JPS6293087A - Joining method for shaft stock - Google Patents

Joining method for shaft stock

Info

Publication number
JPS6293087A
JPS6293087A JP23391985A JP23391985A JPS6293087A JP S6293087 A JPS6293087 A JP S6293087A JP 23391985 A JP23391985 A JP 23391985A JP 23391985 A JP23391985 A JP 23391985A JP S6293087 A JPS6293087 A JP S6293087A
Authority
JP
Japan
Prior art keywords
shaft
welding
electron beam
joining
stock
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23391985A
Other languages
Japanese (ja)
Inventor
Makoto Yamaga
山香 誠
Eiichi Murakami
栄一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP23391985A priority Critical patent/JPS6293087A/en
Publication of JPS6293087A publication Critical patent/JPS6293087A/en
Pending legal-status Critical Current

Links

Landscapes

  • Welding Or Cutting Using Electron Beams (AREA)

Abstract

PURPOSE:To improve a joining accuracy by setting the inclined angle of the joining face of a shaft stock within the range given by a specified equation and by joining the shaft stock by the electron beam welding from one direction. CONSTITUTION:The inclination theta to the plane vertical to the shaft center of the shaft stock 2 of one part between a set of shaft stocks to be fixed by abutting is regulated within the range given by the equation (I). Then, the electron beam welding is performed by fixing the shaft stock 2 and the joining counterpart shaft stock 2 and by moving an electron beam gun 1 relatively from one direction. With this method, the bending angle of the shaft center of the joining shaft stock after welding can be regulated within practical + or -0.3 deg., etc. without taking into consideration the special constraint nor finishing allowance. Consequently the accuracy in welding junction of the shaft stock is improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、鍛鋼等の鉄鋼製の軸材の接合方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for joining shaft members made of steel such as forged steel.

〔従来技術〕[Prior art]

従来、軸材の接合方法としてはアーク溶接で接合する技
術が良く知られている。しかし、溶接歪、特に角度変形
を防止するために、軸材を特別な拘束治具を用いて拘束
した状態で溶接する拘束法を採用したり、素材の仕上加
工代を増やしたりしているのが現状である。
Conventionally, as a method for joining shaft members, arc welding is a well-known technique. However, in order to prevent welding distortion, especially angular deformation, welding methods have been adopted in which the shaft material is welded while being restrained using a special restraint jig, and the finishing allowance for the material has been increased. is the current situation.

さらに、被覆アーク溶接、ガスシールドアークン容接、
サフ′マーシア゛−り?容接といったアーク2容士妾に
おいては、溶接後の変形量が大きく、しかも多層溶接の
場合にはその変形量が一定しないため、軸材を回転させ
ないで一方向または二方向から完全溶造み溶接によって
接合する場合、接合する軸材の両軸心が溶接後に真直に
なるようにすることは、上記拘束法を採用しても極めて
難しい。特にクランク軸のような軸対称でない軸材のよ
うに芯振れを厳しく規制する必要がある軸材の接合にお
いては、仕上加工代を増やさずに適用することは実際上
困難であった。
In addition, we offer shielded arc welding, gas shielded arc welding,
Saf'mercy? In the arc 2 type welding process, the amount of deformation after welding is large, and in the case of multi-layer welding, the amount of deformation is not constant, so complete welding is performed from one or two directions without rotating the shaft material. When joining by welding, it is extremely difficult to ensure that both axes of the shaft members to be joined are straight after welding, even if the above constraint method is employed. In particular, it has been practically difficult to apply this method without increasing the finishing machining allowance, especially when joining shaft members that are not axially symmetrical, such as crankshafts, where center runout must be strictly controlled.

一方、電子ビーム溶接はもともと変形量の少ない溶接法
として知られている。しかし、一方向から溶接する場合
、やはり両軸材の溶接部で曲りが発生し、しかも溶接条
件によっては電子ビームガン側に曲がる場合や反対側に
曲がる場合があり、曲がる量もそれぞれ異なっている。
On the other hand, electron beam welding is originally known as a welding method that causes less deformation. However, when welding from one direction, bending still occurs at the welded parts of both shaft members, and depending on the welding conditions, it may bend toward the electron beam gun side or the opposite side, and the amount of bending is different for each.

そのため、芯振れを厳しく規制する必要があるクランク
軸のような軸対称でない軸材を接合する場合には、仕上
加工代を増やさないようにして接合すると曲り変形から
くる寸法精度不良を招来しがちになるという問題があっ
た。
Therefore, when joining shaft materials that are not axially symmetrical, such as crankshafts that require strict control of core runout, if the finishing machining allowance is not increased, this tends to result in poor dimensional accuracy due to bending deformation. There was a problem with becoming.

〔発明の目的〕[Purpose of the invention]

本発明は、上記従来の問題点を解決するためになされた
ものであって、互いに接合すべき両軸材を拘束したり、
仕上代を憎(、グ・りする、:となく、軸心の曲がりを
許容範囲内に規制できる電子ビーム溶接による軸材の接
合方法の提供を目的とするものである。
The present invention has been made to solve the above-mentioned conventional problems, and includes restraining both shaft members to be joined to each other,
The object of the present invention is to provide a method for joining shaft members by electron beam welding, which can control the bending of the shaft center within an allowable range without incurring finishing allowances.

〔発明の構成〕[Structure of the invention]

本発明に係る軸材の接合方法は、軸材を突き合わせて固
定し、一方向から電子ビームガンを相対的に移動させて
電子ビーム溶接により接合する軸材の接合方法において
、溶接前に両輪材の接合面を予め機械加工するに際して
、両側の軸材の接合面を次式で与えられる範囲内の角度
で傾斜させることを特徴とするものである。
The shaft member joining method according to the present invention is a shaft member joining method in which the shaft members are butted and fixed and joined by electron beam welding by moving an electron beam gun relatively from one direction. When machining the joint surfaces in advance, the joint surfaces of the shaft members on both sides are inclined at an angle within the range given by the following equation.

1000    2π 1000    2π ここで、第1図に示すように、ωImaxは電子ビーム
ガン側の表面から2肉厚までの最大溶込幅(龍)、01
m1nは電子ビームガン側の表面から1/2肉厚までの
最小溶込幅(龍)、ωOmaxは電子ビームガンと反対
側の最大溶込幅(關)、ω0m1nは電子ビームガンと
反対側の表面から1/2肉厚までの最小溶込幅(龍)で
あり、この溶造形状は電子ビーム溶接しようとしている
鋼種、板厚、溶接条件等によって定まる定数である。ま
た、電子ビーム溶接は電子ビームガン1により矢印の方
向から行われる。
1000 2π 1000 2π Here, as shown in Fig. 1, ωImax is the maximum penetration width (dragon) from the surface on the electron beam gun side to 2 wall thickness, 01
m1n is the minimum penetration width from the surface on the electron beam gun side to 1/2 wall thickness (dragon), ωOmax is the maximum penetration width on the side opposite to the electron beam gun (dragon), and ω0m1n is 1 from the surface on the opposite side to the electron beam gun. This is the minimum penetration width (dragon) up to /2 wall thickness, and this welding shape is a constant determined by the steel type, plate thickness, welding conditions, etc. to be subjected to electron beam welding. Further, electron beam welding is performed by the electron beam gun 1 in the direction of the arrow.

そして、軸材の接合面の傾斜角θを上記範囲に規制する
ことによって、溶接後の軸心の曲がりが実用の範囲であ
る±0.3°の範囲に収まることを実際に確認すること
ができたのである。
By regulating the inclination angle θ of the joint surface of the shaft material within the above range, it is possible to actually confirm that the bending of the shaft center after welding is within the practical range of ±0.3°. It was done.

〔実施例1〕 以下、本発明の一実施例を図面に基づいて説明する。[Example 1] Hereinafter, one embodiment of the present invention will be described based on the drawings.

溶接条件の代表例として、第1表の■・■・■・■の溶
造形状となる4つの溶接条件を選定し、第2図に示すよ
うに溶接前に軸材2の接合面3を、軸材2の軸心と垂直
な平面に対する傾斜角θが−0,4°から+0.8°の
範囲で変化するように傾斜させ、これら溶接条件と接合
面の傾斜角の各組み合わせについて、第3図に示すよう
に溶接後の軸材4の軸心の曲がり角度αを測定した。
As representative examples of welding conditions, we selected four welding conditions that result in the welded shape of ■, ■, ■, and ■ in Table 1, and as shown in Figure 2, welded the joint surface 3 of the shaft material 2 before welding. , so that the inclination angle θ with respect to the plane perpendicular to the axis of the shaft member 2 changes in the range of −0.4° to +0.8°, and for each combination of these welding conditions and the inclination angle of the joint surface, As shown in FIG. 3, the bending angle α of the shaft center of the shaft member 4 after welding was measured.

第1表 単位(+=−) ここで、hは軸材溶接部の肉厚(+*m)である。Table 1 Unit (+=-) Here, h is the wall thickness (+*m) of the shaft material welded part.

これら溶接条件について上式の左型θc(min)と右
型θc(max)の値を計算すると、第2表の通りにな
る。
When the values of left type θc (min) and right type θc (max) in the above formula are calculated under these welding conditions, the values are as shown in Table 2.

第2表 上記溶接後の軸心の曲がり角度αの測定結果を第3表に
示す。     。
Table 2 Table 3 shows the measurement results of the bending angle α of the shaft center after welding. .

〔以下余白〕[Margin below]

第3表 この第3表の中で○印で示したものはαが±0.3の範
囲内であり、そのθは上式、即ち第2表のθc(min
)とθc (max)の間の範囲内にあり、αが±0.
3を越えたX印で示した場合のθは上式の範囲外にある
Table 3 Items marked with a circle in Table 3 have α within the range of ±0.3, and θ is calculated using the above formula, that is, θc(min) in Table 2.
) and θc (max), and α is within the range between ±0.
When θ exceeds 3 and is indicated by an X mark, it is outside the range of the above equation.

〔実施例2〕 次に、さらに上記結果を別の具体例で確認するために、
第4図(a)、同(b)に示すように直径が230 +
n、長さが500 +uの5F45鍛鋼軸材5を、第1
表及び第2表の溶接条件■で電子ビーム溶接によって接
合した例を説明する。接合面の傾斜角θが、第2表のθ
c(max)、θc(min)及び中央値(=−0,0
3°)の3種について実施した。なお、軸材5の接合面
は円形であるため、接合面外周にタブ板6を外嵌して2
50鰭角の方形状の接合面とし、第5図に示すように接
合面を合わせて矢印の方向から電子ビーム溶接を行った
。上記溶接面の傾斜角θと接合された軸材の軸心の曲が
り角αを第4表に示す。
[Example 2] Next, in order to further confirm the above results with another specific example,
As shown in Figures 4(a) and 4(b), the diameter is 230 +
A 5F45 forged steel shaft material 5 with a length of 500 + u is
An example of joining by electron beam welding under the welding conditions (1) in Tables 1 and 2 will be described. The inclination angle θ of the joint surface is θ in Table 2.
c (max), θc (min) and median value (=-0,0
3°). Note that since the joint surface of the shaft member 5 is circular, a tab plate 6 is fitted around the outer periphery of the joint surface.
The joint surfaces were made into a rectangular shape with a fin angle of 50 mm, and electron beam welding was performed from the direction of the arrow with the joint surfaces aligned as shown in FIG. Table 4 shows the inclination angle θ of the welding surface and the bending angle α of the axis of the joined shaft member.

第4表 このように接合面の傾斜角θを上式で計算した範囲内に
とれば、溶接後の接合材の軸心の曲り角αを実用的な範
囲(±0.3)内に収めることができる。
Table 4 As shown, if the inclination angle θ of the joint surface is within the range calculated using the above formula, the bending angle α of the axis of the joint material after welding can be kept within a practical range (±0.3). I can do it.

従って、第6図に、示すように、軸対称でないクランク
軸7のような軸材を溶接する際にも、軸心の曲りが実用
的な範囲での接合が可能である。
Therefore, as shown in FIG. 6, even when welding a shaft member such as the crankshaft 7 which is not axially symmetrical, it is possible to join the shaft member within a practical range of curvature of the shaft center.

〔発明の効果〕〔Effect of the invention〕

本発明の軸材の接合方法によれば、以上のように1、軸
+オを−・方向から電子ビーム溶接する際に接合面の傾
斜角を所定の範囲に規制することによって、特別な拘束
をせずに、溶接後の接合軸材の軸心の曲がり角を実用的
な範囲に収めることができる。それ故1、容易に精度の
よい溶接接合が可能となるとともに仕上加工代を増やす
必要もない等の効果を奏するものである。
According to the shaft member joining method of the present invention, as described above, 1. When electron beam welding the shaft + O from the - direction, special restraint is achieved by regulating the inclination angle of the joining surface within a predetermined range. The bending angle of the axial center of the joined shaft material after welding can be kept within a practical range without having to Therefore, (1) it is possible to easily perform welding and joining with high precision, and there is no need to increase the finishing allowance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は溶接部における溶込み形状の説明図、第2図は
接合前の軸材の側面図、第3図は溶接後の軸材の側面図
、第4図は他の実施例の接合前の軸材を示し、同図(a
)は側面図、同図(b)は正面図、第5図は接合時の状
態を示す側面図、第6図は他の適用例を示す側面図であ
る。 1は電子ビームガン、2・5は軸材、3は接合面、4は
溶接後の軸材、θは接合面の傾斜角、αは接合後の軸心
の曲がり角である。 特許出願人   株式会社 神戸製鋼所第1図 第4図(a)    ヨS 411(b)、。□ 呈 σ ■ 第6図
Fig. 1 is an explanatory diagram of the penetration shape in the welded part, Fig. 2 is a side view of the shaft material before joining, Fig. 3 is a side view of the shaft material after welding, and Fig. 4 is a joint of another embodiment. The front shaft member is shown, and the same figure (a
) is a side view, FIG. 5(b) is a front view, FIG. 5 is a side view showing the state at the time of joining, and FIG. 6 is a side view showing another example of application. 1 is an electron beam gun, 2 and 5 are shaft members, 3 is a joining surface, 4 is a shaft material after welding, θ is an inclination angle of the joining surface, and α is a bending angle of the shaft center after joining. Patent applicant: Kobe Steel, Ltd. Figure 1 Figure 4 (a) YoS 411 (b). □ Presentation σ ■ Figure 6

Claims (1)

【特許請求の範囲】 1、軸材を突き合わせて固定し、一方向より電子ビーム
溶接により接合する軸材の接合方法において、両側の軸
材の接合面の傾きθを、次式で与えられる範囲とするこ
とを特徴とする軸材の接合方法。 (ω I min−ω0max)/1000×360°/
2π≦θ≦(ω I max−ω0min)/1000×
360°/2πここで、 ω I max:電子ビームガン側の表面から1/2肉厚
までの最大溶込幅(mm) ω I min:電子ビームガン側の表面から1/2肉厚
までの最小溶込幅(mm) ω0max:電子ビームガンと反対側の最大溶込幅(m
m) ω0min:電子ビームガンと反対側の表面から1/2
肉厚までの最小溶込幅(mm)
[Claims] 1. In a shaft member joining method in which the shaft members are butted and fixed and joined by electron beam welding from one direction, the inclination θ of the joint surfaces of the shaft members on both sides is set in the range given by the following formula. A method for joining shaft members, characterized by: (ω I min−ω0max)/1000×360°/
2π≦θ≦(ω I max−ω0min)/1000×
360°/2π Here, ω I max: Maximum penetration width (mm) from the surface on the electron beam gun side to 1/2 wall thickness ω I min: Minimum penetration width from the surface on the electron beam gun side to 1/2 wall thickness Penetration width (mm) ω0max: Maximum penetration width on the opposite side from the electron beam gun (m
m) ω0min: 1/2 from the surface opposite to the electron beam gun
Minimum penetration width to wall thickness (mm)
JP23391985A 1985-10-18 1985-10-18 Joining method for shaft stock Pending JPS6293087A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23391985A JPS6293087A (en) 1985-10-18 1985-10-18 Joining method for shaft stock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23391985A JPS6293087A (en) 1985-10-18 1985-10-18 Joining method for shaft stock

Publications (1)

Publication Number Publication Date
JPS6293087A true JPS6293087A (en) 1987-04-28

Family

ID=16962650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23391985A Pending JPS6293087A (en) 1985-10-18 1985-10-18 Joining method for shaft stock

Country Status (1)

Country Link
JP (1) JPS6293087A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502859A (en) * 2006-09-12 2010-01-28 エスエイチダブリュー キャスティング テクノロジーズ ゲーエムベーハー Roller body manufacturing method and roller body
GB2559731B (en) * 2017-02-08 2020-01-08 British Telecomm Cellular Telecommunications Network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010502859A (en) * 2006-09-12 2010-01-28 エスエイチダブリュー キャスティング テクノロジーズ ゲーエムベーハー Roller body manufacturing method and roller body
GB2559731B (en) * 2017-02-08 2020-01-08 British Telecomm Cellular Telecommunications Network

Similar Documents

Publication Publication Date Title
WO1996032219A1 (en) Method of butt welding
JPS6293087A (en) Joining method for shaft stock
JP3234708B2 (en) Measuring method of offset amount of butt of welded pipe
JPH0140714B2 (en)
JP2002126881A (en) Friction jointing method
JP2000061674A (en) Production of gas insulation switchgear
JP3039196B2 (en) Arc sensor
JPH07205302A (en) Butt-connection of synthetic resin pipes
JP2696714B2 (en) Pipe joint processing method
JPS6213108B2 (en)
JP3229082U (en) Backing metal for column welding
JP2617545B2 (en) Consumable electrode arc welding method
JPS5820394A (en) Welding method
JP2523932B2 (en) Correcting method of normal direction of cutting work tool of robot
JPH04228262A (en) Method for welding connection in steel frame member
JPH01202385A (en) Laser welding method for metal plate
JP2001221007A (en) Manufacturing method for nozzle diaphragm
JP2000348618A (en) Manufacture of vacuum container for ion-beam applying device
JPS6320161A (en) Flange notching method for h-shape
JPS649110B2 (en)
JPS63278677A (en) Welding method for small bore pipes
JPS60240374A (en) Method and device for working cylinder
JPH0255668A (en) Method of working box body
JPH0355228B2 (en)
JPH0254186B2 (en)