unit of turbocharged engine and vehicles equipped with turbocharged engine
JP4007139B2 (en) Exhaust system for turbocharged engine
JP2013007353A (en) Lean burn engine with supercharger
JP3280758B2 (en) Intake device for engine with mechanical supercharger
JP3153283B2 (en) Engine with mechanical supercharger
JP3119925B2 (en) Engine control device
JP3377828B2 (en) Intake device for engine with mechanical supercharger
JPS6296744A (en) Exhaust gas reflux device for mutlicylidner engine
JPH0586847A (en) Exhaust emission control device for engine having mechanical supercharger
JPH0533661A (en) Air intake device of engine with mechanical supercharger
JPH06229326A (en) Engine with supercharger
JP3285908B2 (en) Engine with turbocharger
JP2601655B2 (en) Intake device for supercharged engine
JPS6296735A (en) Suction device for multicylinder engine
JPH04194318A (en) Suction device for engine
EP0046156B1 (en) Turbocharged engine with pressurized gas recirculation
JP3280757B2 (en) Intake device for engine with mechanical supercharger
JPH0536610B2 (en)
JPS6285122A (en) Air intake device for multi-cylinder engine
JP2607624Y2 (en) Intake device for supercharged engine
JPS63297725A (en) Engine with turbocharger