JPS6292361A - 相補型半導体装置 - Google Patents
相補型半導体装置Info
- Publication number
- JPS6292361A JPS6292361A JP60232253A JP23225385A JPS6292361A JP S6292361 A JPS6292361 A JP S6292361A JP 60232253 A JP60232253 A JP 60232253A JP 23225385 A JP23225385 A JP 23225385A JP S6292361 A JPS6292361 A JP S6292361A
- Authority
- JP
- Japan
- Prior art keywords
- mos transistor
- channel
- currents
- silicon substrate
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000000295 complement effect Effects 0.000 title claims description 7
- 239000004065 semiconductor Substances 0.000 title claims description 6
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 239000013078 crystal Substances 0.000 claims abstract description 7
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 5
- 238000005468 ion implantation Methods 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- -1 boron ions Chemical class 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 3
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000011229 interlayer Substances 0.000 description 2
- 238000001459 lithography Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000002161 passivation Methods 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000004335 scaling law Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0927—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising a P-well only in the substrate
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
め要約のデータは記録されません。
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は相補型半導体装置に関し、特にC(相補型)M
OSトランジスタに係わる。
OSトランジスタに係わる。
周知の如く、微細なMOSトランジスタでは速度飽和現
象が起り、微細化しても例えばスケーリング則から期待
される程度の高性能が期待できない。従って、同じプロ
セスを用いても多くの電流量が得られる方法が非常に望
まれている。一方、今までNMOSプロセスからの伝統
でCMOSプロセスも(100)面方位をもったシリコ
ン基板表面をもとに構築されていた。この理由としては
、シリコン基板−シリコン酸化膜との界面単位が少ない
こと、及び電子の移動度が高く多くの電流を得ることが
できることが挙げられる。
象が起り、微細化しても例えばスケーリング則から期待
される程度の高性能が期待できない。従って、同じプロ
セスを用いても多くの電流量が得られる方法が非常に望
まれている。一方、今までNMOSプロセスからの伝統
でCMOSプロセスも(100)面方位をもったシリコ
ン基板表面をもとに構築されていた。この理由としては
、シリコン基板−シリコン酸化膜との界面単位が少ない
こと、及び電子の移動度が高く多くの電流を得ることが
できることが挙げられる。
しかしながら、従来技術によれば、以下に示す問題点を
有する。
有する。
■NMOSトランジスタでは、実効チャネル長が1.0
譚以下になると、第2図に示す如く、速度飽和現象が著
しくなり、この飽和速度の面方位依存性が小さいことか
ら、電流量の面方位による差がなくなる。なお、第2図
において、縦軸は単位実効チャネル幅当たりの五極間電
流比(Ion/Weff ra t io、但しく10
0)=1))、横軸は実効チャネル長である。
譚以下になると、第2図に示す如く、速度飽和現象が著
しくなり、この飽和速度の面方位依存性が小さいことか
ら、電流量の面方位による差がなくなる。なお、第2図
において、縦軸は単位実効チャネル幅当たりの五極間電
流比(Ion/Weff ra t io、但しく10
0)=1))、横軸は実効チャネル長である。
■一方、PMOSトランジスタでは、ホールの速度飽和
が比較的起りにくい。従って、実効チャネル長が1.0
譚以下になっても、第3図に示す如くホールの移動度の
差による電流量の面方位依存性が存在し、有効質量の差
で説明されるように(100)面での電流6が一番小さ
い。
が比較的起りにくい。従って、実効チャネル長が1.0
譚以下になっても、第3図に示す如くホールの移動度の
差による電流量の面方位依存性が存在し、有効質量の差
で説明されるように(100)面での電流6が一番小さ
い。
本発明は上記事情に鑑みてなされたもので、従来と比べ
多くの電流量が得られる相補型半導体装置を提供するこ
とを目的とする。
多くの電流量が得られる相補型半導体装置を提供するこ
とを目的とする。
本発明者は、第2図及び第3図の特性図にもとずいて、
以下の点を究明した。
以下の点を究明した。
■NMO8tNMOSトランジスタネル長が1.0p以
下になった場合、0MO8I−ランジスタは(100)
曲以外の面上に形成した方がNMOSトランジスタの電
流量は(100)面並に高く、PMO81〜ランジスタ
は<100)面よりはるかに高い電流量が得られるため
、全体としての電流量が著しく増加する。
下になった場合、0MO8I−ランジスタは(100)
曲以外の面上に形成した方がNMOSトランジスタの電
流量は(100)面並に高く、PMO81〜ランジスタ
は<100)面よりはるかに高い電流量が得られるため
、全体としての電流量が著しく増加する。
■従来、(100)面を用いたもう1つの太きな利点で
ある界面単位の少ないということは、現在の進んだ酸化
技術による界面単位の数そのものの低下と、微細化が進
んでゲート容1(Cox)が増大することによって界面
準位Nssのしきい値に与える影響(ΔVt =QNS
S/C0X)が小さくなったことを考えられると、次第
に利点としての価値がなくなりつつある。
ある界面単位の少ないということは、現在の進んだ酸化
技術による界面単位の数そのものの低下と、微細化が進
んでゲート容1(Cox)が増大することによって界面
準位Nssのしきい値に与える影響(ΔVt =QNS
S/C0X)が小さくなったことを考えられると、次第
に利点としての価値がなくなりつつある。
以上より、本発明者は、従来通り(100)面を使って
NMO8t−ランジスタの実効チャネル長が1.0.i
n以下のCMSt−ランジスタを形成すると、電流量が
多くとれずむしろ(100)曲以外特に(110)面を
用いた方が良いことを究明した。
NMO8t−ランジスタの実効チャネル長が1.0.i
n以下のCMSt−ランジスタを形成すると、電流量が
多くとれずむしろ(100)曲以外特に(110)面を
用いた方が良いことを究明した。
即ち、本発明は、結晶方位が(100)以外の表面を有
する単結晶シリコン基板と、この基板表面に設けられた
チャネル長が1.0譚以下のNチャネル型のMOS ト
ランジスタと、前記基板表面に設けられたPチャネル型
のMOSトランジスタとを具備し、電流量の向上を図っ
たことを骨子とする。
する単結晶シリコン基板と、この基板表面に設けられた
チャネル長が1.0譚以下のNチャネル型のMOS ト
ランジスタと、前記基板表面に設けられたPチャネル型
のMOSトランジスタとを具備し、電流量の向上を図っ
たことを骨子とする。
以下、本発明の一実施例に係るCMOSトランジスタを
製造工程順に第1図(a)〜(C)を参照して説明する
。
製造工程順に第1図(a)〜(C)を参照して説明する
。
(1)まず、(110)を表面として持つ比抵抗2Ω・
cutのN型のシリコン基板1にピーク濃度2×101
6cm′2で接合深さ3pnのPウェル2を形成した。
cutのN型のシリコン基板1にピーク濃度2×101
6cm′2で接合深さ3pnのPウェル2を形成した。
つづいて、選択酸化法により、前記基板1の表面にフィ
ールド酸化II 3を所定の方法により形成したく第1
図(a)図示)。
ールド酸化II 3を所定の方法により形成したく第1
図(a)図示)。
(2)次に、前記基板1及びPウェル2の表面に厚さ2
00人のゲート酸化膜4を形成した。つづいて、リソグ
ラフィー技術によりNチャネル領域をレジスト(図示せ
ず)で覆い、Pチャネル領域にパンチスルー防止のため
のイオン注入即ちリンを加″a電圧280KeV、ドー
ズ暴6X1012cII’の条件下でイオン注入し、更
にしきい値合せのためのイオン注入即ちボロンイオンを
加速電圧35KeV、ドーズff15X1012a4の
条件でイオン注入した。次いで、レジストを除去し、リ
ソグラフィー技術によりPチャネル領域をレジストで覆
い、Nチャネル領域にパンチスルー防止のためのイオン
注入即ちボロンイオンを加速電圧80KeV、ドーズ量
6X1012cm4の条件でイオン注入し、ひきつづき
しきい値合せのためのイオン注入即ちボロンを加速電圧
35KeV、ドーズ量lX1012crIi−’の条件
でイオン注入した。更に、レジストを除去し、全面に厚
さ4000人の多結晶シリコン層を(図示せず)をCV
D法により堆積した。この後、この多結晶シリコン層に
900℃で30分間POCβ3中でリンを拡散し、パタ
ーニングして多結晶シリコンからなるゲート電極5を形
成した。ひきつづき、Nチャネル領域をレジストで覆い
、セルファラインでPチャネル領域にBF2+イオンを
加速電圧50KeV、ドーズ量5X 10” cIR−
2の条件でイオン注入した。更に、レジストを除去した
後、Pチャネル領域をレジストで覆い、Nチャネル領域
にAs+イオンを加速電圧50KeV、ドーズ15X
10” ’ cttt′2の条件でイオン注入したこの
後、レジストを除去し、900℃、N2で30分間アニ
ールし、活性化してPウェル2にN′″型のソース・ド
レイン領域6.7を形成するとともに、基板1にP+型
のソース・ドレイン領域8.9を形成した(第1図(b
)図示)。
00人のゲート酸化膜4を形成した。つづいて、リソグ
ラフィー技術によりNチャネル領域をレジスト(図示せ
ず)で覆い、Pチャネル領域にパンチスルー防止のため
のイオン注入即ちリンを加″a電圧280KeV、ドー
ズ暴6X1012cII’の条件下でイオン注入し、更
にしきい値合せのためのイオン注入即ちボロンイオンを
加速電圧35KeV、ドーズff15X1012a4の
条件でイオン注入した。次いで、レジストを除去し、リ
ソグラフィー技術によりPチャネル領域をレジストで覆
い、Nチャネル領域にパンチスルー防止のためのイオン
注入即ちボロンイオンを加速電圧80KeV、ドーズ量
6X1012cm4の条件でイオン注入し、ひきつづき
しきい値合せのためのイオン注入即ちボロンを加速電圧
35KeV、ドーズ量lX1012crIi−’の条件
でイオン注入した。更に、レジストを除去し、全面に厚
さ4000人の多結晶シリコン層を(図示せず)をCV
D法により堆積した。この後、この多結晶シリコン層に
900℃で30分間POCβ3中でリンを拡散し、パタ
ーニングして多結晶シリコンからなるゲート電極5を形
成した。ひきつづき、Nチャネル領域をレジストで覆い
、セルファラインでPチャネル領域にBF2+イオンを
加速電圧50KeV、ドーズ量5X 10” cIR−
2の条件でイオン注入した。更に、レジストを除去した
後、Pチャネル領域をレジストで覆い、Nチャネル領域
にAs+イオンを加速電圧50KeV、ドーズ15X
10” ’ cttt′2の条件でイオン注入したこの
後、レジストを除去し、900℃、N2で30分間アニ
ールし、活性化してPウェル2にN′″型のソース・ド
レイン領域6.7を形成するとともに、基板1にP+型
のソース・ドレイン領域8.9を形成した(第1図(b
)図示)。
(3)次に、全面にCVD法により層間絶縁膜としての
厚さ5000人のSiO2膜1o全1oした。つづいて
、前記ソース・ドレイン領域6〜9上の5i02膜10
を選択的に開口し、コンタクトホール11・・・を形成
した。次いで、全面に厚さ8000人のへ2層(図示せ
ず)をスパッタ法により堆積した後、パターニングして
Affi配線12・・・を形成した。更に、パッシベー
ション膜としテノ厚さ1200OA(DPSGBI;A
3をCVD法により堆積しCMOSトランジスタを製造
した(第1図(c)図示)。
厚さ5000人のSiO2膜1o全1oした。つづいて
、前記ソース・ドレイン領域6〜9上の5i02膜10
を選択的に開口し、コンタクトホール11・・・を形成
した。次いで、全面に厚さ8000人のへ2層(図示せ
ず)をスパッタ法により堆積した後、パターニングして
Affi配線12・・・を形成した。更に、パッシベー
ション膜としテノ厚さ1200OA(DPSGBI;A
3をCVD法により堆積しCMOSトランジスタを製造
した(第1図(c)図示)。
本発明に係るCMO8+−ランジスタは、第1図(C)
に示す如く、結晶方位(110)を表面としてもつN型
の単結晶シリコン基板1にPウェル2を設け、このPウ
ェル2表面にN+型のソース・ドレイン領域6.7及び
ゲート電極5等からなるNチャネル型MOSトランジス
タを設け、更に前記基板1表面にP+型のソース・ドレ
イン領域8.9及びゲート電極5等からなるPチャネル
MOSトランジスタを設けた構造となっている。従って
、本発明によれば、速度飽和によってNチ1アネルMO
Sトランジスタの電流量を(100)面と同等にし、か
つ著しい速度飽和の生じないPチャネルMOSトランジ
スタの電流量を(100)面以上にして全体としての電
流量を従来よりも多くできる。
に示す如く、結晶方位(110)を表面としてもつN型
の単結晶シリコン基板1にPウェル2を設け、このPウ
ェル2表面にN+型のソース・ドレイン領域6.7及び
ゲート電極5等からなるNチャネル型MOSトランジス
タを設け、更に前記基板1表面にP+型のソース・ドレ
イン領域8.9及びゲート電極5等からなるPチャネル
MOSトランジスタを設けた構造となっている。従って
、本発明によれば、速度飽和によってNチ1アネルMO
Sトランジスタの電流量を(100)面と同等にし、か
つ著しい速度飽和の生じないPチャネルMOSトランジ
スタの電流量を(100)面以上にして全体としての電
流量を従来よりも多くできる。
なお、上記実施例では、シリコン基板の表面の結晶方位
が(110)である場合について述べたが、これに限定
されるものではない。例えば、(211)、(322)
等でもよい。
が(110)である場合について述べたが、これに限定
されるものではない。例えば、(211)、(322)
等でもよい。
以上詳述した如く本発明によれば、従来と比べ多くの電
流量を得られる微細な相補型半導体装置を提供できる。
流量を得られる微細な相補型半導体装置を提供できる。
第1図(a)〜(C)は本発明の一実施例に係るCMO
Sトランジスタを製造工程順に示す断面図、第2図は従
来のNMOSトランジスタにおける単位実効チャネル幅
当りの方接電流比と実効チャネル比との関係を示す特性
図、第3図は従来のPMOSトランジスタにおける単位
実効チャネル幅当りの方接間電流比と実効チャネル長と
の関係を示ず特性図である。 1・・・N型の単結晶シリコン基板、2・・・Pウェル
、3・・・フィールド酸化膜、4・・・ゲート酸化膜、
5・・・ゲート電極、6.8・・・ソース領域、7.9
・・・ドレイン領域、10・・・S!02膜(層間絶縁
膜)、11・・・コンタクトホール、12・・・Aβ配
線、13・・・PSG膜(パッシベーション膜)。 出願人代理人 弁理士 鈴江武彦 第1図 弔3凶
Sトランジスタを製造工程順に示す断面図、第2図は従
来のNMOSトランジスタにおける単位実効チャネル幅
当りの方接電流比と実効チャネル比との関係を示す特性
図、第3図は従来のPMOSトランジスタにおける単位
実効チャネル幅当りの方接間電流比と実効チャネル長と
の関係を示ず特性図である。 1・・・N型の単結晶シリコン基板、2・・・Pウェル
、3・・・フィールド酸化膜、4・・・ゲート酸化膜、
5・・・ゲート電極、6.8・・・ソース領域、7.9
・・・ドレイン領域、10・・・S!02膜(層間絶縁
膜)、11・・・コンタクトホール、12・・・Aβ配
線、13・・・PSG膜(パッシベーション膜)。 出願人代理人 弁理士 鈴江武彦 第1図 弔3凶
Claims (2)
- (1)結晶方位が(100)以外の表面を有する単結晶
シリコン基板と、この基板表面に設けられた実効チャネ
ル長が1.0μm以下のNチャネル型MOSトランジス
タと、前記基板表面に設けられたPチャネル型MOSト
ランジスタとを具備することを特徴とする相補型半導体
装置。 - (2)単結晶シリコン基板の表面の結晶方位が(110
)であることを特徴とする特許請求の範囲第1項記載の
相補型半導体装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60232253A JPS6292361A (ja) | 1985-10-17 | 1985-10-17 | 相補型半導体装置 |
US06/884,962 US4857986A (en) | 1985-10-17 | 1986-07-14 | Short channel CMOS on 110 crystal plane |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60232253A JPS6292361A (ja) | 1985-10-17 | 1985-10-17 | 相補型半導体装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6292361A true JPS6292361A (ja) | 1987-04-27 |
Family
ID=16936374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60232253A Pending JPS6292361A (ja) | 1985-10-17 | 1985-10-17 | 相補型半導体装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US4857986A (ja) |
JP (1) | JPS6292361A (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6911383B2 (en) | 2003-06-26 | 2005-06-28 | International Business Machines Corporation | Hybrid planar and finFET CMOS devices |
US7148559B2 (en) | 2003-06-20 | 2006-12-12 | International Business Machines Corporation | Substrate engineering for optimum CMOS device performance |
JP2007027677A (ja) * | 2005-06-17 | 2007-02-01 | Tohoku Univ | 半導体装置 |
US7329923B2 (en) | 2003-06-17 | 2008-02-12 | International Business Machines Corporation | High-performance CMOS devices on hybrid crystal oriented substrates |
US20080070335A1 (en) * | 1998-09-04 | 2008-03-20 | Semiconductor Energy Laboratory Co., Ltd. | Method of Fabricating A Semiconductor Device |
Families Citing this family (54)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR910002311B1 (ko) * | 1987-02-27 | 1991-04-11 | 가부시기가이샤 히다찌세이사꾸쇼 | 초전도 디바이스 |
JP3038939B2 (ja) * | 1991-02-08 | 2000-05-08 | 日産自動車株式会社 | 半導体装置 |
JP3017860B2 (ja) * | 1991-10-01 | 2000-03-13 | 株式会社東芝 | 半導体基体およびその製造方法とその半導体基体を用いた半導体装置 |
US5719065A (en) | 1993-10-01 | 1998-02-17 | Semiconductor Energy Laboratory Co., Ltd. | Method for manufacturing semiconductor device with removable spacers |
TW374196B (en) * | 1996-02-23 | 1999-11-11 | Semiconductor Energy Lab Co Ltd | Semiconductor thin film and method for manufacturing the same and semiconductor device and method for manufacturing the same |
US5729045A (en) * | 1996-04-02 | 1998-03-17 | Advanced Micro Devices, Inc. | Field effect transistor with higher mobility |
US6686623B2 (en) | 1997-11-18 | 2004-02-03 | Semiconductor Energy Laboratory Co., Ltd. | Nonvolatile memory and electronic apparatus |
JPH11233769A (ja) * | 1998-02-12 | 1999-08-27 | Semiconductor Energy Lab Co Ltd | 半導体装置およびその作製方法 |
US6114726A (en) * | 1998-03-11 | 2000-09-05 | International Rectifier Corp. | Low voltage MOSFET |
JP2000012864A (ja) | 1998-06-22 | 2000-01-14 | Semiconductor Energy Lab Co Ltd | 半導体装置の作製方法 |
US6271101B1 (en) | 1998-07-29 | 2001-08-07 | Semiconductor Energy Laboratory Co., Ltd. | Process for production of SOI substrate and process for production of semiconductor device |
US6483171B1 (en) | 1999-08-13 | 2002-11-19 | Micron Technology, Inc. | Vertical sub-micron CMOS transistors on (110), (111), (311), (511), and higher order surfaces of bulk, SOI and thin film structures and method of forming same |
US6436748B1 (en) * | 1999-08-31 | 2002-08-20 | Micron Technology, Inc. | Method for fabricating CMOS transistors having matching characteristics and apparatus formed thereby |
US6383871B1 (en) | 1999-08-31 | 2002-05-07 | Micron Technology, Inc. | Method of forming multiple oxide thicknesses for merged memory and logic applications |
US6245615B1 (en) * | 1999-08-31 | 2001-06-12 | Micron Technology, Inc. | Method and apparatus on (110) surfaces of silicon structures with conduction in the <110> direction |
US6830976B2 (en) | 2001-03-02 | 2004-12-14 | Amberwave Systems Corproation | Relaxed silicon germanium platform for high speed CMOS electronics and high speed analog circuits |
US6967351B2 (en) * | 2001-12-04 | 2005-11-22 | International Business Machines Corporation | Finfet SRAM cell using low mobility plane for cell stability and method for forming |
US6657259B2 (en) * | 2001-12-04 | 2003-12-02 | International Business Machines Corporation | Multiple-plane FinFET CMOS |
JP4265882B2 (ja) * | 2001-12-13 | 2009-05-20 | 忠弘 大見 | 相補型mis装置 |
US6864520B2 (en) * | 2002-04-04 | 2005-03-08 | International Business Machines Corporation | Germanium field effect transistor and method of fabricating the same |
US6995430B2 (en) | 2002-06-07 | 2006-02-07 | Amberwave Systems Corporation | Strained-semiconductor-on-insulator device structures |
US6946371B2 (en) | 2002-06-10 | 2005-09-20 | Amberwave Systems Corporation | Methods of fabricating semiconductor structures having epitaxially grown source and drain elements |
US6982474B2 (en) | 2002-06-25 | 2006-01-03 | Amberwave Systems Corporation | Reacted conductive gate electrodes |
US8080459B2 (en) * | 2002-09-24 | 2011-12-20 | Vishay-Siliconix | Self aligned contact in a semiconductor device and method of fabricating the same |
US6794718B2 (en) * | 2002-12-19 | 2004-09-21 | International Business Machines Corporation | High mobility crystalline planes in double-gate CMOS technology |
US6960781B2 (en) | 2003-03-07 | 2005-11-01 | Amberwave Systems Corporation | Shallow trench isolation process |
US6902962B2 (en) * | 2003-04-04 | 2005-06-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | Silicon-on-insulator chip with multiple crystal orientations |
US7319258B2 (en) * | 2003-10-31 | 2008-01-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Semiconductor-on-insulator chip with<100>-oriented transistors |
US7045407B2 (en) * | 2003-12-30 | 2006-05-16 | Intel Corporation | Amorphous etch stop for the anisotropic etching of substrates |
US7208815B2 (en) * | 2004-05-28 | 2007-04-24 | Taiwan Semiconductor Manufacturing Company, Ltd. | CMOS logic gate fabricated on hybrid crystal orientations and method of forming thereof |
US7186622B2 (en) * | 2004-07-15 | 2007-03-06 | Infineon Technologies Ag | Formation of active area using semiconductor growth process without STI integration |
US7354814B2 (en) * | 2004-09-23 | 2008-04-08 | Freescale Semiconductor, Inc. | Semiconductor process with first transistor types oriented in a first plane and second transistor types oriented in a second plane |
WO2006038305A1 (ja) * | 2004-10-01 | 2006-04-13 | Tadahiro Ohmi | 半導体装置およびその製造方法 |
US7298009B2 (en) * | 2005-02-01 | 2007-11-20 | Infineon Technologies Ag | Semiconductor method and device with mixed orientation substrate |
US9685524B2 (en) | 2005-03-11 | 2017-06-20 | Vishay-Siliconix | Narrow semiconductor trench structure |
US7432149B2 (en) * | 2005-06-23 | 2008-10-07 | Taiwan Semiconductor Manufacturing Company, Ltd. | CMOS on SOI substrates with hybrid crystal orientations |
US7611937B2 (en) * | 2005-06-24 | 2009-11-03 | Taiwan Semiconductor Manufacturing Company, Ltd. | High performance transistors with hybrid crystal orientations |
US7737532B2 (en) * | 2005-09-06 | 2010-06-15 | Taiwan Semiconductor Manufacturing Company, Ltd. | Hybrid Schottky source-drain CMOS for high mobility and low barrier |
TWI489557B (zh) * | 2005-12-22 | 2015-06-21 | Vishay Siliconix | 高移動率p-通道溝槽及平面型空乏模式的功率型金屬氧化物半導體場效電晶體 |
US8530355B2 (en) | 2005-12-23 | 2013-09-10 | Infineon Technologies Ag | Mixed orientation semiconductor device and method |
US20070190795A1 (en) * | 2006-02-13 | 2007-08-16 | Haoren Zhuang | Method for fabricating a semiconductor device with a high-K dielectric |
US8409954B2 (en) | 2006-03-21 | 2013-04-02 | Vishay-Silconix | Ultra-low drain-source resistance power MOSFET |
US7396407B2 (en) * | 2006-04-18 | 2008-07-08 | International Business Machines Corporation | Trench-edge-defect-free recrystallization by edge-angle-optimized solid phase epitaxy: method and applications to hybrid orientation substrates |
US9437729B2 (en) | 2007-01-08 | 2016-09-06 | Vishay-Siliconix | High-density power MOSFET with planarized metalization |
US9947770B2 (en) * | 2007-04-03 | 2018-04-17 | Vishay-Siliconix | Self-aligned trench MOSFET and method of manufacture |
US9484451B2 (en) | 2007-10-05 | 2016-11-01 | Vishay-Siliconix | MOSFET active area and edge termination area charge balance |
US9443974B2 (en) * | 2009-08-27 | 2016-09-13 | Vishay-Siliconix | Super junction trench power MOSFET device fabrication |
US9425306B2 (en) | 2009-08-27 | 2016-08-23 | Vishay-Siliconix | Super junction trench power MOSFET devices |
US9431530B2 (en) | 2009-10-20 | 2016-08-30 | Vishay-Siliconix | Super-high density trench MOSFET |
US9412883B2 (en) | 2011-11-22 | 2016-08-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Methods and apparatus for MOS capacitors in replacement gate process |
US9842911B2 (en) | 2012-05-30 | 2017-12-12 | Vishay-Siliconix | Adaptive charge balanced edge termination |
US9887259B2 (en) | 2014-06-23 | 2018-02-06 | Vishay-Siliconix | Modulated super junction power MOSFET devices |
WO2016028944A1 (en) | 2014-08-19 | 2016-02-25 | Vishay-Siliconix | Super-junction metal oxide semiconductor field effect transistor |
CN115483211A (zh) | 2014-08-19 | 2022-12-16 | 维西埃-硅化物公司 | 电子电路 |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6170748A (ja) * | 1984-09-14 | 1986-04-11 | Hitachi Ltd | 半導体装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3860948A (en) * | 1964-02-13 | 1975-01-14 | Hitachi Ltd | Method for manufacturing semiconductor devices having oxide films and the semiconductor devices manufactured thereby |
US3476991A (en) * | 1967-11-08 | 1969-11-04 | Texas Instruments Inc | Inversion layer field effect device with azimuthally dependent carrier mobility |
US3634737A (en) * | 1969-02-07 | 1972-01-11 | Tokyo Shibaura Electric Co | Semiconductor device |
US3603848A (en) * | 1969-02-27 | 1971-09-07 | Tokyo Shibaura Electric Co | Complementary field-effect-type semiconductor device |
US3969753A (en) * | 1972-06-30 | 1976-07-13 | Rockwell International Corporation | Silicon on sapphire oriented for maximum mobility |
US4268848A (en) * | 1979-05-07 | 1981-05-19 | Motorola, Inc. | Preferred device orientation on integrated circuits for better matching under mechanical stress |
US4768076A (en) * | 1984-09-14 | 1988-08-30 | Hitachi, Ltd. | Recrystallized CMOS with different crystal planes |
-
1985
- 1985-10-17 JP JP60232253A patent/JPS6292361A/ja active Pending
-
1986
- 1986-07-14 US US06/884,962 patent/US4857986A/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6170748A (ja) * | 1984-09-14 | 1986-04-11 | Hitachi Ltd | 半導体装置 |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080070335A1 (en) * | 1998-09-04 | 2008-03-20 | Semiconductor Energy Laboratory Co., Ltd. | Method of Fabricating A Semiconductor Device |
US9070604B2 (en) * | 1998-09-04 | 2015-06-30 | Semiconductor Energy Laboratory Co., Ltd. | Method of fabricating a semiconductor device |
US7329923B2 (en) | 2003-06-17 | 2008-02-12 | International Business Machines Corporation | High-performance CMOS devices on hybrid crystal oriented substrates |
US7713807B2 (en) | 2003-06-17 | 2010-05-11 | International Business Machines Corporation | High-performance CMOS SOI devices on hybrid crystal-oriented substrates |
US7148559B2 (en) | 2003-06-20 | 2006-12-12 | International Business Machines Corporation | Substrate engineering for optimum CMOS device performance |
US7482216B2 (en) | 2003-06-20 | 2009-01-27 | International Business Machines Corporation | Substrate engineering for optimum CMOS device performance |
US6911383B2 (en) | 2003-06-26 | 2005-06-28 | International Business Machines Corporation | Hybrid planar and finFET CMOS devices |
US7250658B2 (en) | 2003-06-26 | 2007-07-31 | International Business Machines Corporation | Hybrid planar and FinFET CMOS devices |
JP2007027677A (ja) * | 2005-06-17 | 2007-02-01 | Tohoku Univ | 半導体装置 |
Also Published As
Publication number | Publication date |
---|---|
US4857986A (en) | 1989-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6292361A (ja) | 相補型半導体装置 | |
JPH08250728A (ja) | 電界効果型半導体装置及びその製造方法 | |
JPS6318867B2 (ja) | ||
JPS63304657A (ja) | 半導体装置の製造方法 | |
JPS60116165A (ja) | 超高密度集積回路のmosトランジスタの製造方法 | |
JP2004508717A (ja) | 薄いゲート酸化物MOSFETsでのゲート誘起ドレイン漏洩(GIDL)電流を減らす方法およびデバイス | |
JP3200231B2 (ja) | 半導体装置の製造方法 | |
JPS63219152A (ja) | Mos集積回路の製造方法 | |
JPS62149163A (ja) | 相補型mos集積回路の製造方法 | |
JPH0582067B2 (ja) | ||
JPH08293557A (ja) | 半導体装置及びその製造方法 | |
JPH07193248A (ja) | 電界効果型トランジスタ及び製造方法 | |
JPS6052593B2 (ja) | 半導体装置の製造方法 | |
JPH0472770A (ja) | 半導体装置の製造方法 | |
JPH065754B2 (ja) | 半導体装置 | |
JPS63142865A (ja) | 半導体装置の製造方法 | |
JPH02174236A (ja) | 半導体装置の製造方法 | |
JP3120428B2 (ja) | Mos型半導体装置の製造方法 | |
JPH0221648A (ja) | 半導体装置の製造方法 | |
JPH01138745A (ja) | 半導体装置の製造方法 | |
JPH0424877B2 (ja) | ||
JPH04346233A (ja) | Mosトランジスタおよびその製造方法 | |
JPS60120572A (ja) | 半導体装置の製造方法 | |
JPS60110169A (ja) | 半導体装置の製造方法 | |
JPH0793384B2 (ja) | 半導体装置の製造方法 |