JPS6273770A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS6273770A JPS6273770A JP21402585A JP21402585A JPS6273770A JP S6273770 A JPS6273770 A JP S6273770A JP 21402585 A JP21402585 A JP 21402585A JP 21402585 A JP21402585 A JP 21402585A JP S6273770 A JPS6273770 A JP S6273770A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- insulating layer
- film
- insulating
- semiconductor device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 title claims description 16
- 230000003287 optical effect Effects 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 239000010409 thin film Substances 0.000 claims abstract description 10
- 229910052710 silicon Inorganic materials 0.000 claims description 5
- 239000010703 silicon Substances 0.000 claims description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims 2
- 239000002184 metal Substances 0.000 claims 1
- 229910052757 nitrogen Inorganic materials 0.000 claims 1
- 239000010408 film Substances 0.000 abstract description 35
- 229910021417 amorphous silicon Inorganic materials 0.000 abstract description 7
- 230000007423 decrease Effects 0.000 abstract description 4
- 239000000203 mixture Substances 0.000 abstract description 3
- 238000013459 approach Methods 0.000 abstract description 2
- 230000005684 electric field Effects 0.000 abstract 2
- 230000000630 rising effect Effects 0.000 abstract 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 10
- 230000005669 field effect Effects 0.000 description 8
- 239000011521 glass Substances 0.000 description 6
- 239000007789 gas Substances 0.000 description 5
- 238000001259 photo etching Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000011159 matrix material Substances 0.000 description 3
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 3
- 229910004205 SiNX Inorganic materials 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000000059 patterning Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011111 cardboard Substances 0.000 description 1
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 229910001120 nichrome Inorganic materials 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/786—Thin film transistors, i.e. transistors with a channel being at least partly a thin film
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Electrodes Of Semiconductors (AREA)
Abstract
Description
【発明の詳細な説明】
〔概 要〕
本発明は、半導体装置、特に薄膜トランジスタ(Thi
n film Transistor、以下TPTと記
す)のゲート絶縁膜を2層構造とし、絶縁層としてシリ
コンを主成分とするSiNx等を形成し、ゲート電極側
の第1及び第2の絶縁層の光学ギヤ・ノブEIE2をE
+ >E2の関係を選択して高速なスイッチング特性
が得られ、安定性の優れた薄膜トランジスタを提供する
ものである。[Detailed Description of the Invention] [Summary] The present invention relates to semiconductor devices, particularly thin film transistors (Thin Film Transistors).
The gate insulating film of the n film transistor (hereinafter referred to as TPT) has a two-layer structure, and the insulating layer is made of SiNx, etc. whose main component is silicon, and the optical gear of the first and second insulating layers on the gate electrode side is formed. Knob EIE2
By selecting the relationship +>E2, high-speed switching characteristics can be obtained and a thin film transistor with excellent stability can be provided.
本発明は半導体装置に係り、特に液晶表示装置用薄膜ト
ランジスタのゲート絶縁層を二重構造とした半導体装置
に関する。The present invention relates to a semiconductor device, and particularly to a semiconductor device in which a gate insulating layer of a thin film transistor for a liquid crystal display device has a double structure.
平面ディスプレイとしてL CD (Liqwidcr
ystal display)は表示容量が増加しかな
り大型の画素数を有するものが市販されている。この様
に大型化すると駆動時間と非駆動時間の比が小さくなり
、コントラスト比が低下し、視野角も狭くなる問題があ
り、これを解決するためにスイッチング素子としてのT
PTをマトリックス配列してLCDを直接駆動するアク
チブマトリックス表示によって画素に直接電圧を印加す
ることで高いコントラスト比のディスプレイが得られる
ノこめに広く利用されている。LCD (Liqwidcr) is used as a flat display.
ystal displays) with increased display capacity and a considerably large number of pixels are commercially available. As the size increases in this way, the ratio of driving time to non-driving time becomes smaller, the contrast ratio decreases, and the viewing angle becomes narrower.To solve this problem, T
Active matrix display, in which PTs are arranged in a matrix to directly drive an LCD, is widely used in applications where a display with a high contrast ratio can be obtained by applying voltage directly to the pixels.
この様なアクチブマトリックス表示にスイッチング素子
としてTPTやダイオードが用いられている。特にTP
Tは大面積化やガラス基板が使える等で多く研究されて
いる。特にゲート絶縁層に非晶質のアモルファスシリコ
ン(a−si)膜が用いられているため高抵抗を呈り1
画素駆動時のスイッチングのオン・オフ比が大きく出来
る。TPTs and diodes are used as switching elements in such active matrix displays. Especially T.P.
T has been extensively researched because it has a large area and can use glass substrates. In particular, since an amorphous silicon (a-si) film is used for the gate insulating layer, it exhibits high resistance.
The on/off ratio of switching when driving pixels can be increased.
この様なa−3i(非晶質シリコン)TPTにはスタガ
ード形及び逆スタガード形構造があり。Such a-3i (amorphous silicon) TPT has a staggered structure and an inverted staggered structure.
第4図乃至第6図にこれら各構造を説明する。第4図は
a−3iTFTの平面図、第5図は第4図のA−A ′
断面図を示すスタガード形TPT、第6図は逆スタガー
ド形の側断面図である。第4図に於いて4はドレイン電
極を示し、1画素分の電極となるもので第5図に示すよ
うにガラス等の透明基板上に透明導電膜を形成し、ドレ
イン電極、4とソース電極5をフォトエツチングにより
パターン形成し、これらパターン上に(ドレイン電極4
には第4図に示すようにごく一部にオーパラ・ノブして
)a−St膜2をプラズマCVD法で形成する。このa
−3t膜2をパターニングしてパターン形成し、同じ(
プラズマCVD法でゲート絶縁層3を形成し、このゲー
ト絶縁N3にゲート電極膜を形成してゲート電極6パタ
ーンをフォトエツチングで形成し、保護絶縁膜形成後に
LCD作成工程に入る様になされている。Each of these structures will be explained in FIGS. 4 to 6. Fig. 4 is a plan view of the a-3i TFT, and Fig. 5 is the A-A' of Fig. 4.
A cross-sectional view of a staggered TPT is shown, and FIG. 6 is a side cross-sectional view of an inverted staggered TPT. In Fig. 4, 4 indicates a drain electrode, which serves as an electrode for one pixel.As shown in Fig. 5, a transparent conductive film is formed on a transparent substrate such as glass, and the drain electrode, 4, and source electrode are formed on a transparent substrate such as glass. 5 is patterned by photoetching, and on these patterns (drain electrode 4
Then, as shown in FIG. 4, an a-St film 2 is formed by a plasma CVD method (with an Opara knob in a small portion). This a
-3t film 2 is patterned to form a pattern, and the same (
A gate insulating layer 3 is formed by the plasma CVD method, a gate electrode film is formed on this gate insulating layer N3, and a gate electrode 6 pattern is formed by photoetching, and after the protective insulating film is formed, the LCD manufacturing process is started. .
第6図の場合は逆スタガード形のa−3iTFTでガラ
ス基it上にゲート電極を形成し、ゲート絶縁層3をプ
ラズマCVD等で形成して、その上にa−3i膜をプラ
ズマCVDで形成してフォトエツチングでパターニング
し、ソース、ドレイン電極をパターニングしている。こ
れら逆スタガード及びスタガード形はそれぞれ一長一短
があり。In the case of Fig. 6, a gate electrode is formed on the glass substrate IT using an inverted staggered a-3i TFT, a gate insulating layer 3 is formed by plasma CVD, etc., and an a-3i film is formed on it by plasma CVD. Then, the source and drain electrodes are patterned by photoetching. These reverse staggered and staggered types each have their advantages and disadvantages.
逆スタガード形ではゲート絶縁膜と活性層のa −3i
膜を連続的に形成出来るし、スタガード形では活性層の
a−3i膜がゲーI・絶縁膜で保護されていて信頼性が
高い特徴を有している。In the inverted staggered type, the a-3i of the gate insulating film and active layer
The film can be formed continuously, and in the staggered type, the a-3i film of the active layer is protected by a GaI insulating film, which has the feature of high reliability.
この様にゲート絶縁膜が一部からなるスタガード形式あ
るいは逆スタガード形a−3iTFTではゲートストレ
ス印加後に闇値がシフトすると云う問題があった。As described above, the staggered type or reverse staggered type a-3i TFT in which the gate insulating film is partially formed has a problem in that the dark value shifts after gate stress is applied.
この様な闇値シフトを減少させようと4″るとa−3i
の電界効果移動度Al Off (cJ / v 、
5ec)が低下し、TPTのスイッチング特性の低下を
招く欠点があった。即ち、第7図にゲート電圧VGとド
レイン電流IDとの特性曲線7を示すがゲートストレス
印加後加後の特性曲線は7aに示す様にシフトする。In order to reduce such a dark value shift, 4'' and a-3i
The field effect mobility of Al Off (cJ/v,
5ec), which resulted in a disadvantage that the switching characteristics of the TPT deteriorated. That is, FIG. 7 shows a characteristic curve 7 of gate voltage VG and drain current ID, and after application of gate stress, the characteristic curve shifts as shown in 7a.
本発明は上記した欠点に渇みなされたものでその目的は
ゲート絶縁膜を二層構造とし、ゲート雪掻側の第1の絶
縁層と、この第1層上に形成した第2の絶縁層のそれぞ
れの光学ギャップEl、E2をEl>Ezとなるように
することで闇値シフトが少く、電界効果移動度の低下し
ない立上り特性の優れた高速なa−3iTFTを得んと
するものでその手段はスタガード形又は逆スタガード形
薄膜トランジスタのゲート電極と非晶質活性層間に第1
及び第2の絶縁層を形成してなることを特徴とする半導
体装置によって達成される。The present invention has been made to solve the above-mentioned drawbacks, and its purpose is to provide a gate insulating film with a two-layer structure: a first insulating layer on the gate side, and a second insulating layer formed on the first layer. By setting the respective optical gaps El and E2 such that El>Ez, we aim to obtain a high-speed a-3i TFT with small dark value shift and excellent rise characteristics without deterioration of field effect mobility. The means includes a first electrode between the gate electrode and the amorphous active layer of the staggered or reverse staggered thin film transistor.
This is achieved by a semiconductor device characterized by forming a second insulating layer.
本発明のTPTの一つは基板上に予めゲート電極を形成
し、このゲート電極上に光学ギャップE1の第1の絶縁
層を形成するが、該第1の絶縁層のバンドギャップ中に
捕獲準位が存在し、この捕獲準位の深さと光学ギャップ
E1との間には相関関係があり、光学ギャップE1がa
−3iの光学ギャップEgに近いほど蓄積電子が捕獲さ
れ、そのためにTPT特性に於いて闇値シフトを生ずる
。In one of the TPTs of the present invention, a gate electrode is formed in advance on a substrate, and a first insulating layer with an optical gap E1 is formed on this gate electrode. There is a correlation between the depth of this trap level and the optical gap E1, and the optical gap E1 is a
The closer the optical gap Eg of -3i is, the more accumulated electrons are captured, which causes a dark value shift in the TPT characteristics.
従ってEl>Egとなるように第1層の絶縁層を形成す
る。ところが第1の絶縁層の光学ギャップE1が大きく
なってストイキオメトリ (stoiche−ome
try)と云われる化学口論的組成に近づくと絶縁層/
a −S i膜の活性層中にストレスが掛り表面準位
が形成されるために電界効果移動度の低下を招く、そこ
で第2の絶縁層の光学ギャップE2をEl>Ez>Eg
となる様に選択し1活性層のa−3i膜との整合性を改
善するようにしたa −3tTFTを提供するものであ
る。Therefore, the first insulating layer is formed so that El>Eg. However, the optical gap E1 of the first insulating layer becomes large and the stoichiometry
When approaching a chemical composition called try), the insulating layer/
Stress is applied to the active layer of the a-Si film and surface states are formed, leading to a decrease in field effect mobility.Therefore, the optical gap E2 of the second insulating layer is set as El>Ez>Eg.
The purpose of the present invention is to provide an a-3t TFT which is selected so as to improve the compatibility with the a-3i film of one active layer.
以下2本発明の一実施例を@i図について詳記する。 Two embodiments of the present invention will be described in detail below with reference to the @i diagram.
第1図は逆スタガード形a−3iTFTを示すもので先
ず絶縁性の基板としてはガラス基板1を洗浄しゲート電
極膜としてCr、 ΔLMo。FIG. 1 shows an inverted staggered a-3i TFT. First, a glass substrate 1 as an insulating substrate is cleaned, and a gate electrode film is made of Cr or ΔLMo.
NiC4の膜を形成し、レジストマスクを用いてフォト
エツチング等でゲート電極パターンを形成しゲート電極
6を得る。A NiC4 film is formed, and a gate electrode pattern is formed by photoetching or the like using a resist mask to obtain the gate electrode 6.
次にゲート電極6の形成された絶縁性の基板1の上にシ
ラン(StHa)とアンモニア(NH3)の混合ガスを
用いてグロー放電で分解して第1の絶縁層であるゲート
酸化膜3を形成する。Next, a gate oxide film 3, which is a first insulating layer, is formed on the insulating substrate 1 on which the gate electrode 6 is formed by using a mixed gas of silane (StHa) and ammonia (NH3) and decomposing it by glow discharge. Form.
上記したゲート酸化膜3はSiNxであるがSiO2、
SiC,5iON、 A e 203等でもよ(。The gate oxide film 3 described above is SiNx, but SiO2,
Even SiC, 5iON, Ae 203, etc. (.
SiO2の場合は5t)laと02の混合ガスをそれぞ
れグロー放電で分解する。このときの第1の絶縁層(S
iN x )の光学ギャップE1となる様に形成する。In the case of SiO2, 5t) The mixed gases of la and 02 are each decomposed by glow discharge. At this time, the first insulating layer (S
iN x ) to form an optical gap E1.
この条件としては基板1の温度200°〜300℃。As for this condition, the temperature of the substrate 1 is 200° to 300°C.
N Hv / SiHaの反応ガス圧0.1〜10To
rr 、 r4パワー0.02〜0.3 W/ c
i 、ガス流量比N H1/ S H4= 1〜4が
好ましい。この時の第1の絶縁層の光学ギャップE1は
成膜条件を変えることによりE1=3〜7evとなる。N Hv / SiHa reaction gas pressure 0.1-10To
rr, r4 power 0.02~0.3 W/c
i, gas flow ratio N H1/S H4 = 1 to 4 is preferred. At this time, the optical gap E1 of the first insulating layer becomes E1=3 to 7ev by changing the film forming conditions.
次に真空状態を破ることなく、連続して第2の絶縁層8
を形成する。第2の絶縁層8の光学ギャップE2はEl
<Ezの関係になるように前記成膜条件を変えて選択す
る。この時の光学ギャップとしては2<Ez<5ev程
度に選択するを可とする。これら第1及び第2の絶縁層
3.8の形成後に引き続いてa−3i膜2を活性層とし
て堆積させる。Next, the second insulating layer 8 is continuously applied without breaking the vacuum state.
form. The optical gap E2 of the second insulating layer 8 is El
The film forming conditions are changed and selected so as to satisfy the relationship <Ez. The optical gap at this time can be selected to be approximately 2<Ez<5ev. After the formation of these first and second insulating layers 3.8, an a-3i film 2 is subsequently deposited as an active layer.
これは5iI(aガスをグロー放電で分解して堆積させ
る。a−3i膜をフォトエツチング等でバターニングし
た後で、ソース、ドレイン電極レジストパターン形成後
にリンをドープしたa−Si膜n+a−3に膜9をグロ
ー放電分解法で形成し、更にソース及びドレイン電極4
,5をバターニングする。ソース及びドレインにはA!
!、Ti、Cr又NiCrが用いられる。This is deposited by decomposing 5iI (a gas by glow discharge. After patterning the a-3i film by photoetching etc., and forming a resist pattern for the source and drain electrodes, an a-Si film n+a-3 doped with phosphorus is formed. A film 9 is formed by a glow discharge decomposition method, and a source and drain electrode 4 is further formed.
, 5 is buttered. A for source and drain!
! , Ti, Cr or NiCr are used.
第2図にa −S i T F Tの閾値電圧シフト及
び電界効果移動度μe i(の第1の絶縁層SiN x
依存性を示す。同図で縦軸左側は、ゲート電圧■ =3
0v、ドレイン電圧■。−5Vを印加して1分印加後の
ゲートスト
側は電界効果移動度p e ff (clll,/ V
, see))を示すものであり.横軸ばNH3/Si
Haを示している。先ず従来の第1の絶縁層であるゲー
ト絶縁層3だけの場合のμeffの変化は特性曲線10
に示す様に大きく変化するが2層構造とすると特性曲線
11に示すようにその変化は少ない。特性曲線にはΔ■
を示すものである。第1の絶縁層3の光学ギャップをE
l−3〜7cvに選択したとき。FIG. 2 shows the threshold voltage shift and field effect mobility μe i (of the first insulating layer SiN x
Show dependencies. In the same figure, the left side of the vertical axis is the gate voltage ■ = 3
0v, drain voltage ■. After applying −5 V for 1 minute, the field effect mobility p e ff (clll, / V
, see)). Horizontal axis: NH3/Si
It shows Ha. First, the change in μeff in the case of only the gate insulating layer 3, which is the conventional first insulating layer, is shown by characteristic curve 10.
As shown in the characteristic curve 11, there is a large change, but in the case of a two-layer structure, the change is small as shown in the characteristic curve 11. The characteristic curve has Δ■
This shows that. The optical gap of the first insulating layer 3 is E
When selecting l-3 to 7cv.
この絶縁層にはバンドギャップ中に捕獲準位が存在し、
この捕獲準位の深さと光学ギャップE1には相関があっ
て、光学ギャップE1がa−3iの光学ギヤノブEgに
近いほど蓄積電子が捕獲され。This insulating layer has a trap level in the band gap,
There is a correlation between the depth of this capture level and the optical gap E1, and the closer the optical gap E1 is to the optical gear knob Eg of a-3i, the more accumulated electrons are captured.
TPT特性に於いて闇値がシフトする。よって第1の絶
縁層3の光学ギャップE1をE+>Egとなる様に選択
する。然し第1の絶縁層3の光学ギヤノブE1が大きく
なり、化学量論的組成の膜に近づくと絶縁層/ a−3
i活性N3中にス1〜レスが加わって表面準位が形成さ
れ電界効果移動度μeffが低下する。故に第1の絶縁
層3の上に第2の絶縁層をシラン(SiH4)とアンモ
ニア(N H3)との混合ガスを用いて光学ギヤ、プE
。Darkness value shifts in TPT characteristics. Therefore, the optical gap E1 of the first insulating layer 3 is selected so that E+>Eg. However, as the optical gear knob E1 of the first insulating layer 3 becomes larger and approaches a film with a stoichiometric composition, the insulating layer/a-3
Stresses 1 to Stress are added to the i-active N3 to form surface states, and the field effect mobility μeff is reduced. Therefore, a second insulating layer is formed on the first insulating layer 3 using a mixed gas of silane (SiH4) and ammonia (NH3) to form an optical gear.
.
となる様に、即ちE 1> E 2 > E gに選択
することで第2Nはa St膜の活性N2との整合性
が改善されて第2図特性曲線11の様に電界効果移動度
μeffば低下せず、スインチング特性が高速なa−3
i TFTを得ることが可能となる。In other words, by selecting E 1 > E 2 > E g, the consistency of the second N with the active N2 of the a St film is improved, and the field effect mobility μeff is increased as shown in the characteristic curve 11 in Figure 2. a-3, which has high speed switching characteristics without any deterioration
i TFT can be obtained.
第3図は本発明を第5図に示したスタガード形a−3i
TFTに通用した側断面図を示すものでガラス基板1の
洗浄、透明導電薄の蒸着、ドレ・イン、ソース雪掻しジ
ストパターン形成後、リンドープミー8i膜(n+a−
3i)9とソース、1゛レイン電極5,6を形成し、プ
ラズマC,V Dでa−5i膜形成して次に真空を破る
ことなく連続して更に第1及び第2の絶縁層3.8を形
成後にゲー・上電極6をパターン形成してスタガード形
a−3iTFTが形成される。Figure 3 shows the staggered type a-3i shown in Figure 5.
This is a side cross-sectional view commonly used for TFTs. After cleaning the glass substrate 1, depositing a transparent conductive thin film, forming drain/in, and source snow removal resist patterns, a phosphorous-doped 8i film (n+a-
3i) Form 9, source and 1' rain electrodes 5 and 6, form an a-5i film with plasma C and VD, and then continuously form the first and second insulating layers 3 without breaking the vacuum. After forming the gate electrode 6, a staggered type a-3i TFT is formed by patterning the gate electrode 6.
本発明は以上の如く構成させたのでゲーI−ストレス印
加後の闇値シフトを減少させることが出来a−3i電界
効果移動度も低下しないa−8iTPTが提供出来る。Since the present invention is constructed as described above, it is possible to provide an a-8i TPT that can reduce the dark value shift after application of the GeI stress and that does not reduce the a-3i field effect mobility.
第1図は本発明のa−3iTFT(逆スタガード形〕の
側断面図。
第2図はa−3iTFT特性のゲート絶縁膜依存性を示
す特性図。
第3図は本発明のa−3iTFT[逆スタガード形〕
第4図は従来のa−3iTFT平面図。
第5図は第4図のΔ−A断面図。
第6図は従来のa−3i T F T側断面図〔スタガ
ード形〕
第7図はa−3i TFTのVC−ID特性図である。
■ ・ ・ ・ 基1反
2・・・a Si膜
3・・・ゲート絶縁層(第1絶縁層)
4・・・ドレイン電極
5・・・ソース電極
6・・・ゲート電極
8・・・第2の絶縁層
9・・・n+a−3i膜
本沁NA qθ−5iTF7”イ仰]書生面図(七しス
ダヵード形)第1図
;
a−5iTPTM性の作−トぜ9噂」央イ六J覧性第2
図
お応門め0−5iTFT4則嶋−面図(スダカ゛−ド躬
)第3図
a−9iTFT 4ffi7
第4図
5ソース電極
、l−A’町面図 (ズダカ“−ド升う)第5図Fig. 1 is a side sectional view of the a-3i TFT (inverted staggered type) of the present invention. Fig. 2 is a characteristic diagram showing the dependence of the a-3i TFT characteristics on the gate insulating film. Fig. 3 is the a-3i TFT of the present invention [ [Reverse staggered type] Fig. 4 is a plan view of a conventional a-3i TFT. Fig. 5 is a sectional view taken along the Δ-A line in Fig. 4. Fig. 6 is a sectional view of the conventional a-3i TFT [staggered type] Fig. 7 is a VC-ID characteristic diagram of the a-3i TFT. ...Source electrode 6...Gate electrode 8...Second insulating layer 9...n+a-3i film qθ-5iTF7'' illustration] Draft surface view (seven card shape) Fig. 1 ; a-5iTPTM Sex Works - Toze 9 Rumors” Central Iroku J View Part 2
Figure 0-5 iTFT 4 Norishima - Side view (Sudaka card board) Figure 3 a-9i TFT 4ffi7 Figure 4 figure
Claims (7)
タのゲート電極と非晶質活性層間に第1及び第2の絶縁
層を形成してなることを特徴とする半導体装置。(1) A semiconductor device characterized in that first and second insulating layers are formed between a gate electrode and an amorphous active layer of a staggered or inverted staggered thin film transistor.
ンを主成分とする第1の絶縁層と第2の絶縁層を形成し
、活性層を含む非晶質半導体層形成後はソース・ドレイ
ン電極を形成してなるスタガード形薄膜トランジスタよ
りなることを特徴とする特許請求の範囲第1項記載の半
導体装置。(2) A first insulating layer and a second insulating layer containing silicon as a main component are formed on the gate electrode formed on the insulating substrate, and after forming an amorphous semiconductor layer including an active layer, a source/drain layer is formed. 2. The semiconductor device according to claim 1, comprising a staggered thin film transistor formed with electrodes.
電極上に活性層を含む非晶質半導体層形成後にシリコン
を主成分とする第1及び第2の絶縁層を形成してゲート
電極を形成してなる逆スタガード形薄膜トランジスタよ
りなることを特徴とする特許請求の範囲第1項記載の半
導体装置。(3) After forming an amorphous semiconductor layer including an active layer on the source and drain electrodes formed on the insulating substrate, first and second insulating layers containing silicon as a main component are formed to form a gate electrode. 2. The semiconductor device according to claim 1, comprising an inverted staggered thin film transistor.
2の絶縁層の光学ギャップをE_2としたときE_1>
E_2の関係を満たす絶縁層であることを特徴とする特
許請求の範囲第1項記載の半導体装置。(4) When the optical gap of the first insulating layer is E_1 and the optical gap of the second insulating layer is E_2, E_1>
The semiconductor device according to claim 1, characterized in that the insulating layer satisfies the relationship E_2.
含むことを特徴とする特許請求の範囲第1項記載の半導
体装置。(5) The semiconductor device according to claim 1, wherein the insulating layer is mainly composed of silicon and contains nitrogen (N).
てドナーとなる非晶質半導体層を形成してなる事を特徴
とする特許請求の範囲第1項記載の半導体装置。(6) The semiconductor device according to claim 1, wherein an amorphous semiconductor layer containing silicon as a main component and serving as a donor is formed on the upper surface of the amorphous active layer.
イン電極用レジスト・パターンを用いてソース・ドレイ
ン電極を形成してなることを特徴とする特許請求の範囲
第7項記載の半導体装置。(7) A semiconductor device according to claim 7, wherein source/drain electrodes are formed from the amorphous semiconductor layer and the metal layer using a resist pattern for source/drain electrodes. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60214025A JPH084143B2 (en) | 1985-09-27 | 1985-09-27 | Semiconductor device and manufacturing method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60214025A JPH084143B2 (en) | 1985-09-27 | 1985-09-27 | Semiconductor device and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6273770A true JPS6273770A (en) | 1987-04-04 |
JPH084143B2 JPH084143B2 (en) | 1996-01-17 |
Family
ID=16649026
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60214025A Expired - Fee Related JPH084143B2 (en) | 1985-09-27 | 1985-09-27 | Semiconductor device and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH084143B2 (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01268060A (en) * | 1988-04-20 | 1989-10-25 | Fujitsu Ltd | Thin film transistor |
US4951113A (en) * | 1988-11-07 | 1990-08-21 | Xerox Corporation | Simultaneously deposited thin film CMOS TFTs and their method of fabrication |
US5041888A (en) * | 1989-09-18 | 1991-08-20 | General Electric Company | Insulator structure for amorphous silicon thin-film transistors |
US5065202A (en) * | 1988-02-26 | 1991-11-12 | Seikosha Co., Ltd. | Amorphous silicon thin film transistor array substrate and method for producing the same |
US5221631A (en) * | 1989-02-17 | 1993-06-22 | International Business Machines Corporation | Method of fabricating a thin film transistor having a silicon carbide buffer layer |
US5320973A (en) * | 1986-07-11 | 1994-06-14 | Fuji Xerox Co., Ltd. | Method of fabricating a thin-film transistor and wiring matrix device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58182270A (en) * | 1982-04-16 | 1983-10-25 | Sanyo Electric Co Ltd | Manufacture of transistor |
-
1985
- 1985-09-27 JP JP60214025A patent/JPH084143B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58182270A (en) * | 1982-04-16 | 1983-10-25 | Sanyo Electric Co Ltd | Manufacture of transistor |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5320973A (en) * | 1986-07-11 | 1994-06-14 | Fuji Xerox Co., Ltd. | Method of fabricating a thin-film transistor and wiring matrix device |
US5065202A (en) * | 1988-02-26 | 1991-11-12 | Seikosha Co., Ltd. | Amorphous silicon thin film transistor array substrate and method for producing the same |
JPH01268060A (en) * | 1988-04-20 | 1989-10-25 | Fujitsu Ltd | Thin film transistor |
US4951113A (en) * | 1988-11-07 | 1990-08-21 | Xerox Corporation | Simultaneously deposited thin film CMOS TFTs and their method of fabrication |
US5221631A (en) * | 1989-02-17 | 1993-06-22 | International Business Machines Corporation | Method of fabricating a thin film transistor having a silicon carbide buffer layer |
US5041888A (en) * | 1989-09-18 | 1991-08-20 | General Electric Company | Insulator structure for amorphous silicon thin-film transistors |
Also Published As
Publication number | Publication date |
---|---|
JPH084143B2 (en) | 1996-01-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8330916B2 (en) | Liquid crystal display and method of fabricating the same to have TFT's with pixel electrodes integrally extending from one of the source/drain electrodes | |
KR101345376B1 (en) | Fabrication method of ZnO family Thin film transistor | |
US6537890B2 (en) | Poly-silicon thin film transistor having back bias effects and fabrication method thereof | |
JP5214858B2 (en) | TFT array substrate and manufacturing method thereof | |
US9209282B2 (en) | Method of manufacturing thin film transistor substrate and thin film transistor substrate manufactured by the method | |
KR102212999B1 (en) | Thin Film Transistor Based on Graphine Comprising N-Dopped Graphine Layer as Active Layer | |
JP2006237624A (en) | Semiconductor device and inverter circuit | |
JP2001217424A (en) | Thin film transistor and liquid crystal display using the same | |
WO2015078037A1 (en) | Thin film transistor and manufacturing method therefor, and thin film transistor array substrate | |
JP3352191B2 (en) | Method for manufacturing thin film transistor | |
JPS6273770A (en) | Semiconductor device | |
JPS59113667A (en) | Manufacture of thin film transistor | |
US20170084458A1 (en) | Method of fabricating crystalline indium-gallium-zinc oxide semiconductor layer and thin film transistor | |
US6656776B2 (en) | Thin film transistor and fabricating method thereof | |
JP2010141224A (en) | Semiconductor device and its manufacturing method | |
JPH06260644A (en) | Manufacture of semiconductor device | |
KR100275957B1 (en) | Method of manufacturing thin film transistor | |
JP2001077372A (en) | Thin film transistor | |
JPS6380570A (en) | Manufacture of thin film transistor | |
JP3265073B2 (en) | Display device and manufacturing method thereof | |
JP2006203241A (en) | Semiconductor device | |
KR100713879B1 (en) | Method for manufactruing liquid crystal display device | |
JPS5821868A (en) | Manufacture of thin polycrystalline silicon film transistor | |
JPH09153621A (en) | Thin film transistor, manufacture thereof, and liquid-crystal display device using thin film transistor | |
JPH02150067A (en) | Thin film semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |