JPS6273046A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS6273046A
JPS6273046A JP21187285A JP21187285A JPS6273046A JP S6273046 A JPS6273046 A JP S6273046A JP 21187285 A JP21187285 A JP 21187285A JP 21187285 A JP21187285 A JP 21187285A JP S6273046 A JPS6273046 A JP S6273046A
Authority
JP
Japan
Prior art keywords
refrigerant
temperature
pipe
evaporator
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21187285A
Other languages
Japanese (ja)
Inventor
一夫 竹政
福治 吉田
岩佐 賢治
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP21187285A priority Critical patent/JPS6273046A/en
Priority to GB8621651A priority patent/GB2180921B/en
Priority to DE3645168A priority patent/DE3645168C2/de
Priority to DE19863631795 priority patent/DE3631795A1/en
Priority to FR8613264A priority patent/FR2587792B1/en
Priority to US06/910,881 priority patent/US4788829A/en
Priority to CN86106599.9A priority patent/CN1023833C/en
Publication of JPS6273046A publication Critical patent/JPS6273046A/en
Priority to FR9310292A priority patent/FR2693541B1/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は圧縮機を用いた冷凍装置、特に複数種■混合冷
媒を用いて超低温を得るための冷凍装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of Industrial Application The present invention relates to a refrigeration system using a compressor, and particularly to a refrigeration system for obtaining an extremely low temperature using a mixed refrigerant of multiple types.

(ロ)従来の技術 従来より理化学実験室等に於いて生体細胞の保存等に使
用される冷凍庫に用いる冷凍装置は一80℃程度の低温
を得るのが限界であった。斯かる低温によれば細胞の凍
結保存は達成されるものの、時間の経過に従い、凍結し
た細胞内の氷結晶の核が再結合して氷結晶の大きさが拡
大し、細胞破壊現象が発生する。これは氷の再結晶化と
称されるものであるが、この氷の再結晶は再結晶化点で
ある一130℃より低い環境では発生しないことが知ら
れている。即ち一130℃より低い超低温下であれば細
胞の永久保存が達成でき、斯かる超低温を得る冷凍装置
が期待されていた。
(B) Prior Art Conventionally, freezing equipment used in freezers used in physical and chemical laboratories and the like to preserve biological cells has had a limit of being able to obtain a low temperature of about -80°C. Although cryopreservation of cells is achieved at such low temperatures, as time passes, the nuclei of ice crystals within the frozen cells recombine and the size of the ice crystals expands, causing cell destruction. . This is called recrystallization of ice, but it is known that this recrystallization of ice does not occur in an environment lower than -130° C., which is the recrystallization point. That is, permanent preservation of cells can be achieved at ultra-low temperatures lower than -130°C, and a freezing device capable of achieving such ultra-low temperatures has been expected.

ここで此種冷凍装置、特に圧縮機を用いたものでは、圧
縮機から吐出された高温ガス状冷媒を凝縮器に流入せし
めて空気若しくは水と熱交換することによって液化せし
め、減圧装置によって圧力調整した後、蒸発器に流入せ
しめて蒸発せしめる。
In this type of refrigeration system, especially one using a compressor, the high-temperature gaseous refrigerant discharged from the compressor flows into the condenser and is liquefied by exchanging heat with air or water, and the pressure is adjusted by a pressure reducing device. After that, it flows into an evaporator and is evaporated.

この時気化熱を周囲より吸収することによって冷却作用
を達成するものであるが、単一の冷媒を用いた冷凍装置
では、通常の圧縮機の場合、−40℃程度の最低到達温
度を達成するのが限度である。
At this time, the cooling effect is achieved by absorbing the heat of vaporization from the surroundings, but in a refrigeration system using a single refrigerant, a normal compressor can achieve a minimum temperature of about -40℃. is the limit.

又、二つの独立した冷媒閉回路を用い、両者をカスケー
ド接続すると共に、低温を達成する側の冷媒閉回路によ
り低沸点の冷媒を封入することによって低温度を達成す
る所謂二元冷凍方式もあるが、これとて通常の圧縮機を
用いたものでは一80℃程度が限度である。
There is also a so-called dual refrigeration system that uses two independent refrigerant closed circuits, connects them in cascade, and seals a low boiling point refrigerant in the refrigerant closed circuit on the side that achieves the low temperature, thereby achieving a low temperature. However, when using a normal compressor, the temperature is limited to about -80°C.

更[1973年10月3日付米国特許第3,768.2
73号の如く、沸点の異なる複数種の混合冷媒を用い、
より高い沸点の冷媒の蒸発によって、より低い沸点の冷
媒を次々に凝縮して行くことにより、最終段で最も低い
沸点の冷媒を蒸発せしめ、単一の圧縮機によって低温度
を得る所謂混合冷媒冷凍方式もあるが、これとて通常の
圧縮機を用いたものでは圧力と温度に限界があり、−8
0℃程度の最終温度が限界である。
Further [U.S. Pat. No. 3,768.2, dated October 3, 1973]
As in No. 73, using multiple types of mixed refrigerants with different boiling points,
By evaporating the refrigerant with a higher boiling point and condensing the refrigerant with a lower boiling point one after another, the refrigerant with the lowest boiling point is evaporated in the final stage, resulting in a low temperature achieved by a single compressor.So-called mixed refrigerant refrigeration There are other methods, but those that use a normal compressor have pressure and temperature limits, and -8
A final temperature of about 0°C is the limit.

これらの方式の欠点を同時に解決するものとして、19
73年5月22日付米国特許第3,733.845号の
如く独立した二つの冷媒閉回路をカスケード接続し、低
温側の冷媒閉回路を前述の混合冷媒冷凍方式として極め
て低い温度を達成するものがある。
As a way to solve the shortcomings of these methods at the same time, 19
As in U.S. Patent No. 3,733.845 dated May 22, 1973, two independent closed refrigerant circuits are connected in cascade, and the refrigerant closed circuit on the low temperature side is used as the aforementioned mixed refrigerant refrigeration method to achieve extremely low temperatures. There is.

P→ 発明が解決しようとする問題点 米国特許第3,733,845号の如き構成によれば通
常用いられる圧縮機(例えば1.5HP程度〕によって
一130℃より低い超低温を達成することも可能である
が、−130°Cより低い超低温を達成するためにはカ
スケードコンデンサの部分で十分なる熱交換を達成させ
る必要があり、熱交換面積を確保するためカスケードコ
ンデンサを大型化しなければならない。一方低温側の冷
媒閉回路は混合冷媒冷凍方式を用いているために冷凍装
置自体の大型化が避けられないが、カスケードコンデン
サの大型化に伴い装置全体が極めて大型化する問題があ
った。斯かる問題点はカスケードコンデンサを複数に分
割する事によって達成され得る。即ちそれぞれのカスケ
ードコンデンサを小型化し、更にそれらの設置形態を種
々選択できるからである。
P→ Problems to be Solved by the Invention According to the configuration as in U.S. Patent No. 3,733,845, it is possible to achieve ultra-low temperatures lower than -130°C using a commonly used compressor (for example, about 1.5 HP). However, in order to achieve an ultra-low temperature lower than -130°C, it is necessary to achieve sufficient heat exchange in the cascade condenser, and the cascade condenser must be enlarged to ensure the heat exchange area. Since the refrigerant closed circuit on the low-temperature side uses a mixed refrigerant refrigeration system, the size of the refrigeration system itself cannot be avoided, but as the cascade condenser becomes larger, there is a problem that the entire system becomes extremely large. The problem can be solved by dividing the cascade capacitor into a plurality of parts, ie the respective cascade capacitors can be made smaller and their arrangement can be chosen in different ways.

カスケードコンデンサを複数に分割する事は。How to divide a cascade capacitor into multiple parts?

第1の冷媒閉回路の蒸発器を複数の蒸発器部分に分利し
、更に第2の冷媒閉回路の高圧側配管を各蒸発器部分と
熱交換器を構成する様に配設する事によって達成される
が、第1の冷媒閉回路の各蒸発器部分を冷媒流に対して
並列に接続しだ場合。
By dividing the evaporator of the first refrigerant closed circuit into multiple evaporator parts, and further arranging the high pressure side piping of the second refrigerant closed circuit so as to form a heat exchanger with each evaporator part. This is achieved if each evaporator section of the first closed refrigerant circuit is connected in parallel to the refrigerant flow.

何れかの蒸発器部分の温度が上昇すると、そこの蒸発圧
力が上昇するため冷媒が流入し難くなり。
When the temperature of any evaporator section increases, the evaporation pressure there increases, making it difficult for refrigerant to flow into the evaporator.

該蒸発器部分の湿度は更に上昇する。このように蒸発器
部分を並列接続した場合には、一旦温度のバランスが崩
れるとそれが増幅される形となって更にバランスが崩れ
、凝縮能力が蒸発器部分によって異って来る問題が生ず
る。又、第2の冷媒閉回路の高圧側配管を前記各蒸発器
部分に、冷媒流にズJして直列に配設すると、各蒸発器
部分の温度差を作る原因(即ち上流側の蒸発器部分の温
度が上昇する。)となって前述のバランス崩壊を生む原
因となると共に、第1の冷媒閉回路の蒸発器を分割しな
いものに比して熱交換効率の向上が期待できない。
The humidity in the evaporator section increases further. When the evaporator sections are connected in parallel in this way, once the temperature balance is disrupted, it is amplified and the balance is further disrupted, resulting in a problem that the condensing capacity differs depending on the evaporator section. Furthermore, if the high-pressure side piping of the second refrigerant closed circuit is arranged in series with the refrigerant flow in each of the evaporator sections, it will cause a temperature difference between the evaporator sections (i.e., the upstream evaporator ), causing the above-mentioned balance collapse, and an improvement in heat exchange efficiency cannot be expected compared to a case where the evaporator of the first refrigerant closed circuit is not divided.

に)問題点を解決するための手段 本発明は斯かる問題点を解決するために独立した第1及
び第2の冷媒閉回路を準備し、第1の冷媒閉回路の蒸発
器は冷媒流に対して直列に接続された複数の蒸発器部分
で構成し、第2の冷媒閉回路には肺点の異なる複数種の
混合冷媒を充填すると共に圧縮機から蒸発器に至る高圧
側配管を複数の並列配管で構成してそれぞれ前記第1の
冷媒閉回路の蒸発器部分との間に熱交換器を構成するよ
うンこ配設して冷凍装置を構成したものである。
In order to solve the problem, the present invention provides independent first and second closed refrigerant circuits, and the evaporator of the first closed refrigerant circuit is connected to the refrigerant flow. The second refrigerant closed circuit is filled with a mixture of multiple types of refrigerants with different lung points, and the high-pressure side piping from the compressor to the evaporator is connected to the second refrigerant closed circuit. The refrigeration system is constructed by constructing parallel piping and disposing a tube to constitute a heat exchanger between each of the first refrigerant closed circuits and the evaporator section.

(ホ)作用 本発明によればifの冷媒閉回路と第2の冷媒閉回路を
接続する所謂カスケードコンデンサの各部を小型化でき
るため設置形態の自由度が増し、結果的に装置全体の小
型化が図れる。又、第1の冷媒閉回路の蒸発器部分を冷
媒流に対して直列に接続したため、温度若しくは圧力に
よる凝縮能力の不安定化が防止されると共に、第2の冷
媒閉回路の高圧側配管を冷媒流に対して並列の配管とし
てそれぞれを第1の冷媒閉回路の各蒸発器部分に交熱的
に配設したことにまり熱交換効率の向上が図れる。
(E) Effect According to the present invention, each part of the so-called cascade capacitor that connects the IF refrigerant closed circuit and the second refrigerant closed circuit can be downsized, increasing the degree of freedom in installation form, and resulting in downsizing of the entire device. can be achieved. In addition, since the evaporator part of the first refrigerant closed circuit is connected in series with the refrigerant flow, destabilization of the condensing capacity due to temperature or pressure is prevented, and the high pressure side piping of the second refrigerant closed circuit is connected in series with the refrigerant flow. The heat exchange efficiency can be improved by arranging the piping in parallel to the refrigerant flow to each evaporator portion of the first refrigerant closed circuit for heat exchange.

(へ)実施例 次に図面に於いて本発明の詳細な説明する。(f) Example The invention will now be described in detail with reference to the drawings.

第1図は本発明の冷凍装置(R1の冷媒回路fi+を示
している。冷媒回路(1〕はそれぞれ独立した第1の冷
媒閉回路としての高温側冷媒回路(2)と第2の冷媒閉
回路としての低温側冷媒回路(3)とから構成されてい
る。(4)は高温側冷媒回路(2)を構成する一相若し
くは三相交流電源を用いる電動圧縮機であり、1電動圧
縮機(・1)の吐出側配管(4D)は補助凝縮器(5)
に接続され、補助凝縮器(5)は更に後に詳述する冷σ
E庫の貯M、室開口縁を加熱する4付防止パイプ(6)
に接続され、次に電動圧縮機(4)のオイルクーラー(
7)に接続された後、凝縮器(8)に接続される。(9
1は凝縮器(8)冷却用の送風機である。凝縮器(8)
を出た冷媒配管は低温側冷媒(ロ)路(3)を構成する
電動圧縮機a■のオイルクーラーQllに接続された佼
、凝縮器(8)に戻り、乾燥器α2を経た後、減圧器α
(を介して蒸発器を構成する蒸発器部分としての第1蒸
発器(14A)と第2蒸発器(14B)を経てアキュム
レーター05)を経て電動圧縮機(4)の吸入側配管(
4S)に接続される。第1蒸発器(14A)と第2蒸発
器(14B)は直列に接続され、全体として高温側冷媒
回路(2)の蒸発器を構成している。
Fig. 1 shows the refrigerant circuit fi+ of the refrigeration system (R1) of the present invention. (4) is an electric compressor that uses a one-phase or three-phase AC power source that constitutes the high-temperature side refrigerant circuit (2). (・1) The discharge side pipe (4D) is the auxiliary condenser (5)
The auxiliary condenser (5) is connected to the cold σ
E storage storage M, 4-prevention pipe (6) that heats the chamber opening edge
and then the electric compressor (4) oil cooler (
7) and then to a condenser (8). (9
1 is a blower for cooling the condenser (8). Condenser (8)
The refrigerant pipe that exits the refrigerant pipe is connected to the oil cooler Qll of the electric compressor a, which constitutes the low-temperature side refrigerant path (b) path (3), returns to the condenser (8), passes through the dryer α2, and then is depressurized. Vessel α
(Accumulator 05 via the first evaporator (14A) and second evaporator (14B) as the evaporator parts constituting the evaporator) and then the suction side pipe of the electric compressor (4) (
4S). The first evaporator (14A) and the second evaporator (14B) are connected in series, and together constitute the evaporator of the high temperature side refrigerant circuit (2).

高温側冷媒回路(2)にはR501冷媒が充填され、″
tjL動圧縮機(4)から吐出された高温ガス状冷媒は
、補助凝縮器(5)、4付防止パイプ(6)、オイルク
ーラー(7+、凝縮器(8)及びオイルクーラーQll
で凝縮されて放熱液化した後、乾燥器azで含有する水
分を除去され、減圧器Q31にて減圧されて第1及び第
2蒸発器(14A)(14B)に次々に流入して蒸発し
、気化熱を周囲から吸収して各蒸発器(14A)(14
B)を冷却し、アキニームレータα9で未蒸発の液冷媒
を分離して冷媒ガスだけが電動圧縮機(4)に帰還する
動作をする。1kL動圧縮機(4)の能力は例えば1.
5 I−(Pであり、運転中の各蒸発器(14A) (
14B)の最終到達温度は一35℃乃至−40°Cとな
る。
The high temperature side refrigerant circuit (2) is filled with R501 refrigerant,
The high-temperature gaseous refrigerant discharged from the tjL dynamic compressor (4) is sent to the auxiliary condenser (5), the 4-piece prevention pipe (6), the oil cooler (7+, the condenser (8), and the oil cooler Qll).
After being condensed and liquefied with heat dissipation, the water contained in the dryer az is removed, the pressure is reduced in a pressure reducer Q31, and the mixture flows into the first and second evaporators (14A) (14B) one after another and evaporates. Each evaporator (14A) (14
B) is cooled, the unevaporated liquid refrigerant is separated by the oxidizer α9, and only the refrigerant gas is returned to the electric compressor (4). The capacity of the 1kL dynamic compressor (4) is, for example, 1.
5 I-(P, each evaporator (14A) in operation
The final temperature of 14B) is between -35°C and -40°C.

低温側冷媒回路(3)を構成する電動圧縮機00)の吐
出側配管(IOD)は補助凝縮器C171に接ftiさ
れた後油分離器賭に接続される。油分離器u81からは
電動圧縮機0■に戻る油戻し管(19と乾燥器G20)
に接続される配管に分かれ、乾燥器■は分岐用三方管咀
に接続される。三方管Ca11から出た一方の配管は低
温側冷媒回路(3)の第2の吸入側熱交換器Qz周囲を
熱交換的に巻回した後第1蒸発器(14A)内に挿入さ
れた高圧側配管としての第1凝縮パイプ(23A)に接
続される。三方管c!nから出た他方の配管は同様に低
温側冷媒回路(3)の第1の吸入側熱交換器Ca周囲を
熱交換的に巻向しだ後第2蒸発器(14I3)内に挿入
された高上側配管としての第2凝縮バイブ(2311)
に接続される。第1蒸発器(14A)と第1凝縮パイプ
(23A)及び第2蒸発器(14B)と第2凝縮パイプ
(231J)はそれぞれカスケードコンデンサ(251
及び(25B)を構成している。第1及び第2疑縮パイ
プ(23A) (23B)は集合三方管□□□にて結合
された後、乾燥器(281を経て第1の気液分離器四に
接続される。
The discharge side piping (IOD) of the electric compressor 00 constituting the low temperature side refrigerant circuit (3) is connected to the auxiliary condenser C171 and then to the oil separator. Oil return pipe (19 and dryer G20) returns from oil separator u81 to electric compressor 0■
The dryer (1) is connected to a three-way branch pipe. One of the pipes coming out of the three-way pipe Ca11 is wound around the second suction side heat exchanger Qz of the low temperature side refrigerant circuit (3) in a heat exchange manner, and then is inserted into the first evaporator (14A). It is connected to the first condensation pipe (23A) as a side pipe. Three-way tube c! The other pipe coming out from n was similarly wound around the first suction side heat exchanger Ca of the low temperature side refrigerant circuit (3) in a heat exchange manner, and then inserted into the second evaporator (14I3). Second condensing vibe (2311) as high upper piping
connected to. The first evaporator (14A) and the first condensing pipe (23A) and the second evaporator (14B) and the second condensing pipe (231J) are connected to a cascade condenser (251
and (25B). The first and second pseudo-condensation pipes (23A) (23B) are connected by a collecting three-way pipe □□□, and then connected to the first gas-liquid separator 4 via a dryer (281).

気液分離器四から出た気相配管C3Gは第1の中間熱交
換器c33内を通過して第2の気液分離器關に接続され
る。気液分離器(ハ)から出た液相配管(至)は乾燥器
9句を経た後減圧器(支))を経て第1の中間熱交換器
S21と第2の中間熱交換器(4′I!Jの間に接続さ
れる。気液分離器暖から出た液相配管(至)は乾燥器c
391を経た後減圧器(40を経て第2の中間熱交換器
G4zと第3の中間熱交換器0aの間に接続される。気
液分離器(から出た気相配管(43は第2の中間熱交換
器(4D円を通過した後、第3の中間熱交換器(44)
内を通過し、乾燥器(451を経て減圧器(46)に接
続される。減圧器(461は蒸発器としての蒸発パイプ
(471に接続され、更に蒸発パイプ(4ηは第3の中
間熱交換器(44)に接続される。第3の中間熱交換器
(44)は第2 (42)及び第1の中間熱交換器c3
2に次々に接続された後、アキュムレータ091に接続
され、アキュムレータ(49)は更に第1の吸入側熱交
換器c!aに接続され、更に第2の吸入側熱交換器■を
経て電動圧縮機α0)の吸入側配管(IO8)に接続さ
れる。吸入側配管(IO3)には更に電動圧縮機aα停
止時に冷媒を貯留する膨張タンク6υが減圧器ci2を
介して接続される。
The gas phase pipe C3G coming out of the gas-liquid separator 4 passes through the first intermediate heat exchanger c33 and is connected to the second gas-liquid separator. The liquid phase pipe (to) coming out of the gas-liquid separator (c) passes through a dryer (9), and then a pressure reducer ((branch)) to the first intermediate heat exchanger S21 and the second intermediate heat exchanger (4). ' I!J is connected between
After passing through 391, it is connected between the second intermediate heat exchanger G4z and the third intermediate heat exchanger 0a through the pressure reducer (40). intermediate heat exchanger (after passing through the 4D circle, the third intermediate heat exchanger (44)
The pressure reducer (461 is connected to the evaporation pipe (471) as an evaporator, and the evaporation pipe (4η is the third intermediate heat exchanger). The third intermediate heat exchanger (44) is connected to the second intermediate heat exchanger (42) and the first intermediate heat exchanger c3.
2 one after another, and then connected to the accumulator 091, and the accumulator (49) is further connected to the first suction side heat exchanger c! a, and further connected to the suction side piping (IO8) of the electric compressor α0) via the second suction side heat exchanger (2). An expansion tank 6υ that stores refrigerant when the electric compressor aα is stopped is further connected to the suction side pipe (IO3) via a pressure reducer ci2.

低温側冷媒回路(3)には沸点の外なる四種類の混合冷
媒が封入される。即ち、R21(ジクロロモノフルオロ
メタン)、R13B1(プロモトリフルオロメタン)、
R14(テトラフルオロメタン)及びR50(メタン〕
から成る混合冷媒が予め混合された状態で封入される。
The low-temperature side refrigerant circuit (3) is filled with a mixture of four types of refrigerants having different boiling points. That is, R21 (dichloromonofluoromethane), R13B1 (promotrifluoromethane),
R14 (tetrafluoromethane) and R50 (methane)
A mixed refrigerant consisting of is sealed in a pre-mixed state.

各冷媒の組成はR50が4,0重量%、R14が40.
5重量%、R13B1が53.4重量%、R21が2.
1重量%である。
The composition of each refrigerant is 4.0% by weight of R50 and 40% by weight of R14.
5% by weight, R13B1 53.4% by weight, R21 2.
It is 1% by weight.

R50はメタンであり酸素との結合にて爆発を生じるが
上記割合の各フロン冷媒と混合することによって爆発の
危険性は無くなる。従って混合冷媒の漏洩事故が発生し
たとしても爆発事故は発生しない。
R50 is methane, which causes an explosion when combined with oxygen, but the danger of explosion is eliminated by mixing it with each fluorocarbon refrigerant in the above proportions. Therefore, even if a mixed refrigerant leakage accident occurs, an explosion accident will not occur.

ここで実施例では高温側冷媒回路(2)の蒸発器を二つ
の蒸発器部分即ち第1第2蒸発器(14A) (14第
1第2凝縮i (23A) (23B)に分割したこと
により、二つのカスケードコンデンサ(25A)(25
B)を構成したが、それに限られず、本発明の趣旨を逸
脱しない範囲で更に多くのカスケードコンデンサに分割
しても何等差支えない。
Here, in the embodiment, the evaporator of the high temperature side refrigerant circuit (2) is divided into two evaporator parts, namely, a first and second evaporator (14A) (14, first and second condensing i (23A), (23B)). , two cascade capacitors (25A) (25
Although B) is configured, the present invention is not limited thereto, and there is no problem in dividing it into more cascade capacitors without departing from the spirit of the present invention.

電動圧縮機(10)から吐出された高温高圧のガス状混
合冷媒は補助凝縮器αnにて予冷された後、油分離器G
81にて冷媒と混在している電動圧縮機0■の潤滑油の
大部分を油戻し管(I9にて電動圧縮機(101に戻し
、冷媒自体は乾燥器囚を経た後、三方管C!υにて二分
される。三方管−にて二分された冷媒はそれぞれ別々に
吸入側熱交換器(2z若しくは(2旬にて予冷された後
、それぞれカスケードコンデンサ(25A)若しくは(
25B)にて第1 (14A)若しくは第2の蒸発器(
14B)より冷却されて混合冷媒中の沸点の高い一部の
冷媒を凝縮液化した後、三方管(5)に於いて合流する
。この時混合冷媒は二分されてそれぞれ量の少ない状態
で別々にカスケードコンデンサ(25A)若しくは(2
5B)に於いて冷却されるため、十分なる熱交換が行な
われ、凝縮作用は良好に達成される。
The high temperature and high pressure gaseous mixed refrigerant discharged from the electric compressor (10) is precooled in the auxiliary condenser αn, and then transferred to the oil separator G.
At 81, most of the lubricating oil in the electric compressor 0■ mixed with the refrigerant is returned to the oil return pipe (I9 to the electric compressor (101), and the refrigerant itself passes through the dryer, and then passes through the three-way pipe C! The refrigerant is divided into two parts at υ.The refrigerant divided into two parts by the three-way pipe is separately pre-cooled in the suction side heat exchanger (2z or (2), and then transferred to a cascade condenser (25A) or (2), respectively.
25B) to the first (14A) or second evaporator (
14B) to condense and liquefy part of the refrigerant with a high boiling point in the mixed refrigerant, and then merge in the three-way pipe (5). At this time, the mixed refrigerant is divided into two parts and each is connected to a cascade condenser (25A) or a cascade condenser (25A) or a (25A)
5B), sufficient heat exchange takes place and the condensation effect is well achieved.

三方管(5)を出た混合冷媒は乾燥器儲を経て気液分離
器−に流入する。この時点では混合冷媒中のR14と1
150は沸点が極めて低い為に未だ凝縮されておらずガ
ス状態であり、R21とR13B1のみがM縮減化され
ている為、R14とR50は気相配管00)に、R21
とR13B1は液相配管図へと分離される。気相配v殴
に流入した冷媒混合物は第1の中間熱交換器r、32と
熱交換して凝縮された後、気液分離器割に至る。ここで
第1の中間熱交換器ωには蒸発パイプ(41より帰還し
て来る低温の冷媒が流入し、更に液相配管041に流入
したR13B1が乾燥器(至)を経て減圧器μs)で減
圧された後、第1の中間熱交換器(34に流入してそこ
で蒸発することにより冷却に寄与する為、第1の中間熱
交換器C33の温度は一70℃程となっている。従って
気相配管(2))を通過した混合冷媒中のR14は凝縮
液化され、R50は更に沸点が低い為に未だガス状態で
ある。よってR14は気液分離器C331から液相配管
図へ又、■(50は気相配管(倍へと分離され、R14
は乾燥益田を経て減圧器(4αにて減圧され第2の中間
熱交換器(4力と第3の中間熱交換器(旬の間に流入し
て第2の中間熱交換器(42)内で蒸発する。第2の中
間熱交換器(・1力には蒸発パイプ(471からの帰還
低温冷媒が流入すると共に114の蒸発が更に冷却罠寄
与するため、第2の中間熱交換器(43の温度は一11
0″G程となっている。史に第3の中間熱交換器(4・
0には蒸発パイプ(、+71からの帰還低温冷媒が直ぐ
に流入しているために、その温度は一135°C程の極
めて低い温度となっているので、第2及び第3の中間熱
交換器(47JC+4)と熱交換した気相配管(431
を通過する最も沸点の低い冷媒150は凝縮液化され、
乾燥器(45を経て減圧器(46)にて減圧された後、
蒸発パイプ(4つに流入してそこで蒸発する。この時の
蒸発パイプ(4ηの温度は一150℃に到達している。
The mixed refrigerant coming out of the three-way pipe (5) passes through the dryer and flows into the gas-liquid separator. At this point, R14 and 1 in the mixed refrigerant
150 has an extremely low boiling point, so it is not condensed yet and is in a gas state, and only R21 and R13B1 have been reduced in M, so R14 and R50 are added to the gas phase piping 00), and R21
and R13B1 are separated into liquid phase piping diagrams. The refrigerant mixture that has flowed into the gas phase distribution tank exchanges heat with the first intermediate heat exchanger r, 32 and is condensed, and then passes through the gas-liquid separator. Here, low-temperature refrigerant returning from the evaporation pipe (41) flows into the first intermediate heat exchanger ω, and R13B1, which has further flowed into the liquid phase pipe 041, passes through the dryer (toward) and enters the pressure reducer μs). After being depressurized, it flows into the first intermediate heat exchanger (34) and contributes to cooling by evaporating there, so the temperature of the first intermediate heat exchanger C33 is about -70°C. R14 in the mixed refrigerant that has passed through the gas phase pipe (2)) is condensed and liquefied, and R50 is still in a gas state because it has an even lower boiling point. Therefore, R14 is transferred from the gas-liquid separator C331 to the liquid phase piping diagram.
passes through the drying Masuda, is depressurized at the pressure reducer (4α) and flows into the second intermediate heat exchanger (42) and the third intermediate heat exchanger (42). The return low-temperature refrigerant from the evaporation pipe (471) flows into the second intermediate heat exchanger (471), and the evaporation of 114 further contributes to the cooling trap, so the second intermediate heat exchanger (43 The temperature of is -11
It is about 0″G.The third intermediate heat exchanger (4.
Since the return low-temperature refrigerant from the evaporator pipe (+71) immediately flows into the evaporator pipe, its temperature is extremely low at about -135°C, so the second and third intermediate heat exchangers (47JC+4) and gas phase piping (431
The refrigerant 150 with the lowest boiling point passing through is condensed and liquefied,
After passing through the dryer (45) and being depressurized in the depressurizer (46),
It flows into the evaporation pipe (4η) and evaporates there. At this time, the temperature of the evaporation pipe (4η) has reached -150°C.

これが本発明の冷凍装置(刊の最終到達温度であり、こ
の蒸発パイプ(4力を後述する冷凍庫の貯蔵室に熱交換
的に配設することりこより貯蔵室内を一150℃の超低
温の環境とすることが可能となる。蒸発パイプ(4ηか
ら流出した冷媒(It50月ま前述の如く第3、第2、
第1の中間熱交換器f44)(421Ga ic 次k
 ic fAt 人、m tlJ L、各冷媒R14、
R13B1、R21と合流しながらアキュムレータ(惧
にて未蒸発の冷媒を分離した後吸入側熱交換器C7!4
1(23に次々に流入して冷却した後、電動圧縮機a■
に吸入される。
This is the final temperature reached by the refrigeration system of the present invention. It becomes possible to
First intermediate heat exchanger f44) (421 Ga ic next k
ic fAt person, m tlJ L, each refrigerant R14,
While merging with R13B1 and R21, the unevaporated refrigerant is separated at the accumulator (edge), and then the suction side heat exchanger C7!4
1 (After being cooled by flowing into 23 one after another, the electric compressor a■
is inhaled.

ここで第1の気液分離器四にて液相配管C31K流入し
たFL21は第1の中間熱交換器G功に流入するものの
、既に極めて低い温度となっているため蒸発せず液状態
のままであり、従って冷却には同等寄与しないが、油分
離器u8で分離し切れなかった残留潤滑油や各乾燥器で
吸収し切れなかった混入水分をその内に溶は込ませた状
態で電動圧縮機GO+に帰還せしめる機能を奏する。電
動圧縮機(101の潤滑油が低温側冷媒回路(3)内を
循環すると超低温であることにより、各部に残留する現
象が発生し。
Here, FL21 that has flowed into the liquid phase pipe C31K in the first gas-liquid separator 4 flows into the first intermediate heat exchanger G, but since it is already at an extremely low temperature, it does not evaporate and remains in a liquid state. Therefore, although they do not contribute equally to cooling, electric compression is performed with residual lubricating oil that could not be separated by oil separator U8 and mixed moisture that could not be completely absorbed by each dryer dissolved in it. It performs the function of returning to the aircraft GO+. When the lubricating oil of the electric compressor (101) circulates in the low-temperature side refrigerant circuit (3), it remains at various parts due to the extremely low temperature.

目詰りの原因となる。その為に121で略完全なる潤滑
油の帰還を達成している、6 以上を繰り返えすことにより冷媒回路(1ンは定常状態
で蒸発パイプ(471に一150°Cの超低温を発生す
るが、電動圧縮機+4)Q(11は1.5 HP程度の
能力で済み、格別大なる能力を必要としない。これはカ
スケードコンデンサ(25A)(25B)部分の熱交換
が良好に行なわれている事と混合冷媒の選択が大きく寄
与している。これによって電動圧縮機による騒音の削減
と低消費電力が達成される。又、−150℃の達成によ
って後述する冷凍厚内の生体資料を氷の再結晶化点より
低い温度に冷却する事が可能となり、永久保存が達成さ
れることになる。
This may cause clogging. Therefore, almost complete return of the lubricating oil is achieved in 121. By repeating the above steps, the refrigerant circuit (1) is in a steady state and the evaporation pipe (471) is heated to an extremely low temperature of -150°C. , electric compressor +4) Q (11 only requires a capacity of about 1.5 HP, and does not require a particularly large capacity.This is because the heat exchange between the cascade condensers (25A) and (25B) is performed well. This makes a major contribution to the selection of the mixed refrigerant.This achieves noise reduction and low power consumption by the electric compressor.Also, by achieving -150℃, biological materials within the frozen thickness, which will be described later, can be stored in ice. It becomes possible to cool the material to a temperature lower than the recrystallization point, thereby achieving permanent preservation.

更に高温側冷媒回路(2)の冷媒は第1蒸発器(14A
)から第2蒸発器(14B)へと流れ、分流するもので
は無いので両蒸発器(14A)(14B)の温度バラン
スが何等かの原因で崩れても、冷媒流量の偏りは発生し
得す、従って低温側冷媒回路(3)の第1凝縮パイプ(
23A)と第2凝縮パイプ(23B)の相方の安定した
冷却が達成され、良好なる凝縮作用が達成される。
Furthermore, the refrigerant in the high temperature side refrigerant circuit (2) is supplied to the first evaporator (14A
) flows to the second evaporator (14B) and is not divided, so even if the temperature balance between the two evaporators (14A) (14B) is disrupted for some reason, an imbalance in the refrigerant flow rate may occur. , therefore, the first condensing pipe (
23A) and the second condensing pipe (23B) are achieved, and a good condensing effect is achieved.

次に第2図は本発明の冷凍装置(R1の制御用電気回路
の概略を示す。(4M〕は高温側冷媒回路(2)の電動
圧縮機(4)駆動用のモーターであり、−相若しくは三
相の交流電源(AC)(AC)間に接続される。
Next, FIG. 2 shows an outline of the control electric circuit of the refrigeration system (R1) of the present invention. (4M) is a motor for driving the electric compressor (4) of the high temperature side refrigerant circuit (2), Alternatively, it is connected between three-phase alternating current power sources (AC).

即ちモーター(4M)は電源(AC)(AC)が投入さ
れている間は連続運転とされる。(IOM)は低温側冷
媒回路(3)の電動圧縮機α■駆動用のモーターであり
That is, the motor (4M) is continuously operated while the power (AC) is turned on. (IOM) is a motor for driving the electric compressor α■ of the low temperature side refrigerant circuit (3).

電磁リレー硼の接点(60A)と直列に電源(AC)(
AC)に接続される。接点(60A)は1r!、!リレ
ー(60)のコイル(60C)に通電されて閉じ、モー
ター(1ONi)を運転せしめる。Q31)は後述する
冷凍庫貯蔵室の温度調節器であり、電源(AC)(AC
)間に接続され、貯蔵室内の温度を実質的に検出し、設
定温度の上下に適当なディファレンシャルを設定し、上
限温度で出力端子(61A) (61B)間に電圧を発
生し、下限温度で発生を停止する。この設定温度は一1
45°C乃至−150℃である。出力端子(61A) 
(61B)間には温調リレー(6zのコイル(62C)
とタイマー(631の接点(63A)が直列接続される
。温調リレー@はコイル(62C)に通電されて接点(
62A)を閉じる。田は第1図の低温側冷媒回路(3)
の電動圧縮機0■吐出側配管(IOD)に、補助凝縮器
(171の前段側に於いて設けられる高圧スイッチであ
る。高圧スイッチ時は電源(AC)(AC)に対してタ
イマーF;3)と直列に接続され、電動圧縮機00)吐
出側の圧力が上昇して圧縮機σ0)に過大な負荷をかけ
るようになる、例えば29〜に上昇すると接点を開き、
圧力が十分に安全な状態例えば19〜に低下すると接点
を閉じる。
Connect the power supply (AC) (
AC). The contact (60A) is 1r! ,! The coil (60C) of the relay (60) is energized and closed, causing the motor (1ONi) to operate. Q31) is the temperature controller for the freezer storage room, which will be described later, and the power supply (AC) (AC
), it essentially detects the temperature inside the storage chamber, sets an appropriate differential above and below the set temperature, generates a voltage between the output terminals (61A) and (61B) at the upper limit temperature, and generates a voltage between the output terminals (61A and 61B) at the lower limit temperature. Stop occurrence. This set temperature is 11
The temperature is 45°C to -150°C. Output terminal (61A)
(61B) There is a temperature control relay (6z coil (62C)
The contact (63A) of the timer (631) is connected in series.The temperature control relay @ is energized to the coil (62C) and the contact (63A) is connected in series.
Close 62A). The field is the low temperature side refrigerant circuit (3) in Figure 1.
This is a high-pressure switch installed in the electric compressor 0■ discharge side piping (IOD) on the front side of the auxiliary condenser (171).When the high-pressure switch is on, the timer F; ) is connected in series with the electric compressor 00), and when the pressure on the discharge side increases and an excessive load is applied to the compressor σ0), for example, when the pressure rises to 29~, the contact opens,
The contacts are closed when the pressure drops to a sufficiently safe condition, e.g.

タイマー槌は高圧スイッチ時の接点が閉じた後、3乃至
5分経過後に接点(63A)を閉じ、高圧スイッチ鐘が
開いて接点(63A)を開く。(60は低温始動サーモ
スタンドであり、高温冷媒回路(2)のアキュムレータ
ーαSの温度を感知する様に取り付けられている。アキ
ュムレーター(19には各蒸発器(14A)(14B)
で蒸発した冷媒及び未蒸発の冷媒が流入するため、蒸発
器(14A)(14B)と略同様の低温となるものであ
るが、低温始動サーモスタット(66)はアキュムレー
ター09の温度が例えば−34,5°Cに低下して接点
を閉じる。低温始動サーモスタット!661は両側に温
調リレー[F]2の接点(62A)及びタイマー襞とで
直列回路を構成して電源(AC) (AC)に接続され
る。タイマー關と低温始動サーモスタッ) f66)間
にはタイマー關の切換えスイッチ隨のコモン端子が接続
され、切換えスイッチ隨の端子(69A)と電源(AC
)間には電磁リレー印のコイル(60C)が接続され、
端子(69B)と電源(AC)間には第1図の減圧器(
囮の前後に交熱的に設けられるヒーターこの積算が例え
ば12時間になるとスイッチ器を端子(69B)に例え
ば15分間閉じて再び端子(69人〕に閉じる動作をす
る。
The timer hammer closes the contact (63A) 3 to 5 minutes after the high pressure switch contact closes, and the high pressure switch bell opens to open the contact (63A). (60 is a low temperature start thermo stand, which is installed to sense the temperature of the accumulator αS of the high temperature refrigerant circuit (2).
Since evaporated refrigerant and unevaporated refrigerant flow in, the temperature is approximately the same as that of the evaporators (14A) and (14B). , 5°C and close the contacts. Low temperature starting thermostat! 661 constitutes a series circuit with the contacts (62A) of the temperature control relay [F]2 and the timer fold on both sides, and is connected to the power source (AC) (AC). The common terminal of the changeover switch of the timer connection is connected between the timer connection and the low temperature start thermostat (f66), and the terminal of the changeover switch (69A) and the power supply (AC
) A coil (60C) marked with an electromagnetic relay is connected between
Connect the pressure reducer (see Figure 1) between the terminal (69B) and the power supply (AC).
Heaters are installed before and after the decoy for heat exchange. When this cumulative time reaches, for example, 12 hours, the switch is closed to the terminal (69B) for, for example, 15 minutes, and then the terminal (69 people) is closed again.

次に動作を説明する。冷凍装置lが据え付けられて電源
(AC) (AC)を投入するとモーター(4M)が起
動し、電動圧縮機(4)が動作して高温側冷媒回路(2
)内を冷媒が循環し始める。この時アキームレータ05
)は常温に近い状態であるから低温始動サーモスタッ)
66)は開放状態であり、従って温度調節器例の如何に
係わらず、電磁リレー60のコイル(6QC)には通電
されず、従って接点(60A)は開いているため、モー
ター(IOM)は起動せず、低温側冷媒回路(3)の電
動圧縮機α0)は動作しない。この様な高温側冷媒回路
(2)のみの冷却運転が継続され、第1及び第2蒸発器
(14A) (14B)に液状冷媒がたまることによっ
て温度が低下して行き、それに伴ってアキュムレーター
a9の温度が低下して−34゜5℃になると低温始動サ
ーモスタッ)(661が接点を閉じる。この閉動作の寸
前の時点では電動圧縮機00)は停止しているから当然
高圧スイッチ田は閉じており、又、電源投入から3乃至
5分は当然経過しているからタイマー田も接点(63A
)を閉じている。更に貯蔵室内の温度も当然設定温度よ
り高いから、温度調節器6υも出力を発生しているので
温調リレー(6zの接点(62A)は閉じている。従っ
て低温始動サーモスタット鏝が閉じた時点で電磁リレー
 (60)のコイル(60C)に通電されて接点(60
A)が閉じ、モーター(10M)が起動して電動圧縮機
α■より混合冷媒が吐出され回路(3)内を循環され始
める。
Next, the operation will be explained. When the refrigeration equipment is installed and the power (AC) is turned on, the motor (4M) starts, the electric compressor (4) operates, and the high temperature side refrigerant circuit (2
) The refrigerant begins to circulate inside. At this time Akeem Lator 05
) is close to room temperature, so it is a cold start thermostat)
66) is in an open state, so regardless of the temperature controller example, the coil (6QC) of the electromagnetic relay 60 is not energized, and therefore the contact (60A) is open, so the motor (IOM) is not started. Therefore, the electric compressor α0) of the low temperature side refrigerant circuit (3) does not operate. Such a cooling operation of only the high temperature side refrigerant circuit (2) continues, and the temperature decreases as liquid refrigerant accumulates in the first and second evaporators (14A) (14B), and accordingly, the accumulator When the temperature of a9 decreases to -34°5℃, the low temperature start thermostat (661) closes the contact.At the moment just before this closing operation, the electric compressor 00) is stopped, so naturally the high pressure switch is closed. Also, since 3 to 5 minutes have passed since the power was turned on, the timer field is also connected to the contact point (63A).
) is closed. Furthermore, since the temperature in the storage room is naturally higher than the set temperature, the temperature regulator 6υ is also generating an output, so the contact (62A) of the temperature control relay (6z) is closed.Therefore, when the low temperature starting thermostat trowel closes, The coil (60C) of the electromagnetic relay (60) is energized and the contact (60
A) is closed, the motor (10M) is started, and the mixed refrigerant is discharged from the electric compressor α■ and begins to be circulated within the circuit (3).

この時低温側冷媒回路(3)各部の温度は依然高く、従
って内部の冷媒は殆んどがガス状となっているために回
路内の圧力は高い。その上電動圧縮機a■から冷媒が押
し出されるために吐出側配管(l OD)の圧力が急激
に上昇する。これを放置すると高圧力によって電動圧縮
機(101構成部品が損傷を受けるが、この圧力上昇の
ピーク値が許容限界である29製に達すると高圧スイッ
チ時がそれを感知して接点を開くので接点(63AJか
開さ、それによって温調リレー6zの接点(62A)が
強制的に開放せられ、コイル(60C)が非通電となっ
て接点(60A)が開きモー11(IOM)は停止する
。これによって電動圧縮機(1G吐出側の圧力上昇は阻
止され、損傷は防止される。
At this time, the temperature of each part of the low-temperature side refrigerant circuit (3) is still high, and since most of the refrigerant inside is in a gaseous state, the pressure inside the circuit is high. Furthermore, since the refrigerant is pushed out from the electric compressor a, the pressure in the discharge side pipe (lOD) increases rapidly. If this is left unattended, the high pressure will damage the components of the electric compressor (101), but when the peak value of this pressure rise reaches the permissible limit of 29, the high pressure switch will sense this and open the contact. (The contact (62A) of the temperature control relay 6z is forcibly opened, the coil (60C) is de-energized, the contact (60A) is opened, and the motor 11 (IOM) is stopped. This prevents pressure rise on the electric compressor (1G discharge side) and prevents damage.

電動圧縮機a印の停止によって吐出側配管(IOD)の
圧力は低下して19りまで下がるがチャタリング防止用
のタイマー的の存在によって高圧スイッチ時の閉動作か
ら3乃至5分間は接点は閉じず。
When the electric compressor marked A stops, the pressure in the discharge side piping (IOD) drops to 19 degrees, but due to the presence of a timer to prevent chattering, the contacts do not close for 3 to 5 minutes after the high pressure switch closes. .

従ってモーター(IOM)は起動しない。この間に低温
側冷媒回路(3)内の圧力は第1若しくは第2蒸発器(
14A)(14B)から第1若しくは第2凝縮器(23
7す(23B)に於いて冷却された冷媒が多少なりとも
循環されて蒸発する為に、前回の起動時より温度が低下
し、圧力も低下している。タイマー槌)による遅延時間
が経過すると再び接点(63A)が閉ざされて前述同様
にモーター(IOM)が起動されるが、吐出側配管(1
0D)の圧力が295に達した時点で再び高圧2イノテ
ロωが開放してモーターQOIは停止する。この様なモ
ーター(10M)の起動と停止を繰り返えし、沸点の高
い冷媒が蒸発して徐々に冷却作用を発揮して行くことに
よって第1の中間熱交換器Oシから徐々に温度が低下し
て行き、モーター(l OM)起動時の吐出側配管(I
OD)の圧力上昇のピーり値が29%に達しなくなると
モーター(IOM)は連続運転に入る。
Therefore, the motor (IOM) will not start. During this time, the pressure in the low temperature side refrigerant circuit (3) decreases to the first or second evaporator (
14A) (14B) to the first or second condenser (23
Since the refrigerant cooled in step 7 (23B) is circulated to some extent and evaporated, the temperature and pressure have decreased compared to the previous startup. When the delay time set by the timer (timer hammer) has elapsed, the contact (63A) is closed again and the motor (IOM) is started in the same manner as described above, but the discharge side piping (1
When the pressure of 0D) reaches 295, the high pressure 2 innotero ω is opened again and the motor QOI is stopped. By repeatedly starting and stopping such a motor (10M), the refrigerant with a high boiling point evaporates and gradually exerts a cooling effect, so that the temperature gradually decreases from the first intermediate heat exchanger O. As the motor (l OM) starts up, the discharge side piping (l
When the peak value of the pressure increase (OD) no longer reaches 29%, the motor (IOM) enters continuous operation.

電動圧縮機(1αが連続運転されることによって沸点の
低い冷媒も凝縮されて徐々に冷却作用を発揮し始め、各
中間熱交換器c3鵠:D(44)と蒸発パイプ(47)
の温度が徐々に低下して行って前述の最終到達温度を得
る。その後貯蔵室の温度が温度調節器(61)で設定す
る下限温度に違すると出力端子(61A) (61B)
間の出力の発生を停止するので接!(62A)が開き、
更に接点(60A)も開く為、モーター(10M)が停
止し、冷却運転は停止する。その後貯蔵室内の温度が徐
々に上昇して、温度調節器Q3Bで設定する上限温度に
達すると再び接点(62A)が閉じ、更に接点(60A
)が閉じてモーター(10M)が起動され再び冷却運転
が開始される。以上を繰り返して貯蔵室は平均して設定
温度例えば−145℃に維持されることになる。
As the electric compressor (1α) is operated continuously, the refrigerant with a low boiling point is condensed and gradually begins to exert a cooling effect, and each intermediate heat exchanger C3: D (44) and evaporation pipe (47)
The temperature is gradually lowered to reach the final temperature mentioned above. After that, if the temperature in the storage room is different from the lower limit temperature set by the temperature controller (61), the output terminals (61A) (61B)
Contact because it stops generating output between! (62A) opens,
Furthermore, since the contact (60A) also opens, the motor (10M) stops and the cooling operation stops. After that, the temperature inside the storage chamber gradually rises and when it reaches the upper limit temperature set by the temperature controller Q3B, the contact (62A) closes again, and then the contact (60A)
) is closed, the motor (10M) is started, and cooling operation is started again. By repeating the above steps, the storage chamber is maintained at an average set temperature of, for example, -145°C.

ここでタイマー槌は接点(62A)及び低温始動サーモ
スタッ) (661が閉じている間、即ちモーター(1
0M)が運転されている時間を積算しており、この積算
が12時間に達すると切換えスイッチ側を端子(69B
)に閉じるのでモーター(10M)の運転は禁止され、
ヒーターqOσυに通電されて発熱する。
Here, the timer hammer contacts (62A) and the cold start thermostat) (661) are closed, i.e. the motor (1
0M) is in operation, and when this integration reaches 12 hours, the changeover switch side is connected to the terminal (69B).
), so operation of the motor (10M) is prohibited.
Heater qOσυ is energized and generates heat.

ここで第3の中間熱交換器に41を出て減圧器(4eに
流入するR50は一130℃以下の極めて低い温度に達
している。従ってこの冷媒中に極めて微量の水分(これ
は冷媒の補充作業中等圧侵入するものである。)が混入
していれば配管内に氷結が発生する。ところで減圧器は
通常細い径の配管にて構成されるため、この減圧器(4
6)部分で氷結が成長すると目詰りが発生し、冷媒が流
れなくなってしまうが、本発明ではヒータσO)συに
よって定期的に減圧器(40を加熱する為、この氷結晶
は融解されて成長せず、従って斯かる事故は防止される
。このヒータσ0)συの発熱は15分で終了し、再び
端子(69A)にスイッチ(6CJが閉じてモーター(
IOM)が起動これ前述同様低温側冷媒回路(3)の冷
却運転が開始されることになる。
Here, R50 which exits 41 to the third intermediate heat exchanger and flows into the pressure reducer (4e) has reached an extremely low temperature of -130°C or less.Therefore, there is an extremely small amount of moisture in this refrigerant (this is If the pressure intrudes during replenishment work), freezing will occur in the pipes.By the way, since pressure reducers are usually constructed of small diameter pipes, this pressure reducer (4
6) When ice grows, clogging occurs and the refrigerant stops flowing. However, in the present invention, since the pressure reducer (40) is periodically heated by the heater σO)συ, the ice crystals are melted and grown. Therefore, such an accident is prevented.The heat generation of this heater σ0)συ is finished in 15 minutes, and the switch (6CJ is closed to the terminal (69A) again and the motor (
IOM) is started, and the cooling operation of the low temperature side refrigerant circuit (3) is started as described above.

次に第3図は本発明を適用せる冷凍庫(75)の前方斜
視図を示し、第4図はその要部断面図を示す。
Next, FIG. 3 shows a front perspective view of a freezer (75) to which the present invention is applied, and FIG. 4 shows a sectional view of a main part thereof.

更に第5図は冷凍装#旧の冷媒回路(IIの具体的構等
に投雪されるものであり、上方開口の貯蔵室徹へ を内部に形成する本体であり、その上方開口は後辺を回
動自在に枢支された断熱扉σηによって開閉自在に閉塞
されている。本体σ4)側部には温度調節器6υや電動
圧縮機(4)αα等を収容設置する機械室徹が形成され
ており、その前面には貯蔵室(76)内の温度を感知し
て記録紙にその時間推移を記録する自記温度記録計σ9
や貯蔵室σQの異常高温で警報を発する衆知の警報器嶽
及び温度調節器6Dの設定変更用摘み@Dが設けられる
。又、g3aは通気用スリットである。
Furthermore, Figure 5 shows the refrigerant circuit of the old refrigeration system (II), which is the main body that forms an upper opening to the storage chamber inside, and the upper opening is the rear part of the main body. It can be opened and closed by an insulating door ση which is rotatably supported.A machine room is formed on the side of the main body σ4) to house and install a temperature controller 6υ, an electric compressor (4) αα, etc. In front of it is a self-recording temperature recorder σ9 that senses the temperature inside the storage chamber (76) and records its time course on recording paper.
A well-known alarm box that issues an alarm in case of an abnormally high temperature in the storage room σQ and a knob @D for changing the settings of the temperature controller 6D are provided. Moreover, g3a is a slit for ventilation.

第4図は本体σ4)部分の側断面図を示している。FIG. 4 shows a side sectional view of the main body σ4) portion.

(へ)は上方開口の鋼板製外箱、−は同様に上方開口の
アルミニウム製内箱であり、内箱(財)は外箱□□□内
に組み込まれ、両箱g!3@4J間にそれぞれ独立した
上方に開口した箱状の外断熱材(851及び内断熱材□
□□から成る二重の断熱層が形成されて両箱曽(財)の
開口縁はブレーカt8ηで接続されている。内箱(84
)の外面には蒸発パイプ(4ηが熱伝導的に配設され、
内断熱材(イ)内に埋設されており、又、外箱σe開口
縁内面には庭付防止ベイダ(6)が熱伝導的に配設され
ている。内断熱材間は外断熱材(へ)内に載置されてい
るのみで完全に分離しているため、蒸発パイプ(4力の
冷却作用によって内断熱材(ト)が収縮しても外断熱材
田には同等影響を与えず、従って断熱材の割れが発生せ
ず、又、十分なる断熱性能も維持するものである。外箱
(へ)背面には開口間が形成され、又、外断熱材□□□
にもそれに対応して切欠田が形成されており、この切欠
C9内に開口(ハ)より後述する如き断熱材(90によ
ってモールドされたカスケードコンデンサ(25A) 
(25B)等が収納配設され覆板0υにて覆われている
。(9っけ発泡スチロール製の内蓋、(ト)は断熱扉σ
η内周面のガスケット、(財)は運搬用キャスターであ
る。
(f) is a steel plate outer box with an upward opening, - is an aluminum inner box with an upward opening, and the inner box (goods) is assembled inside the outer box □□□, and both boxes g! A box-shaped external insulation material (851 and an internal insulation material □
A double heat insulating layer consisting of □□ is formed, and the opening edges of both boxes are connected by a breaker t8η. Inner box (84
) An evaporation pipe (4η) is arranged on the outer surface of the pipe for thermal conduction.
It is buried in the inner heat insulating material (a), and a garden prevention bayder (6) is disposed on the inner surface of the opening edge of the outer box σe for thermal conduction. The inner insulation material is placed inside the outer insulation material (H) and is completely separated, so even if the inner insulation material (G) contracts due to the cooling action of the evaporation pipe (four forces), the outer insulation material It does not have the same effect on the timber field, so cracks in the insulation material do not occur, and sufficient insulation performance is maintained.An opening is formed on the back of the outer box, and an opening is formed on the back of the outer box. Insulation material□□□
A corresponding notch field is formed in the notch C9, and a cascade capacitor (25A) molded with a heat insulating material (90) as described later is inserted through the opening (c) in this notch C9.
(25B) etc. are stored and arranged and covered with a cover plate 0υ. (Inner lid made of 9-piece styrofoam, (G) is an insulated door σ
η is a gasket on the inner circumferential surface, and is a caster for transportation.

次に第5図は冷凍装置(R1の冷媒回路(1)の具体的
構成を示すもので、図中第1図と同一符号は同一のもの
である。低温側冷媒回路(3)の補助凝縮器a1は空気
吸引型の送風機(9)に対して高温側冷媒回路(2)の
凝縮器(8)の風上側に配置せられ同時に冷却される様
にしている。第1及び第2蒸発器(14A)(14B)
は内部中空のタンク状を成しており、この内部に上方よ
り螺旋状に巻回成形された第1及び第2凝縮パイプ(2
3A) (23B)がそれぞれ挿入されている。(66
A)はアキュムレータ(1勺に溶接固定された低温始動
サーモスタット6)■固定用の筒体である。(イ)は後
述する各中間熱交換器C321(43(44)等から成
りそれを断熱材罰によってモールドして箱状と成した中
間熱交換器部を示している。蒸発パイプ(仔は内箱(財
)外面に予めアルミニウムテープ或いは接着剤等によっ
て蛇行状に固定されるものであるが、貯蔵室συ内各部
の温度分布を出来る丈少なくするために、冷媒の流れる
順序が、内箱(財)の上部周囲から下部周囲へ回り、最
後に底辺を回る様に配設されている。
Next, Figure 5 shows the specific configuration of the refrigerant circuit (1) of the refrigeration system (R1), in which the same symbols as in Figure 1 are the same.Auxiliary condensation of the low temperature side refrigerant circuit (3) The container a1 is arranged on the windward side of the condenser (8) of the high temperature side refrigerant circuit (2) with respect to the air suction type blower (9), so that it is cooled at the same time.The first and second evaporators (14A) (14B)
has the shape of a hollow tank, and inside this are first and second condensing pipes (2) spirally wound from above.
3A) (23B) are inserted respectively. (66
A) is a cylindrical body for fixing the accumulator (low-temperature start thermostat 6 fixed to one by welding). (a) shows the intermediate heat exchanger section which is made up of intermediate heat exchangers C321 (43 (44), etc., which will be described later) and is molded into a box shape using heat insulating material. It is fixed to the outside of the box (goods) in a serpentine shape with aluminum tape or adhesive, but in order to minimize the temperature distribution in each part of the storage room συ, the order in which the refrigerant flows is adjusted to the inner box ( It is arranged so that it goes around the top of the building, goes around the bottom, and finally goes around the bottom.

第6図に中間熱交換器部(イ)の構造を示す。点線で囲
む部分が第1、第2及び第3の中間熱交換器Ct3(4
Hれ第2の気液分離器缶、乾燥器G9(4つ、減圧器(
4G及びアキュムレータ(柵を内包する中間熱交換器部
(イ)である。各中間熱交換器C33(4Z (44)
は比較的大径の外側配管悠(ト)(ロ)を螺旋状に複数
段巻回して偏平としたものを相互に重合し、その内側を
間隔を存して各気相配管例(43が内側配管となって通
過する螺旋二重管構造で構成されており、図中囚部分が
第1の中間熱交換器c3カを、(B)部分が第2の中間
熱交換器(4δを、又、(0部分が第3の中間熱交換器
(4(イ)となる。この螺旋の内部に第2の気液分離器
ω、乾燥器C3’C(451、減圧器(40及びアキュ
ムレータ(49が収納されてデッドスペースを少なくし
、寸法の小型化を図っている。
Figure 6 shows the structure of the intermediate heat exchanger section (a). The part surrounded by the dotted line is the first, second and third intermediate heat exchanger Ct3 (4
2nd gas-liquid separator can, dryer G9 (4 pieces, pressure reducer (
4G and accumulator (intermediate heat exchanger section (a) containing a fence.Each intermediate heat exchanger C33 (4Z (44)
In this example, relatively large-diameter outer piping (G) and (B) are wound spirally in multiple stages to form a flat structure, which are then superposed on each other, and each gas phase piping example (43 is It is composed of a spiral double pipe structure that passes through as an inner pipe, and the part (B) in the figure is the first intermediate heat exchanger (c3), and the part (B) is the second intermediate heat exchanger (4δ, In addition, (0 part becomes the third intermediate heat exchanger (4 (a) 49 is housed to reduce dead space and reduce size.

次に構成を説明する。(101)は乾燥器(至)と第1
の気液分離器■とを結ぶ配管である。第1の気液分離器
■から上方に出る気相配管■は封止した入口(IN、)
より外側配管峙内に入り、内部を螺旋状に周回して通過
した後、出口(OUT、)より出て第2の気液分離器(
に入る。気相配管図内を流下するガス状冷媒はこの通過
の際に気相配管■と外側配管(ト)の間隔を上昇する低
温冷媒によって凝縮される。第2の気液分離器間から出
た気相配管03は入口(IN2)より外側配管@円に入
る。第1の気液分離器C29)にて分離された液冷媒は
減圧器(ト)により減圧された後、外側配管((ト)の
出口(OUT、)と(991の入口(IN、)を結ぶ連
通管(102)途中に流入せられて外側配管(ト)内で
蒸発し、蒸発パイプ(471より帰還して来る冷媒と共
に気相配管図内のガス状冷媒の凝縮に寄与する。外側配
管!9円に入った気相配管(43は出口(OUT、) 
 より出て再び入口(IN、)より外側配管(2)内に
入り、螺旋状に周回して出口(OUT、)  より出る
。以上の各出口と入口部の外側配管は封止されている。
Next, the configuration will be explained. (101) is the dryer (to) and the first
This is the piping that connects the gas-liquid separator ■. The gas phase pipe ■ coming out upward from the first gas-liquid separator ■ has a sealed inlet (IN,)
It enters the outer side of the piping, passes through the interior in a spiral pattern, exits from the outlet (OUT), and enters the second gas-liquid separator (
to go into. The gaseous refrigerant flowing down in the gas phase piping diagram is condensed by the low temperature refrigerant rising through the gap between the gas phase piping (2) and the outer piping (G) during this passage. The gas phase pipe 03 coming out from between the second gas-liquid separators enters the outer pipe @circle from the inlet (IN2). The liquid refrigerant separated in the first gas-liquid separator C29) is depressurized by the pressure reducer (G), and then connected to the outlet (OUT,) of the outer pipe ((G)) and the inlet (IN,) of (991). The refrigerant flows into the connecting connecting pipe (102), evaporates in the outer pipe (G), and contributes to the condensation of the gaseous refrigerant in the gas phase piping diagram together with the refrigerant returning from the evaporation pipe (471).Outer piping !9 gas phase piping (43 is the outlet (OUT))
It exits from the inlet (IN,), enters the outer pipe (2) again through the inlet (IN, ), circles around in a spiral pattern, and exits through the outlet (OUT, ). The outer piping of each outlet and inlet section is sealed.

第2の気液分離器ωで分離された液冷媒は減圧器(41
により減圧された後、外側配管(ト)の出口(OUT、
)  と(9)の入口(IN、)を結ぶ連通管(103
)途中に流入せられて外側配管(99)内で蒸発し、蒸
発パイプ(41より帰還して来る冷媒と共に気相配管0
3内のガス状冷媒の凝縮に寄与する。気相配管(43内
を流下して来る冷媒(R50)は外側配管(2)内を通
下する際に更に凝縮されて殆ど液化し乾燥器(4つを経
て減圧器(46)に至る。(105)は蒸発パイプ(4
7]の出口側に接続される配管で外側配管(9)の出口
(OUT、)  に接続されて気相配管に31外側の間
隔と連通される。又、(106)は外側配管−の入口(
IN、) に於いて気相配管(7)外側の間隔とアキュ
ムレータ(4!Jlとを連通ずる配管である。即ち蒸発
パイプ(4ηからの帰還冷媒は配管(105)より外側
配管0■と気相配管IA3との間隔内に流入してそこを
上昇し、気相配管(431内を流下して来る冷媒を凝縮
し、連通管(103)rて減圧器(401からの冷媒と
合流して外側配管(99)と気相配管(431の間隔内
に流入してそこを上昇し、気相配管(43内の冷媒を凝
縮し、更に連通管(102)にて減圧器(1)からの冷
媒と合流して外側配管ω〜と気相配管例の間隔内に流入
してそこを上昇し、気相配管□□□内の冷媒を凝縮した
後、配管(106)を通過してアキュムレータ(旬に至
り、配管(108)にて吸入側熱交換器Q4Jに流入す
る。以上の如く気相配管図内いは(43内を流下する冷
媒の流れと、蒸発パイプ(4ηより気相配¥IC30+
或いは(431と外側配管0(ト)0湧(ト)間を上昇
して来る冷媒の流れとは相互に対向流となっている。
The liquid refrigerant separated by the second gas-liquid separator ω is transferred to a pressure reducer (41
After the pressure is reduced by
) and the communication pipe (103) connecting the inlet (IN, ) of (9).
) The refrigerant flows into the outer pipe (99) and evaporates into the gas phase pipe (0) along with the refrigerant returning from the evaporation pipe (41).
Contributes to the condensation of the gaseous refrigerant within 3. The refrigerant (R50) flowing down through the gas phase pipe (43) is further condensed and almost liquefied as it passes through the outside pipe (2), and reaches the pressure reducer (46) through four dryers. (105) is the evaporation pipe (4
7] is connected to the outlet (OUT, ) of the outer pipe (9), and communicates with the gas phase pipe 31 outside the space. (106) is the inlet of the outer pipe (
This is a pipe that communicates the outer space of the gas phase pipe (7) with the accumulator (4! The refrigerant flows into the space between the phase pipe IA3 and rises there, condenses the refrigerant flowing down in the gas phase pipe (431), and joins with the refrigerant from the pressure reducer (401) through the communication pipe (103). The refrigerant flows into the space between the outer pipe (99) and the gas phase pipe (431), rises there, condenses the refrigerant in the gas phase pipe (43), and then flows from the pressure reducer (1) through the communication pipe (102). It joins with the refrigerant, flows into the space between the outer pipe ω~ and the gas phase pipe example, rises there, condenses the refrigerant in the gas phase pipe □□□, passes through the pipe (106), and flows into the accumulator ( The refrigerant flows into the suction side heat exchanger Q4J through the pipe (108).As shown above, the flow of the refrigerant flowing down in the gas phase piping diagram (43) and the gas phase distribution from the evaporation pipe (4η)
Alternatively, the flows of refrigerant rising between 431 and the outer pipes 0(g) and 0g(g) are mutually opposing flows.

次に第7図に冷凍庫σ■の背方斜視図を示し、冷凍装f
(至)の組み込む手順を説明する。外箱(へ)背面には
開口間と並列して開口(110)が形成され、それに対
応して外断熱材(へ)にも切欠(111)が形成されて
いる。断熱材(至)内にはカスケードコンデンサ(25
A)(25B)と共に吸入側熱交換器(22+02侭ア
キエムレータa9及び乾燥器啜をモールドする。断熱材
ωと□□□の成形方法は被モールド部品を樹脂袋内に収
容し、その状態で箱状の発泡型内に設置し、袋の中にウ
レタン断熱材を発泡充填して成形するものである。断熱
材渕がらは減圧器061と配管(105)を延出してお
き、切欠(111)奥部の導出部(112)(112)
より導出される蒸発パイプ(47)と溶接により接続す
る。断熱材何から延在せしめた減圧器(131等の配管
は切欠(へ)の機械室σa側の壁面より導出される配管
と溶接接続する。第1の気液分離器凶と乾燥器(ト)は
断熱材錬外側に位置せしめ、断熱材[株]と−も相互に
配管接続した状態で切欠(89)(111)内に組み込
み、隙間にはグラスウール等を装填した後、覆板(91
)で切欠S81と(111)をaう事により組み込みを
完了する。又、電動圧縮機(41QOl、凝縮器(8)
、送風損(9)及び膨張タンク6v等は機械室σ印肉に
予め設置しておき、これによって冷凍庫σ9は完成する
Next, Fig. 7 shows a rear perspective view of the freezer σ■.
(To) The installation procedure will be explained. Openings (110) are formed on the back surface of the outer box in parallel with the openings, and correspondingly notches (111) are also formed in the outer heat insulating material. A cascade capacitor (25
A) Mold the suction side heat exchanger (22+02 side Akie emulator a9 and dryer slurry) together with (25B).The molding method for the heat insulators ω and It is installed in a shaped foam mold, and the bag is filled with foam and molded with urethane insulation material.The pressure reducer 061 and piping (105) are extended from the insulation material edge, and the notch (111) is inserted into the bag. Derivation part at the back (112) (112)
It is connected to the evaporation pipe (47) led out by welding. The piping of the pressure reducer (131, etc.) extending from the insulation material is welded to the piping led out from the wall on the machine room σa side of the notch. ) is located on the outside of the insulation material, and the insulation material [-] is also connected to the notch (89) and (111) and installed in the notch (89) (111). After filling the gap with glass wool, etc., insert the cover plate (91)
) to complete the assembly by cutting the notches S81 and (111). In addition, electric compressor (41QOl, condenser (8)
, the blowing loss (9), the expansion tank 6v, etc. are installed in advance in the machine room σ ink pad, thereby completing the freezer σ9.

ここで前記自記温度記録計σ9は貯蔵室σe内の温度を
記録するもので、此種冷凍庫に於いては重要な構成部品
の一つである。ところで記録計血は一般に第8図に示す
如き衆知のアルキメデス螺旋形状のブルドン管(120
)と時間推移に伴って自動的に移動される図示しない記
録紙等から構成される。
The self-recording temperature recorder σ9 records the temperature inside the storage chamber σe, and is one of the important components in this type of freezer. By the way, blood recorders are generally made using the well-known Archimedean spiral-shaped Bourdon tube (120 mm) as shown in Figure 8.
) and a recording paper (not shown) that is automatically moved as time passes.

第8図に於いて(121)は貯蔵室σ6)内の温度を感
知する様に配設される感温部であり、ブルドン管(12
0)と感温部(121)は細管(122)にて連通接続
されている。ブルドン管(120)の例えば螺旋の中心
(0)には駆動軸(123)が立設固定され、この駆動
軸(123)先端に記録用の指針(124)が取付けら
れている。ブルドン管(120)は内部中空であり、内
部には例えばエチルアルコールやノルマルプロピルアル
コール等の感温物質が液状で封入されている。ブルドン
管(120)は感温部(121)周囲の温度変化による
内部圧力の変化によって変形し、駆動軸(123)を軸
方向を中心として回転せしめるものであるが、この回転
角度(のはブルドン管(120)内の圧力変化に比例す
ることが知られており、これによって貯蔵室Qe内の温
度を指針(124)の位置に変換し記録するものである
In FIG. 8, (121) is a temperature sensing part arranged to sense the temperature inside the storage chamber σ6), and the Bourdon tube (12
0) and the temperature sensing section (121) are connected to each other through a thin tube (122). A drive shaft (123) is erected and fixed, for example, at the center (0) of the spiral of the Bourdon tube (120), and a recording pointer (124) is attached to the tip of the drive shaft (123). The Bourdon tube (120) has a hollow interior, and a temperature-sensitive substance such as ethyl alcohol or n-propyl alcohol is sealed therein in liquid form. The Bourdon tube (120) is deformed by changes in internal pressure caused by changes in temperature around the temperature sensing part (121), and rotates the drive shaft (123) in the axial direction. It is known that the change in pressure inside the tube (120) is proportional to the change in pressure, and the temperature inside the storage chamber Qe is thereby converted to the position of the pointer (124) and recorded.

ところで前記エチルアルコールやノルマルプロピルアル
コール等の一般的感温物質は例えば−80℃付近で使用
されるものであり、本発明の対象である一150℃等の
超低温では凍結してしまい、温度記録計として使用に供
することができない。
By the way, general temperature-sensitive substances such as ethyl alcohol and normal propyl alcohol are used at temperatures around -80°C, and they freeze at extremely low temperatures such as -150°C, which is the subject of the present invention, and cannot be used with temperature recorders. It cannot be used as such.

そこで鋭意研究の結果、本発明では感温物質として2−
メチルペンタン(インヘキサン)を封入することによっ
て一150℃等の超低温における温度を記録する事を達
成した。第9図に2−メチルペンタンをブルドン管(1
20)中に封入した場合の感温部(121)周囲の温度
(T′)とブルドン管(120)内の圧力口の関係を示
す。図より明らかな如く圧力(Paバー150℃から+
50’Ctf)mWu囲テ温度(刀に略比例する。ここ
で指針(124)の回転角度(のは前述の如く圧力(P
lに比例するから温度■にも略比例し、これによって−
150℃から+50℃の範囲で貯蔵室σ■内の温度を記
録することができる。
Therefore, as a result of intensive research, in the present invention, 2-
By enclosing methylpentane (inhexane), it was possible to record temperatures at extremely low temperatures such as -150°C. Figure 9 shows 2-methylpentane in a Bourdon tube (1
20) shows the relationship between the ambient temperature (T') of the temperature sensing part (121) and the pressure port in the Bourdon tube (120) when it is sealed inside. As is clear from the figure, the pressure (Pa bar from 150℃ to +
50'Ctf) mWu Surrounding temperature (approximately proportional to the sword. Here, the rotation angle of the pointer (124) is the pressure (P) as described above.
Since it is proportional to l, it is also approximately proportional to temperature ■, and therefore -
The temperature in the storage chamber σ■ can be recorded in the range from 150°C to +50°C.

(ト)発明の効果 本発明によれば大出力の電動圧縮機を用いる事無く、通
常の電動圧縮機で極めて低い温度を達成することができ
る。この時第1の冷媒閉回路の蒸発器と第2の冷媒閉回
路の高圧側配管を熱交換的に結合する所謂カスケードコ
ンデンサは複数に分割できるため、設置形態の自由度が
増し、冷凍装置全体の小型化が達成される。又、第1の
冷媒閉回路の各蒸発器部分は冷媒流に直列に接続し、第
2の冷媒閉回路の高圧側配管は複数の並列配管とした為
、各蒸発器部分の温度のバランスの崩れによる冷媒流量
の偏りが発生せず、各蒸発器部分は安定した凝縮能力を
発揮すると共に、高圧側配管を流れる混合冷媒も良好な
る熱交換が行なわれる事になるので結果として安定した
超低温の達成が可能となるものである。
(G) Effects of the Invention According to the present invention, extremely low temperatures can be achieved with a normal electric compressor without using a high-output electric compressor. At this time, the so-called cascade condenser, which connects the evaporator of the first refrigerant closed circuit and the high-pressure side piping of the second refrigerant closed circuit in a heat exchange manner, can be divided into multiple parts, increasing the degree of freedom in installation configuration and miniaturization is achieved. In addition, each evaporator section of the first refrigerant closed circuit is connected in series with the refrigerant flow, and the high-pressure side piping of the second refrigerant closed circuit has multiple parallel piping, so the temperature balance of each evaporator section can be maintained. There is no imbalance in the refrigerant flow rate due to collapse, each evaporator section exhibits stable condensing ability, and the mixed refrigerant flowing through the high-pressure side pipes also undergoes good heat exchange, resulting in stable ultra-low temperature. It is possible to achieve this.

【図面の簡単な説明】[Brief explanation of drawings]

各図は不発明の災施例を示すものであり、第1図は冷凍
装置の冷媒回路図、第2図は同制御用電気回路図、第3
図は冷凍庫の斜視図、第4図は冷凍庫本体の側断面図、
第5図は冷凍装置の冷媒回路の具体的構成を示す図、第
6図は中間熱交換器部の斜視図、第7図は冷凍庫の後方
斜視図、第8図は自記温度記録計を構成するブルドン管
の斜視図、第9図は2−メチルペンタンを封入したブル
ドン管の内部圧力と感温部温度の関係を示す図である。 (R1・・・冷凍装置、 (2)・・・高温側冷媒回路
、 (3)・・・低温側冷媒回路、  +41QO)・
・・電動圧縮機、  (14A)第2凝縮券、 C33
(43(44)・・・中間熱交換器。 △ 代理人 弁理士  佐 野 靜 夫 第7図 第8図 T (5ゑ1ミ“C)
Each figure shows an example of an accident caused by non-invention. Figure 1 is a refrigerant circuit diagram of a refrigeration system, Figure 2 is a control electric circuit diagram, and Figure 3 is a diagram of a control electric circuit.
The figure is a perspective view of the freezer, Figure 4 is a side sectional view of the freezer body,
Fig. 5 is a diagram showing the specific configuration of the refrigerant circuit of the refrigeration system, Fig. 6 is a perspective view of the intermediate heat exchanger section, Fig. 7 is a rear perspective view of the freezer, and Fig. 8 is the configuration of the self-recording temperature recorder. FIG. 9 is a perspective view of the Bourdon tube filled with 2-methylpentane, and is a diagram showing the relationship between the internal pressure and the temperature of the temperature sensitive part of the Bourdon tube. (R1...refrigeration device, (2)...high temperature side refrigerant circuit, (3)...low temperature side refrigerant circuit, +41QO)・
...Electric compressor, (14A) 2nd condensing ticket, C33
(43 (44)... Intermediate heat exchanger. △ Agent Patent attorney: Yasuo Sano Figure 7 Figure 8 T (5ゑ1mi"C)

Claims (1)

【特許請求の範囲】[Claims] 1、それぞれ圧縮機から吐出された冷媒を凝縮した後蒸
発せしめて冷却作用を発揮する独立した第1及び第2の
冷媒閉回路とから成り、前記第1の冷媒閉回路を構成す
る蒸発器は冷媒流に対して直列に接続された複数の蒸発
器部分とから構成し、前記第2の冷媒閉回路には沸点の
異なる複数種の混合冷媒を充填すると共に前記圧縮機か
ら蒸発器に至る高圧側配管を複数の並列配管から構成し
てそれぞれ前記第1の冷閉回路の蒸発器部分との間に熱
交換器を構成する様配設した冷凍装置。
1. The evaporator that constitutes the first refrigerant closed circuit is composed of independent first and second refrigerant closed circuits that each condense and then evaporate the refrigerant discharged from the compressor to exert a cooling effect. and a plurality of evaporator parts connected in series with respect to the refrigerant flow, the second refrigerant closed circuit is filled with a mixture of refrigerants of multiple types with different boiling points, and high pressure is supplied from the compressor to the evaporator. A refrigeration system in which the side piping is composed of a plurality of parallel pipings, each of which is arranged so as to constitute a heat exchanger between the side piping and the evaporator portion of the first refrigerating circuit.
JP21187285A 1985-09-25 1985-09-25 Refrigerator Pending JPS6273046A (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP21187285A JPS6273046A (en) 1985-09-25 1985-09-25 Refrigerator
GB8621651A GB2180921B (en) 1985-09-25 1986-09-09 Refrigeration system
DE3645168A DE3645168C2 (en) 1985-09-25 1986-09-18
DE19863631795 DE3631795A1 (en) 1985-09-25 1986-09-18 COOLING SYSTEM
FR8613264A FR2587792B1 (en) 1985-09-25 1986-09-23 REFRIGERATION SYSTEM
US06/910,881 US4788829A (en) 1985-09-25 1986-09-24 Low-temperature refrigeration system
CN86106599.9A CN1023833C (en) 1985-09-25 1986-09-25 Refrigeration system
FR9310292A FR2693541B1 (en) 1985-09-25 1993-08-27 Refrigeration system.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21187285A JPS6273046A (en) 1985-09-25 1985-09-25 Refrigerator

Publications (1)

Publication Number Publication Date
JPS6273046A true JPS6273046A (en) 1987-04-03

Family

ID=16613011

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21187285A Pending JPS6273046A (en) 1985-09-25 1985-09-25 Refrigerator

Country Status (1)

Country Link
JP (1) JPS6273046A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132802A1 (en) 2006-05-15 2007-11-22 Sanyo Electric Co., Ltd. Freezing device
WO2007132803A1 (en) 2006-05-15 2007-11-22 Sanyo Electric Co., Ltd. Refrigeration system
JP2010164003A (en) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp Exhaust heat regeneration system
JP2013015315A (en) * 2012-09-19 2013-01-24 Panasonic Healthcare Co Ltd Freezing device
JPWO2018216464A1 (en) * 2017-05-23 2019-11-07 Phcホールディングス株式会社 Refrigeration equipment
WO2021064908A1 (en) * 2019-10-02 2021-04-08 三菱電機株式会社 Refrigeration cycle device
JPWO2021246137A1 (en) * 2020-06-04 2021-12-09

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036498A (en) * 1973-06-22 1975-04-05
JPS6078257A (en) * 1983-10-03 1985-05-02 株式会社日立製作所 Two-element refrigerator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5036498A (en) * 1973-06-22 1975-04-05
JPS6078257A (en) * 1983-10-03 1985-05-02 株式会社日立製作所 Two-element refrigerator

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007132802A1 (en) 2006-05-15 2007-11-22 Sanyo Electric Co., Ltd. Freezing device
JP2007303791A (en) * 2006-05-15 2007-11-22 Sanyo Electric Co Ltd Refrigerating apparatus
WO2007132803A1 (en) 2006-05-15 2007-11-22 Sanyo Electric Co., Ltd. Refrigeration system
EP2019276B1 (en) * 2006-05-15 2020-01-08 PHC Holdings Corporation A freezing apparatus
JP2010164003A (en) * 2009-01-16 2010-07-29 Mitsubishi Electric Corp Exhaust heat regeneration system
JP2013015315A (en) * 2012-09-19 2013-01-24 Panasonic Healthcare Co Ltd Freezing device
JPWO2018216464A1 (en) * 2017-05-23 2019-11-07 Phcホールディングス株式会社 Refrigeration equipment
WO2021064908A1 (en) * 2019-10-02 2021-04-08 三菱電機株式会社 Refrigeration cycle device
JPWO2021246137A1 (en) * 2020-06-04 2021-12-09
WO2021246137A1 (en) * 2020-06-04 2021-12-09 Phcホールディングス株式会社 Binary refrigeration device

Similar Documents

Publication Publication Date Title
US4788829A (en) Low-temperature refrigeration system
JP3965717B2 (en) Refrigeration equipment and refrigerator
CA2504542C (en) Refrigeration system
US4756164A (en) Cold plate refrigeration method and apparatus
US6327871B1 (en) Refrigerator with thermal storage
US4712387A (en) Cold plate refrigeration method and apparatus
US20180180344A1 (en) Ultra-low temperature freezer
US6349558B1 (en) Ammonia refrigerator
JPS6273046A (en) Refrigerator
US6634182B2 (en) Ammonia refrigerator
US2219789A (en) Refrigerator
JPS62248962A (en) Refrigerator
JPH01244251A (en) Refrigerating plant
JPS62248968A (en) Refrigerator
JPH0745985B2 (en) Refrigeration equipment
JPH0792295B2 (en) Cold storage device
CN217465080U (en) Refrigeration device with cascade refrigeration system
JP2573082Y2 (en) Late-night electric power type refrigerator
JPH0650617A (en) Freezing unit for container
JP3281973B2 (en) Frozen car
US2111904A (en) Refrigerating system
JPS62294855A (en) Refrigerator
JPS62294853A (en) Refrigerator
JP2640051B2 (en) Refrigeration equipment
JPH07104073B2 (en) Cold storage device and method of operating the same