JPS6292416A - Superconductive magnet device - Google Patents
Superconductive magnet deviceInfo
- Publication number
- JPS6292416A JPS6292416A JP23260585A JP23260585A JPS6292416A JP S6292416 A JPS6292416 A JP S6292416A JP 23260585 A JP23260585 A JP 23260585A JP 23260585 A JP23260585 A JP 23260585A JP S6292416 A JPS6292416 A JP S6292416A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- switch
- superconducting magnet
- protective resistor
- magnet device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Containers, Films, And Cooling For Superconductive Devices (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
この発明は超電導磁石装置における永久電流スイッチが
クエンチしfc場合の保護方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a protection method when a persistent current switch in a superconducting magnet device quenches fc.
超電導線を用いた超電導磁石は、電流密度を高くするこ
とができるので広い空間に強磁界をコンパクトな磁石で
しかも比較的小さな電力で発生することができる0現在
実用化されている超電導線は高純度の銅やアルミニウム
などの金属(これら守
をポ定化拐と称する)中に超電導材の細線を埋め持でき
る液体ヘリウム温度(1気圧のもとて約4.2 K )
においても超電導状態にはならない@しらかの原因によ
り超電導状態を失って高抵抗状態になった場合(いわゆ
るクエンチ現象)、超電導複合超電導線における安定化
材と超電導体の比(これを一般に銅比と称する)は製作
される磁石の使用時の冷却状態、磁石の大きさおよび運
転方法に依存する・一般に蓄積エネルギーの大きな超電
導磁石は複合超電導線の銅比も大きく電流密度も小さく
なる。したがって大きな著積エネルギーを持つ超電導磁
石をできるだけ高い電流密度で運転することが最も好ま
しい。Superconducting magnets using superconducting wires can increase the current density, so they can generate a strong magnetic field in a wide space with a compact magnet and with relatively small electric power.The superconducting wires currently in practical use are The temperature of liquid helium (approximately 4.2 K at 1 atm) is sufficient to embed fine wires of superconducting material in pure metals such as copper and aluminum (these properties are referred to as porosity).
However, if the superconducting state is lost due to certain causes and becomes a high resistance state (so-called quench phenomenon), the ratio of the stabilizing material to the superconductor in the superconducting composite superconducting wire (this is generally determined by the copper ratio). ) depends on the cooling condition of the manufactured magnet during use, the size of the magnet, and the operating method.Generally, superconducting magnets with a large stored energy have a large copper ratio in the composite superconducting wire and a small current density. Therefore, it is most preferable to operate a superconducting magnet with a large significant energy at a current density as high as possible.
磁石のクエンチ時には蓄積されている磁気エネルギーが
前述した安定化材のジュール発熱とじて消費されるが、
このジュール発熱によって磁石の温度が上昇する0この
温度の最高値TMはTMOCJ02・τ ・・・・・・
・・・・・・叩・・・・・叫・・・・・・・・叫・・+
1)で表わされる@こζでJOは安定化材中の電流密度
。When the magnet quenches, the accumulated magnetic energy is consumed as the Joule heat generation of the stabilizing material mentioned above.
The temperature of the magnet rises due to this Joule heat generation.The maximum value TM of this temperature is TMOCJ02・τ...
...Slap...Scream...Scream...+
1) where JO is the current density in the stabilizing material.
Tは減衰時定数で7ml: L/R(Lは磁石のインダ
クタンス、Rは回路の抵抗値でこの場合は超電導磁石に
発生する抵抗値が支配的)である。この最高温度TMは
磁石を保護する上からは小形のもので約300に、中規
模のもので200〜100K、 クエンチを許す大形の
ものでは約70にとして設計されるのが通常である。回
路の抵抗はコイル自身の抵抗による場合と第5図に示す
ように磁石1のクエンチ検出後回路遮断器4を開いて磁
石1を電源の磁石1の最高温度を抑制したシ、もしくは
よシ高い電流密度で運転される磁石を提供できる保護方
式がしばしば用いられる。なお第5図における3#′i
磁石1に励磁電流を供給する電流供給リードを示し、0
は極低温領域を示す。T is a decay time constant of 7 ml: L/R (L is the inductance of the magnet, R is the resistance value of the circuit, and in this case, the resistance value generated in the superconducting magnet is dominant). This maximum temperature TM is usually designed to be about 300 K for small magnets to protect the magnet, 200 to 100 K for medium-sized magnets, and about 70 K for large magnets that allow quenching. The resistance of the circuit is due to the resistance of the coil itself, or when the maximum temperature of the magnet 1 of the power source is suppressed by opening the circuit breaker 4 after detecting the quench of the magnet 1 as shown in Figure 5, or when it is higher. Protection schemes are often used that allow magnets to be operated at current densities. Note that 3#'i in Figure 5
The current supply lead that supplies excitation current to magnet 1 is shown, and 0
indicates the cryogenic region.
超電導線を使用した永久電流スイッチを用いて超電導磁
石の両端子を短絡したいわゆる永久電流モードで運転す
る超電導磁石は磁石の励磁、減磁以外の定常使用状態で
は電流供給リードは引き抜かれて使用されるのが普通で
ある。永久電流モーにつながる。それがため第6図に示
すように保護抵抗体2をスイッチ6と並列に接続して使
用することが知られている。この場合保護抵抗体2の抵
抗値R2の値はスイッチ6のOFF状態の時すなわち常
電導抵抗値Rsよシ充分小さくする必要があるが、これ
らの値は磁石の蓄積エネルギーや実用的な励磁時間を考
慮して決定される。また保護抵抗体2稼磁石より十分離
し、たとえば冷媒のガス空間L2に設置され、磁石励磁
の妨げとならないように構成されなければならない。磁
石とスイッチは冷媒の液領域に設置されるものとする。Superconducting magnets operate in so-called persistent current mode, in which both terminals of the superconducting magnet are short-circuited using a persistent current switch using superconducting wire, and the current supply lead is pulled out during normal use except for excitation and demagnetization of the magnet. It is normal to Leads to persistent current mode. Therefore, it is known to use a protective resistor 2 connected in parallel with a switch 6 as shown in FIG. In this case, the resistance value R2 of the protective resistor 2 needs to be sufficiently smaller than the normal conduction resistance value Rs when the switch 6 is in the OFF state, but these values are determined by the stored energy of the magnet and the practical excitation time. Determined by taking into consideration. In addition, the protective resistor 2 must be placed sufficiently away from the operating magnet, for example, in the refrigerant gas space L2, and must be constructed so as not to interfere with magnet excitation. The magnet and switch shall be installed in the refrigerant liquid area.
永久電流スイッチとその保護抵抗体の設計に際しては、
スイッチのOFFすなわち常電導時の抵抗値をR,とす
ると、
を満足しなければならない。ここでW:スイッチたとき
のエンタルピー増加〔JA〕、E:超電導磁石の蓄積エ
ネルギー(J)である。すなわちスイッチで吸収できる
エネルギーとスイッチの最高温度θmは(2)式を満た
す必要があ勺、かつ0mは300Kを越えることが望ま
しい。蓄積エネルギーが大きくなれば永久電流スイッチ
も大形化して耐熱負荷も大きくしなければならないとい
う問題が生じ、さらにスイッチの大形化は0N−OFF
の応答性を悪くするという問題を生じる。When designing persistent current switches and their protective resistors,
Letting R be the resistance value when the switch is OFF, that is, during normal conduction, the following must be satisfied. Here, W: enthalpy increase [JA] when switched, and E: stored energy (J) of the superconducting magnet. That is, the energy that can be absorbed by the switch and the maximum temperature θm of the switch must satisfy the equation (2), and it is desirable that 0m exceeds 300K. As the stored energy increases, the problem arises that the persistent current switch must also become larger and the heat-resistant load must also be increased, and the larger switch also requires 0N-OFF
This results in a problem of poor responsiveness.
超電導磁石を永久電流モードで運転する場合にその永久
電流スイッチのクエンチに対して、スイッチを大形化す
ることなしに、スイッチの保護を十分安全に行なえるよ
うな超電導磁石装置を提供することを目的とする。To provide a superconducting magnet device capable of sufficiently safely protecting a persistent current switch without increasing the size of the switch when the superconducting magnet is operated in persistent current mode, without increasing the size of the switch. purpose.
この発明は永久電流スイッチを用いて運転される超電導
磁石において、スイッチの保護抵抗体を超電導磁石の極
く近傍に設置することによシ永久電流スイッチのクエン
チによシ保護抵抗体に流れる電流のジュール発熱により
超電導磁石を加熱し磁石自体もクエンチさせるようKL
、蓄積エネルギーの消費を磁石内部でも行なわせてスイ
ッチにおけるエネルギー消費を抑え、これによって永久
電流スイッチを小形化させようとするものである0〔発
明の実施例〕
第1図はこの発明の実施例を示す超電導装置の電気回路
図で、従来の電気回路たる第5図、第6図と同一部分に
は同一の符号を付し説明を省略する。永久電流スイッチ
6の保護抵抗2は、励磁・減磁時に発生する電圧によっ
て保護抵抗2に電流が流れることを防止するために設け
たダイオード7と直列に接続され、この回路が超電導磁
石1と永久電流スイッチ6に対しそれぞれ電気的に並列
接続されかつ位置的に超電導磁石1に近接して設置され
る。この場合、超電導磁石の励磁・減磁時の電圧は極め
て小さいのでダイオード7の順耐圧(約数ボルト)によ
シ保護抵抗体には電流は流れない。またダイオードが逆
並列接続されているのは回路の極性(+、−)がどちら
Kなっても対応できるようにするためである。永久電流
スイッチ6のクエンチにより発生する抵抗値R8と保護
抵抗体2の抵抗値R2との合成抵抗値R28(82g
=H,+4)によシ端子&f間に電圧が誘起されダイオ
ード7がターンオンし、永久電流モードではbe de
を流れていた電流の#1とんどが保護抵抗体2回路を含
むac dfなる回路を流れる◎そこで保護抵抗体2に
はジュール発熱を生じ近接している超電導磁石1が熱せ
られて、クエンチを導く〇
第2図は永久電流スイッチの保護抵抗体の具体的設置方
法を示す縦断面図で、円筒体の両端にフランジを有する
巻枠8にソレノイド状に巻かれた超電導巻線1aの外周
面に密着して永久電流スイッチ6を介して保護抵抗体2
が巻回される0この保護抵抗体2は銅あるいはステンレ
ス等で形成するが、この場合保護抵抗体がインダクタン
スを持たないように保護抵抗体自体層と2b層を流れる
電流の向きは逆方向となるように接続する。また超電導
巻線の外側に密着して設置した保護抵抗体は電磁力を抑
える作用も同時に備えもつ利点を有する〇
第3図は第2図の保護抵抗体2a、2b層に通常運転時
における超電溝巻111mの冷却を促進する冷却用孔9
を設けた状態を示す斜視図である。In a superconducting magnet operated using a persistent current switch, this invention prevents the current flowing through the protective resistor from quenching the persistent current switch by installing the protective resistor of the switch very close to the superconducting magnet. KL uses Joule heat to heat the superconducting magnet and quench the magnet itself.
, the energy consumption in the switch is suppressed by consuming the stored energy inside the magnet, thereby reducing the size of the persistent current switch.0 [Embodiment of the Invention] Fig. 1 shows an embodiment of the invention. This is an electrical circuit diagram of a superconducting device showing the same parts as those in the conventional electrical circuits of FIGS. The protective resistor 2 of the permanent current switch 6 is connected in series with a diode 7 provided to prevent current from flowing through the protective resistor 2 due to the voltage generated during excitation/demagnetization, and this circuit connects the superconducting magnet 1 and the permanent They are each electrically connected in parallel to the current switch 6 and positioned close to the superconducting magnet 1. In this case, since the voltage during excitation and demagnetization of the superconducting magnet is extremely small, no current flows through the protective resistor due to the forward breakdown voltage (about several volts) of the diode 7. Further, the reason why the diodes are connected in antiparallel is to be able to cope with either the polarity (+ or -) of the circuit. The combined resistance value R28 (82 g
=H, +4), a voltage is induced between the terminals &f, turning on the diode 7, and in persistent current mode
Most of the current #1 flows through the ac df circuit that includes two protective resistor circuits ◎Therefore, Joule heat is generated in the protective resistor 2, which heats up the superconducting magnet 1 in the vicinity and quenches it. 〇 Figure 2 is a vertical cross-sectional view showing a specific method of installing a protective resistor of a persistent current switch. The protective resistor 2 is connected to the surface through the persistent current switch 6.
This protective resistor 2 is made of copper, stainless steel, etc., but in this case, the direction of the current flowing through the protective resistor itself and the layer 2b is opposite so that the protective resistor does not have inductance. Connect as shown. In addition, the protective resistor installed closely on the outside of the superconducting winding has the advantage of simultaneously suppressing electromagnetic force. Figure 3 shows the protective resistor 2a and 2b layers in Figure 2 when Cooling hole 9 that promotes cooling of electric groove winding 111m
FIG. 3 is a perspective view showing a state in which the
第4図はスイッチの保護抵抗体を超電導巻線1aの内側
に設置した他の実施例を示す縦断面図である@
〔発明の効果〕
この発明によれば永久電流スイッチのクエンチに対する
保護抵抗体を超電導磁石巻線に密接して配置する構造と
したので、スイッチのクエンチ後は保護抵抗体が通電さ
れ、それKよる発熱によシ超電導磁石もクエンチするた
め、解放される磁気エネルギーを分散して消費できる・
これがため永久電流スイッチの耐熱容量を小さくできる
。したがって大きな蓄積エネルギーを持つ超電導磁石に
対しても小形の永久電流スイッチで対応できとくに熱式
永久電流スイッチにおいては0N−OFFの応答性の向
上や、よル少ない超電導線でスイッチの製作が可能なた
め磁気的安定性も向上する@さらにエネルギー消費部が
分散されることによシ、保護抵抗体自体も小形化でき、
また保護抵抗体によって生じるクエンチは、磁石の局部
的クエンチでなく短時間で磁石全体におよぶ傾向を持つ
ため、磁石の局部的な温度上昇を防止できる0FIG. 4 is a longitudinal sectional view showing another embodiment in which the protective resistor of the switch is installed inside the superconducting winding 1a. Since the structure is such that the protective resistor is placed in close proximity to the superconducting magnet winding, after the switch is quenched, the protective resistor is energized and the superconducting magnet is also quenched due to the heat generated by it, dispersing the released magnetic energy. can be consumed by
Therefore, the heat resistance capacity of the persistent current switch can be reduced. Therefore, a small persistent current switch can handle superconducting magnets that have a large amount of stored energy, and in particular, it is possible to improve the 0N-OFF response in thermal persistent current switches, and to manufacture switches using superconducting wire with less twist. Therefore, the magnetic stability is improved.@Furthermore, by dispersing the energy consuming parts, the protective resistor itself can be made smaller.
In addition, the quench caused by the protective resistor tends to affect the entire magnet in a short period of time, rather than being a local quench of the magnet.
第1図はこの発明による超電導磁石装置の電気回路図、
第2図はこの発明の第1の実施例として外側に保護抵抗
体を設置した超電導磁石の縦断面図、第3図はこの発明
の第2の実施例として第2図における保護抵抗体に冷却
用孔を設けた超電磁石の斜視図、第4図はこの発明の第
3の実施例として保護抵抗体を内側に設置した超電導磁
石の縦断面図、第5図、第6図は夫々従来の超電導磁石
の保護回路を示す図である。FIG. 1 is an electric circuit diagram of a superconducting magnet device according to the present invention,
FIG. 2 is a vertical cross-sectional view of a superconducting magnet with a protective resistor installed on the outside as a first embodiment of the present invention, and FIG. FIG. 4 is a perspective view of a superconducting magnet provided with holes, FIG. 4 is a vertical sectional view of a superconducting magnet with a protective resistor installed inside as a third embodiment of the present invention, and FIGS. FIG. 3 is a diagram showing a protection circuit for a superconducting magnet.
Claims (1)
いて;永久電流スイッチのクエンチに対する保護抵抗体
を超電導巻線に密着して設け、かつこの保護抵抗体は電
気的に逆並列されたダイオードと直列接続されるととも
に前記超電導巻線とは並列接続となるように構成したこ
とを特徴とする超電導磁石装置。 2)特許請求の範囲第1項記載の超電導磁石装置におい
て;円筒体の両端にフランジを有する巻枠に超電導巻線
を巻回し、この外周部に偶数層に分割された保護抵抗体
を巻回して構成したことを特徴とする超電導磁石装置。 3)特許請求の範囲第1項記載の超電導磁石装置におい
て;円筒体の両端にフランジを有する巻枠に偶数層に分
割された保護抵抗体を巻回し、この外周部に超電導巻線
を巻回して構成したことを特徴とする超電導磁石装置。 4)特許請求の範囲第2項および第3項記載の超電導磁
石装置において;偶数層に分割されて巻回された保護抵
抗体は各層それぞれに流れる電流の向きが逆方向となる
ように接続されたことを特徴とする超電導磁石装置。 5)特許請求の範囲第2項記載の超電導磁石装置におい
て;偶数層に分割されて巻回された保護抵抗体は各層を
貫通する複数個の冷却用孔を有することを特徴とする超
電導磁石装置。[Claims] 1) In a superconducting magnet operated using a persistent current switch; a protective resistor against quenching of the persistent current switch is provided in close contact with the superconducting winding, and this protective resistor is electrically connected in antiparallel A superconducting magnet device, characterized in that the superconducting magnet device is configured to be connected in series with the superconducting diode and in parallel with the superconducting winding. 2) In the superconducting magnet device according to claim 1; a superconducting winding is wound around a winding frame having flanges at both ends of a cylindrical body, and a protective resistor divided into an even number of layers is wound around the outer periphery of the winding frame. A superconducting magnet device comprising: 3) In the superconducting magnet device according to claim 1; a protective resistor divided into an even number of layers is wound around a winding frame having flanges at both ends of a cylindrical body, and a superconducting winding is wound around the outer periphery of the winding frame. A superconducting magnet device comprising: 4) In the superconducting magnet device according to claims 2 and 3; the protective resistor is divided into an even number of layers and wound so that the current flowing through each layer is connected in the opposite direction. A superconducting magnet device characterized by: 5) A superconducting magnet device according to claim 2, wherein the protective resistor is divided into an even number of layers and wound and has a plurality of cooling holes penetrating each layer. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23260585A JPS6292416A (en) | 1985-10-18 | 1985-10-18 | Superconductive magnet device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23260585A JPS6292416A (en) | 1985-10-18 | 1985-10-18 | Superconductive magnet device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6292416A true JPS6292416A (en) | 1987-04-27 |
JPH04578B2 JPH04578B2 (en) | 1992-01-08 |
Family
ID=16941969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23260585A Granted JPS6292416A (en) | 1985-10-18 | 1985-10-18 | Superconductive magnet device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6292416A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011071515A (en) * | 2009-09-23 | 2011-04-07 | General Electric Co <Ge> | Passive quench protection circuit for superconducting magnet |
CN103456454A (en) * | 2012-06-04 | 2013-12-18 | 株式会社日立制作所 | Superconducting magnet device |
-
1985
- 1985-10-18 JP JP23260585A patent/JPS6292416A/en active Granted
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011071515A (en) * | 2009-09-23 | 2011-04-07 | General Electric Co <Ge> | Passive quench protection circuit for superconducting magnet |
CN103456454A (en) * | 2012-06-04 | 2013-12-18 | 株式会社日立制作所 | Superconducting magnet device |
Also Published As
Publication number | Publication date |
---|---|
JPH04578B2 (en) | 1992-01-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4295189B2 (en) | Superconducting resistance type current limiter | |
KR100662754B1 (en) | Resistive type superconducting fault current limiter | |
US5093645A (en) | Superconductive switch for conduction cooled superconductive magnet | |
US7649720B2 (en) | Quench protection of HTS superconducting magnets | |
JP2011187524A (en) | High-temperature superconducting parallel conductor, high-temperature superconducting coil using the same, and high-temperature superconducting magnet | |
JP6666274B2 (en) | High temperature superconducting permanent current switch and high temperature superconducting magnet device | |
US4812796A (en) | Quench propagation device for a superconducting magnet | |
JP4933034B2 (en) | Superconducting coil protection device, NMR device and MRI device | |
US5361055A (en) | Persistent protective switch for superconductive magnets | |
US6317303B1 (en) | High-speed superconducting persistent switch | |
JPH0576162B2 (en) | ||
WO2014058871A1 (en) | Fast superconducting switch for superconducting power devices | |
JPS6292416A (en) | Superconductive magnet device | |
US3176195A (en) | Superconducting solenoid | |
US3613006A (en) | Stable superconducting magnet | |
US5105098A (en) | Superconducting power switch | |
JPS62244110A (en) | Superconducting coil device | |
JPH07142773A (en) | Superconducting electromagnet | |
JPH033362B2 (en) | ||
JPS6120303A (en) | Superconductive coil apparatus | |
GB2225164A (en) | Current limiting device | |
JPH08130112A (en) | Superconducting magnet device | |
JP2001119078A (en) | Superconducting current lead | |
JPH04137571A (en) | Permanent current switch | |
JPS61107704A (en) | Method of stabilizing superconductive coil |