JPS6283324A - Production of optical glass - Google Patents

Production of optical glass

Info

Publication number
JPS6283324A
JPS6283324A JP22178185A JP22178185A JPS6283324A JP S6283324 A JPS6283324 A JP S6283324A JP 22178185 A JP22178185 A JP 22178185A JP 22178185 A JP22178185 A JP 22178185A JP S6283324 A JPS6283324 A JP S6283324A
Authority
JP
Japan
Prior art keywords
optical glass
vapor
base material
substrate
mixed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22178185A
Other languages
Japanese (ja)
Inventor
Shinroku Saito
斉藤 進六
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KOGYO KAIHATSU KENKYUSHO
Original Assignee
KOGYO KAIHATSU KENKYUSHO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KOGYO KAIHATSU KENKYUSHO filed Critical KOGYO KAIHATSU KENKYUSHO
Priority to JP22178185A priority Critical patent/JPS6283324A/en
Publication of JPS6283324A publication Critical patent/JPS6283324A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B19/00Other methods of shaping glass
    • C03B19/14Other methods of shaping glass by gas- or vapour- phase reaction processes
    • C03B19/1415Reactant delivery systems

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Glass Compositions (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain optical glass consisting of optional components easily by vitrifying a mixture of several kinds of oxide constituting the target optical glass on the surface of a base body by the physical vapor deposition process. CONSTITUTION:Plural kinds of oxide constituting target optical glass are evaporated separately by heating at above each evaporating temp. The plural kinds of the vapor are mixed in a mixing zone maintaining each vapor in the gaseous state and the gaseous mixture is deposited on a base material held at below a coagulation temp. of the above described optical glass in a vacuum vessel. It is preferred that each vapor evaporated from the above-described evaporation source is carried by carrier gas to a mixing zone where they are allowed to contact with the surface of the base material after they are mixed. Furthermore, it is preferred that the flow of the vapor is scanned on the surface of the base material if the area of the base material is large.

Description

【発明の詳細な説明】 この発明は、光学ガラスを製造する方法に関し、とくに
レンズ系の色収差を除くのに有効な光学特性を有する新
種光学ガラスを通常の溶融によらずに製造する方法に関
するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing optical glass, and in particular to a method for manufacturing a new type of optical glass that has optical properties effective for eliminating chromatic aberration in a lens system without using conventional melting. It is.

レンズ系の色収差は、よく知られているように、Σ−□
=0 kfk (ここでfkはレンズ系の第に番目のレンズの焦点距離
、νはアツベ数) の条件を満足させることで除くことができる。また像面
の彎曲と色収差とを同時に除くためには。
As is well known, the chromatic aberration of a lens system is Σ−□
It can be eliminated by satisfying the following condition: =0 kfk (where fk is the focal length of the th lens in the lens system, and ν is the Abbe number). Also, in order to simultaneously eliminate curvature of the image plane and chromatic aberration.

構成レンズが2枚の場合を例にとると、n2  ν2 (ここでnは屈折率) の条件も満た泗なければならない。このため各々が異な
った屈折率とアツベ数全もつきわめて多種類の光学ガラ
スが必要とされ、屈折率とアツベ数の組合せが異なる新
種ガラスの開発が活発である。
For example, if there are two constituent lenses, the condition n2 ν2 (where n is the refractive index) must also be satisfied. For this reason, an extremely wide variety of optical glasses are required, each having a different refractive index and Abbe number, and new types of glasses with different combinations of refractive index and Abbe number are being actively developed.

とくに屈折率が太きく1分散の小さい特殊な光学特性全
方するものは、レンズ系の色収差を除くためのレンズの
材料としてきわめて重要である。第1図に線で囲まれた
領域Aは、現在までに得られている新種光学ガラスの光
学特性の分布範囲を示し、この領域外の光学特性全方す
る光学ガラスは。
In particular, materials that have special optical properties such as a large refractive index and a small unidispersion are extremely important as lens materials for eliminating chromatic aberration in lens systems. Region A surrounded by a line in FIG. 1 shows the distribution range of the optical properties of new types of optical glasses that have been obtained to date, and optical glasses that have all the optical properties outside this region.

その製造がきわめて困難であるとされている。その理由
の一つは、各成分をルンボで溶融し、ついで冷却固化さ
せてガラス化きせる際に、ガラス化し得る各成分の配合
比がきわめて狭い範囲に限定されることによる。たとえ
ば20%B205−La20、系光学ガラスの場合、ガ
ラス化し得る各成分の配合比は、第2図の状態図中に領
域Bで示した狭い範囲内に限定さnることが知られてい
る。またこのガラス化領域内であっても、溶融および徐
冷時の温度φ件、fcとえば冷却時、ルツボ内で固化す
るガラスブロック内に不均一な歪が残り易いことなど、
その制御が難しく、失透をきたす危険性が大ぎい。
Its production is said to be extremely difficult. One of the reasons for this is that when each component is melted in a rumbo and then cooled and solidified to be vitrified, the blending ratio of each component that can be vitrified is limited to an extremely narrow range. For example, in the case of a 20% B205-La20 system optical glass, it is known that the blending ratio of each component that can be vitrified is limited to a narrow range shown by region B in the phase diagram in Figure 2. . Furthermore, even within this vitrification region, the temperature during melting and slow cooling, fc, for example, during cooling, non-uniform strain tends to remain in the glass block solidified in the crucible.
It is difficult to control and there is a great risk of devitrification.

この発明は、任意の成分からなる光学ガラスを製造する
際に、きわめて安定にガラス化させることができる方法
を提供することを目的としている。
An object of the present invention is to provide a method that enables extremely stable vitrification when producing optical glass made of arbitrary components.

この発明方法では2種々の酸化物の混合物を主体とする
光学ガラス原料は、ルツボ内での溶融によらない方法、
すなわち物理的蒸着法(PVD法)によって基体の表面
上でガラス化される。PVD法による蒸着層の形成は、
各成分に対応する蒸発源から蒸発した分子が空間で均一
に混合されたのちに基体に付着して瞬時に固化するとい
う過程で形成されるので2ルツボ内での溶融、固化によ
る場合と異なシ、内部歪を生じ難く、ガラス化が確実に
行わnるとともに、失透などの好ましくない現象が起る
危険性は極めて小さくなる。
In the method of this invention, an optical glass raw material mainly consisting of a mixture of two different oxides is produced by a method that does not involve melting in a crucible;
That is, it is vitrified on the surface of the substrate by a physical vapor deposition method (PVD method). The formation of the vapor deposited layer by the PVD method is as follows:
It is formed through the process in which the molecules evaporated from the evaporation source corresponding to each component are mixed uniformly in space and then attached to the substrate and instantly solidified, so it is different from the case where the molecules are melted and solidified in two crucibles. , internal distortion is less likely to occur, vitrification is reliably performed, and the risk of undesirable phenomena such as devitrification occurring is extremely small.

又、この蒸着の進行にともなって各原料混合比をたとえ
ばコンピュータコントロールで変化させることによυ、
蒸着し次ガラス固体内の組成を変化させ、これによって
屈折率とアンベ数?適宜変化させることも可能である。
In addition, by changing the mixing ratio of each raw material as the vapor deposition progresses, for example, by computer control, υ,
After vapor deposition, the composition within the glass solid is changed, thereby changing the refractive index and ambe number? It is also possible to change it appropriately.

そしてこの場合には。And in this case.

ガラス表面を曲面とする必要がなく、単なる平面板でも
従来のレンズと同じ機能を発揮させる可能性をももって
いる。
There is no need for the glass surface to be curved, and even a simple flat plate has the potential to perform the same functions as conventional lenses.

PVD法による蒸着層の形成は、この分野で一般に知ら
れている技術を適用して行うことができるが、光学ガラ
スの製造に特有な要素として、蒸発源の数が原料成分の
種類の数と同じたけ必要であること、およびこれらの蒸
発源から蒸発させた各成分の蒸気を所望の光学ガラスの
組成に応じて正確な比率で混合することとがある。
Formation of the evaporation layer by the PVD method can be performed by applying techniques generally known in this field, but as a factor specific to the production of optical glass, the number of evaporation sources is dependent on the number of types of raw material components. The same amount may be required, and the vapors of each component evaporated from these evaporation sources may be mixed in precise proportions depending on the composition of the desired optical glass.

このような要求を満足させる手段として種々のものが考
えられるが、−引金あげると、各成分を相互に隔離した
状態に保持した複数の蒸発源を用意し、各蒸発源金レー
ザあるいはマイクロウェーブなどの加熱手段で加熱する
ことにより各成分を蒸発させ、この発生し念蒸気を適当
なキャリアガスで混合領域まで運び、この混合領域で各
成分を混合したのち、得られる光学ガラスの凝固点以下
の温度に保持された基体の表面に接触させるという手段
を採用することができる。各成分の混合比率の制御は、
レーザあるいはマイクロウェーブで加熱さnる蒸発源の
温度を厳密に制御して各蒸発源の蒸発t i所定の値に
保持することによって、あるいは各蒸発源から発生した
蒸気?混合領域に運ぶキャリアガスの流量を制御するこ
とによって実現できる〇 蒸着層が形成される基体は、熱膨張率が小さく。
Various methods can be considered to satisfy these requirements, but one of them is to prepare multiple evaporation sources that keep each component isolated from each other, and to use a gold laser or microwave for each evaporation source. Each component is evaporated by heating with a heating means such as, and the generated vapor is transported to a mixing region with an appropriate carrier gas. After mixing each component in this mixing region, the resulting optical glass has a temperature below the freezing point. A method of contacting the surface of a substrate maintained at a temperature can be adopted. Control of the mixing ratio of each component is
By strictly controlling the temperature of the evaporation sources heated by laser or microwave to maintain the evaporation t i of each evaporation source at a predetermined value, or by controlling the temperature of the evaporation source heated by laser or microwave, or by controlling the temperature of the evaporation source heated by each evaporation source. This can be achieved by controlling the flow rate of the carrier gas delivered to the mixing region.〇The substrate on which the deposited layer is formed has a small coefficient of thermal expansion.

高温で化学的に安定な物質からなるもので、最も好まし
い基体は白金板である。基体の面積が比較的小さい場合
には、混合領域で混合されたガスの流れ(ビーム)をこ
の基体の表面の中心に向けるだけで均一な厚さの蒸着層
が得られるが、面積の大ぎい蒸着層を得る几めに面積の
大ぎい基体が使用された場合には、この基体の表面をビ
ームでスキャンさせてもよい。
The substrate is made of a substance that is chemically stable at high temperatures, and the most preferred substrate is a platinum plate. If the area of the substrate is relatively small, a deposited layer of uniform thickness can be obtained by simply directing the flow (beam) of the gases mixed in the mixing region to the center of the surface of this substrate, but if the area is large, If a large-area substrate is used to obtain the deposited layer, the surface of this substrate may be scanned with the beam.

以上のよりにこの発明によれば、所望の組成の光学ガラ
スが蒸気から基体上に固体の蒸着層として形成されるの
で、Jvツボ内で溶融、固化させる方法ではガラス化が
難しかった組成の場合にも。
As described above, according to the present invention, optical glass of a desired composition is formed from vapor as a solid vapor deposited layer on a substrate, so that even if the composition is difficult to vitrify using the method of melting and solidifying in a JV pot, Also.

失透などの不都合を伴なうことなく容易にガラス化させ
ることができる。
It can be easily vitrified without causing any disadvantages such as devitrification.

さらに実験の結果によれば、従来の方法ではガラス化が
不可能であった組成の光学ガラスも容易に製造できるこ
とが判明した。たとえば第2図に示した20%B  O
−La203系の状態図において、ガラス化領域Bを外
れた組成である20%BaO−20%Ta  O−20
%La20.−40%ThO2(モル比)のものも完全
なガラス化状態とすることができた(第2図中の0点)
。このことは、簗1図に示した領域Aを大きく外れた高
屈折率低分散、あるいは低屈折率分散大の特性を有する
光学ガラスを得ることも可能であることを意味している
Furthermore, the results of experiments revealed that optical glasses with compositions that could not be vitrified using conventional methods can be easily produced. For example, the 20% B O shown in Figure 2
-20%BaO-20%TaO-20, which is a composition outside the vitrification region B in the phase diagram of the La203 system.
%La20. -40% ThO2 (molar ratio) was also able to be completely vitrified (point 0 in Figure 2).
. This means that it is also possible to obtain an optical glass having characteristics of high refractive index, low dispersion, or low refractive index and large dispersion, which are far outside the region A shown in Figure 1.

実施例 B2O5、Ta205.La2O3、Th02にそれぞ
れ収容した気密容器全用意し、各容器の内容物をマイク
ロウェーブで加熱して蒸発させ、ついでアルゴンをキャ
リアガスとして、各容器内の酸化物蒸気を真空容器内の
混合パイプに供給した。各容器から混合パイプにガスを
導くパイプには、流量調節機構が設けられ、B2O3:
Ta205:La2O5:ThO2のモル混合比が20
:20:20:40となるように流量が調節され几。
Example B2O5, Ta205. Prepare all airtight containers containing La2O3 and Th02, heat the contents of each container with microwaves to evaporate, and then use argon as a carrier gas to transfer the oxide vapor in each container to the mixing pipe in the vacuum container. supplied. A flow rate adjustment mechanism is provided on the pipe that leads gas from each container to the mixing pipe, and B2O3:
The molar mixing ratio of Ta205:La2O5:ThO2 is 20
The flow rate was adjusted so that the ratio was 20:20:40.

真空容器内には、10mX10咽X0.5++mの白金
板が配置され、この白金板の表面に向けて、混合パイプ
から混合ガスが放出された。白金板の温度は480±5
℃に保持された。70分間の蒸着により、厚さ2鴨の蒸
着層が形成された。
A platinum plate measuring 10 m x 10 m x 0.5 ++ m was placed inside the vacuum vessel, and a mixed gas was discharged from a mixing pipe toward the surface of the platinum plate. The temperature of the platinum plate is 480±5
It was kept at ℃. After 70 minutes of vapor deposition, a vapor deposited layer with a thickness of 2 mm was formed.

白金板から剥離させた蒸着層は、螢光X線分析によれば
、19%BO−22%Ta205−18%La205−
41%ThO2の組成全方する均質なガラスであり、そ
の屈折率は1.862.アツベ数は44.3であった。
According to fluorescent X-ray analysis, the vapor deposited layer peeled off from the platinum plate was 19% BO-22% Ta205-18% La205-
It is a homogeneous glass with a total composition of 41% ThO2, and its refractive index is 1.862. Atsbe's number was 44.3.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の特殊光学ガラスの屈折率−アンベ数特性
の分布領域を示すグラフ、第2図はB20 −Ta  
O−La  O−Th02  系ガラスの状態図である
。 特許出願人  財団法人 工業開発研究所代理人 弁理
士  1)  澤  博  昭(外2名) 4−m−分散・1・  7ノへ孜  分散九−一!=1
2tJ31nlJ2     ’         T
O2す5手続補正力(自発) 60.11.14 昭和  年  月  日
Figure 1 is a graph showing the distribution area of the refractive index vs. ambe number characteristic of conventional special optical glass, and Figure 2 is a graph showing the distribution area of the refractive index - ambe number characteristic of conventional special optical glass.
It is a phase diagram of O-La O-Th02 type glass. Patent applicant Industrial Development Research Institute Agent Patent attorney 1) Hiroshi Sawa (2 others) 4-m-Dispersion・1・7-nohe Kei Dispersion 9-1! =1
2tJ31nlJ2'T
O2su5 procedural amendment power (voluntary) 60.11.14 Showa year month day

Claims (3)

【特許請求の範囲】[Claims] (1)目的とする光学ガラスを構成する複数種の酸化物
を各々の蒸発温度以上に加熱して別個に蒸発させ、この
複数種の蒸気を混合領域で気相のまま混合し、この混合
ガスを、真空容器内で上記光学ガラスの凝固点以下の温
度に保持されている基体上に蒸着させることを特徴とす
る光学ガラスの製造方法。
(1) Multiple types of oxides constituting the target optical glass are heated above their respective evaporation temperatures and evaporated separately, and the multiple types of vapors are mixed in a gas phase in a mixing region, and this mixed gas is A method for producing an optical glass, which comprises depositing the above-mentioned optical glass on a substrate maintained at a temperature below the freezing point of the optical glass in a vacuum container.
(2)上記蒸発源から蒸発した蒸気が上記加熱領域に向
けてキャリアガスによって運ばれ、ついで上記基体の表
面に向けられる特許請求の範囲第1項記載の光学ガラス
の製造方法。
(2) The method for manufacturing optical glass according to claim 1, wherein vapor evaporated from the evaporation source is carried by a carrier gas toward the heating region and then directed toward the surface of the substrate.
(3)上記加熱領域で形成された混合ガスの流れが上記
基体の表面上でスキャニングされる特許請求の範囲第1
項記載の光学ガラスの製造方法。
(3) Claim 1, wherein the flow of the mixed gas formed in the heating region is scanned over the surface of the substrate.
A method for producing optical glass as described in Section 1.
JP22178185A 1985-10-07 1985-10-07 Production of optical glass Pending JPS6283324A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22178185A JPS6283324A (en) 1985-10-07 1985-10-07 Production of optical glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22178185A JPS6283324A (en) 1985-10-07 1985-10-07 Production of optical glass

Publications (1)

Publication Number Publication Date
JPS6283324A true JPS6283324A (en) 1987-04-16

Family

ID=16772099

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22178185A Pending JPS6283324A (en) 1985-10-07 1985-10-07 Production of optical glass

Country Status (1)

Country Link
JP (1) JPS6283324A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004002907A1 (en) * 2002-06-28 2004-01-08 Liekki Oy A method for the preparation of doped oxide material

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617935A (en) * 1979-07-20 1981-02-20 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber
JPS6029465A (en) * 1983-07-29 1985-02-14 Sekisui Chem Co Ltd Plastic body having moisture permeation resistance

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5617935A (en) * 1979-07-20 1981-02-20 Nippon Telegr & Teleph Corp <Ntt> Manufacture of base material for optical fiber
JPS6029465A (en) * 1983-07-29 1985-02-14 Sekisui Chem Co Ltd Plastic body having moisture permeation resistance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004002907A1 (en) * 2002-06-28 2004-01-08 Liekki Oy A method for the preparation of doped oxide material
US7624596B2 (en) 2002-06-28 2009-12-01 Liekki Oy Method for the preparation of doped oxide material

Similar Documents

Publication Publication Date Title
JP3048173B2 (en) Method of manufacturing glass member having refractive index changing along optical axis
EP0995723B1 (en) Negative thermal expansion glass ceramic and method for producing the same
Kržmanc et al. Effect of a TiO 2 nucleating agent on the nucleation and crystallization behavior of MgO–B 2 O 3–SiO 2 glass
Whichard et al. Glass formation and properties in the gallia-calcia system
US3998617A (en) Method of improving the mechanical strength of glass
DE2032577A1 (en) Process for sintering and melting refractory materials without using a crucible
JPS6283324A (en) Production of optical glass
CN1792929B (en) Vapor-deposition material for production of layer of high refractive index
CA2098447A1 (en) Vapour-deposition material for the production of optical coatings of medium refractive index
De Neufville et al. Phase separation in GeO–GeO 2 glasses
JPH08277462A (en) Optical coating film of medium refractive index
US3924020A (en) Method of making a thermoplastic ink decorated, polymer coated glass article
Ranasinghe et al. Containerless processing of a lithium disilicate glass
CN114773061B (en) Preparation method of metal metaborate laser sputtering target material
DE1696110B1 (en) PROCESS FOR THE PRODUCTION OF GLASSY COATINGS ON SUBSTATE MATERIALS BY VACUUM EVAPORATION USING ELECTRON BEAMS
JPS58153918A (en) Manufacture of element having magnetooptic effect
JPS6177639A (en) Production of infrared optical membrane material
JPS63501559A (en) Optical fluorophosphate glass with anomalous positive partial dispersion and its manufacturing method
Kumar Formation and properties of glasses in the CaF2 AlF3 P2O5 system
JPH05117845A (en) Device and method for film forming of compound material
RU2019574C1 (en) Method of producing material for protective and interference coating
Kjutvitsky et al. Bismuthate Glass as Backing for Gas Sensors
JPS58117501A (en) Plane microlens
CN117430351A (en) Method for welding welded components by glass frit and product thereof
Haller et al. Glassy thin films. Final report