JPS6258868A - Superconducting rotor and its preparation - Google Patents
Superconducting rotor and its preparationInfo
- Publication number
- JPS6258868A JPS6258868A JP19379285A JP19379285A JPS6258868A JP S6258868 A JPS6258868 A JP S6258868A JP 19379285 A JP19379285 A JP 19379285A JP 19379285 A JP19379285 A JP 19379285A JP S6258868 A JPS6258868 A JP S6258868A
- Authority
- JP
- Japan
- Prior art keywords
- hollow
- bonding layer
- cylinder
- superconducting rotor
- alloy
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Superconductive Dynamoelectric Machines (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、例えば超電導タービン発電機の超電導回転子
などに用いられる多層円筒構造によって形成される常温
ダンバーンールドにより超電4巻)線が覆われる超電導
回転子に関する。Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a superconductor in which four turns of a superconductor wire are covered with a room-temperature Dunburnold formed by a multilayer cylindrical structure used, for example, in a superconducting rotor of a superconducting turbine generator. Regarding the rotor.
従来の超電導回転子1:おいては、電機子巻線側から加
わる負荷の変動、逆相電流、高相波等による変動磁束を
遮へいし、さらに超電導界磁巻線に変動磁界が加わるの
を防ぐと共に変動°磁界により各部に発生するうず電流
損を抑制し、また回転子の機械的振動の制動のために常
温ダンパーシールドと低温ダンパーシールドの2つの電
磁ダンパーシールドが超電導界磁巻線の周囲に設置され
ている。Conventional superconducting rotor 1: In the case of the conventional superconducting rotor 1, it shields the varying magnetic flux caused by load fluctuations, negative sequence currents, high-phase waves, etc. applied from the armature winding side, and also prevents the fluctuating magnetic field from being applied to the superconducting field windings. Two electromagnetic damper shields, a room-temperature damper shield and a low-temperature damper shield, are installed around the superconducting field windings to suppress eddy current loss generated in various parts due to fluctuating magnetic fields and dampen mechanical vibrations of the rotor. has been done.
ここで第5図を参照して従来の超電導回転子について説
明する。1は中空円筒状の常温ダンパーシールドであり
、この常温ダンパーシールドlは銅、アルミニウム又は
これらの合金である高導電性材料からなる中空円筒で形
成される高導電性金属層2と、この高導電性金属層2の
外周側及び内筒側に非磁性の高強度材料からなる中空外
周及び中空内筒で形成される高強度金属層3i、3bと
によりなる3層構造となっている。なおこの高強度材料
は浴比処理9侍効硬化処理等の熱処理により強度を上げ
ることが可能な時効硬化合金が用いられている。°また
この常温ダンパーシールド1の内径側には真空断熱層4
及び輻射熱シールド5が形成され、さらにこれらの内径
側には極低温冷媒容器6が配置され、またこの極低温冷
媒容器6の内部には内部ローター7が収納設置されてい
る。さらにこの内部ローター7にはスロット8が形成さ
れ、このスロット8には超電導巻線が収められている。Here, a conventional superconducting rotor will be explained with reference to FIG. Reference numeral 1 denotes a hollow cylindrical room-temperature damper shield l, which includes a highly conductive metal layer 2 formed of a hollow cylinder made of a highly conductive material such as copper, aluminum, or an alloy thereof, and this highly conductive metal layer 2. The metal layer 2 has a three-layer structure including high-strength metal layers 3i and 3b formed of a hollow outer periphery and a hollow inner cylinder made of a non-magnetic high-strength material on the outer periphery side and the inner cylinder side. Note that this high-strength material uses an age-hardening alloy whose strength can be increased by heat treatment such as bath ratio treatment and age-hardening treatment. °Also, on the inner diameter side of this normal temperature damper shield 1, there is a vacuum insulation layer 4.
and a radiant heat shield 5 are formed, and furthermore, a cryogenic refrigerant container 6 is disposed on the inner diameter side thereof, and an internal rotor 7 is housed inside the cryogenic refrigerant container 6. Furthermore, a slot 8 is formed in this internal rotor 7, and a superconducting winding is accommodated in this slot 8.
なお一般に輻射熱シールド5は低温ダンパーシールドを
兼ねている。Note that the radiant heat shield 5 generally also serves as a low-temperature damper shield.
前記常温ダンパーシールド1は回転子の最外径に位置す
るため、強大な遠心力が働き、また晟導竜性金属層2に
は強大な電磁力が働くため、機械的強度の比較的弱い高
導電性金属層2を補強するため(二上記のように高強度
金属層3m、3bと一体化した多層構造を採っている。Since the room-temperature damper shield 1 is located at the outermost diameter of the rotor, a strong centrifugal force acts on it, and a strong electromagnetic force acts on the damper shield 2, which has relatively weak mechanical strength. In order to reinforce the conductive metal layer 2, a multilayer structure is adopted in which the conductive metal layer 2 is integrated with the high-strength metal layers 3m and 3b as described above.
この高強度金属層3a、3bとしてはステンレス鋼、イ
ンコネル、チタン合金等が用いられており、高導電性金
属7112を挾み込むよう;二構成している。この様な
多層構造円筒の製造方法としては一般に、焼きはめ、爆
着等が考えられる1、焼きばめは最も簡便な方法である
が、一般の焼きはめによってこの多層構造な゛形成した
場合、各層間は機械的な接合となり、このため第6図に
示すように微視的には各層間に隙間lOが多数存在して
いた。このため超電導回転子を高速で回転させた場合に
ずれが発生する可能性があり、特に回転子の温度が上昇
した場合にはずれが発生し易くなるという欠点があった
。また焼きはめでは各層間が機械的な接合になっている
ため、中空円筒;二割れが発生した場合、割れ発生によ
る締付力の緩和に伴い、眉間のずれ及び全体のバランス
の崩壊が急激に起こる可能性もあった。These high-strength metal layers 3a and 3b are made of stainless steel, Inconel, titanium alloy, or the like, and are configured to sandwich a highly conductive metal 7112 therebetween. In general, shrink fitting, explosion bonding, etc. are considered methods for manufacturing such a multilayer cylinder.1 Shrink fitting is the simplest method, but when this multilayer structure is formed by general shrink fitting, Each layer was mechanically joined, and therefore, microscopically, there were many gaps 10 between each layer, as shown in FIG. For this reason, when the superconducting rotor is rotated at a high speed, there is a possibility that the superconducting rotor is rotated at a high speed, and there is a possibility that the superconducting rotor becomes misaligned. In particular, when the temperature of the rotor rises, the misalignment becomes more likely to occur. In addition, in shrink fitting, each layer is mechanically joined, so if a hollow cylinder cracks in two, the tightening force due to cracking will be relaxed, causing a sudden shift between the eyebrows and a collapse of the overall balance. It could have happened.
また爆着によって多層構造を形成した場合、各層間は隙
間もなく金属的な接合となるので遠心力に基ずくずれは
起らない。しかしm着によって長大な多層円筒物を製造
することは技術的に困難であり、未だ実用化されていな
い1.また爆着時に大きな変形を5けるという欠点があ
り長大な多層円筒物の製造(二は不適である。Furthermore, when a multilayer structure is formed by explosive bonding, each layer is joined like a metal without any gaps, so that no deformation occurs due to centrifugal force. However, it is technically difficult to manufacture a long multi-layered cylindrical object by m-layering, and it has not yet been put to practical use.1. In addition, it has the disadvantage of causing large deformation during explosive bonding, making it unsuitable for producing long multilayered cylindrical objects.
本発明は以上のような従来の超電導回転子の欠点を解決
するため(=なされたものであり、常温ダンパーシール
ドの各層を金属的に接合し、各層のずれの発生を防止で
きる超電導回転子及びその製造方法を提供することを目
的とする。The present invention was made in order to solve the above-mentioned drawbacks of the conventional superconducting rotor, and provides a superconducting rotor and The purpose is to provide a manufacturing method thereof.
上記目的を達成するために本発明は高導電性材料よりな
る中空円筒の内筒側及び外周側に高強度材料よりなる中
空内筒及び中空外筒を嵌合して常温ダンパーシールドを
形成し、この常温ダンパーシールドにより超電導巻線を
覆う超電導回転子において、前記中空内筒、中空円筒及
び中空外筒の夫々の間に接合層を設け、これらを焼きば
めして常温ダンパーシールドを形成したことを特徴とす
る超電導回転子を第1の要旨とする。In order to achieve the above object, the present invention forms a normal temperature damper shield by fitting a hollow inner cylinder and a hollow outer cylinder made of a high-strength material to the inner cylinder side and outer peripheral side of a hollow cylinder made of a highly conductive material, In the superconducting rotor that covers the superconducting windings with this room-temperature damper shield, a bonding layer is provided between each of the hollow inner cylinder, hollow cylinder, and hollow outer cylinder, and these are shrink-fitted to form the room-temperature damper shield. The first gist is the characteristic superconducting rotor.
第2の発明においては、高強度材料よりなる中空内筒の
外周側にろう材よりなる第1の接合層を形成し、この第
1の接合層を介して前記中空内筒の外周側に前記ろう材
の融点以上の所定温度で高”尋電性材料よりなる中空円
筒を焼きばめをして結合し、その後この中空円筒の外周
側にろう材より一、なる第2の接合層を形成し、この第
2の接合層を介して前記中空円筒の外周側に前記ろう材
の融点以上の所定温度で高強度材料よりなる中空外筒な
焼きばめして常温ダンパーシールドを形成したことを特
徴とする超電導回転子の製造方法を要旨とするものであ
る。In the second invention, a first bonding layer made of a brazing material is formed on the outer circumferential side of the hollow inner cylinder made of a high-strength material, and the first bonding layer is formed on the outer circumferential side of the hollow inner cylinder through this first bonding layer. A hollow cylinder made of a highly conductive material is shrink-fitted and bonded at a predetermined temperature higher than the melting point of the brazing material, and then a second bonding layer made of the brazing material is formed on the outer periphery of the hollow cylinder. and a room-temperature damper shield is formed by shrink-fitting a hollow outer cylinder made of a high-strength material at a predetermined temperature higher than the melting point of the brazing material to the outer peripheral side of the hollow cylinder via the second bonding layer. The gist of this paper is a method for manufacturing a superconducting rotor.
図を参照して説明する。第1図において、1は常温ダン
パーシールドであり、この常温ダンパーシールド1は、
外周側より順に高強度金属層3a。This will be explained with reference to the figures. In FIG. 1, 1 is a normal temperature damper shield, and this normal temperature damper shield 1 is
High-strength metal layer 3a in order from the outer circumferential side.
接合層9a 、高導電性金属層2.接合層9b 、高強
度金属層3bよりなる多層構造でありこれらの層は夫々
焼はめによって形成される。この接合層9a、9bには
銀ろう等のろう材が用いられている。Bonding layer 9a, highly conductive metal layer 2. It has a multilayer structure consisting of a bonding layer 9b and a high-strength metal layer 3b, and these layers are each formed by shrink fitting. A brazing material such as silver solder is used for the bonding layers 9a and 9b.
またこの接合層9a、9bは夫々焼はめ時に浴融して、
内径側の高強度金属層3bと高導電性金属層2、及び外
径側の高強度金属層3aと高導電性金属層2とを夫々金
属的に接合する1、なおこの接合層9a、9bの材質及
び形成方法は高導電性金属層2及び高強度金属第3a、
3bの材質との関係から任意に選択するとよい。例えば
高強度金属層にはN1基時効硬化温合金(インコネル7
18.インコネルX750等)、Fe基時効硬化温合金
(入STM−人286等)、Ti合金(Ti−5A−6
−4V )等が有効である。In addition, these bonding layers 9a and 9b are bath melted during shrink fitting, respectively.
The high-strength metal layer 3b and the high-conductivity metal layer 2 on the inner diameter side and the high-strength metal layer 3a and the high-conductivity metal layer 2 on the outer diameter side are metallically bonded to each other, respectively.The bonding layers 9a and 9b are The materials and forming method of the high conductive metal layer 2 and the high strength metal layer 3a,
It is preferable to select it arbitrarily based on the relationship with the material of 3b. For example, the high-strength metal layer is an N1-based age-hardening temperature alloy (Inconel 7).
18. Inconel
-4V) etc. are effective.
また高導電性金属層には、純銅またはCu−Cr合金が
有効であり、使用応力が大きな場合はCu−ρ、−7−
、A秦小柿田シ;女親φ七1次に上記常温ダンパーシー
ルドの製造方法について説明する1、その一実施例とし
て常温ダンツク−シールド1の各層において高導電性金
属層2をCu−Cr合金、高強度金属層3a、3bをオ
ーステナイト鋼(人、9TM−人286 ) 、接合層
をAg−Pbはんだとした場合について第3図を参照し
て説明する。In addition, pure copper or a Cu-Cr alloy is effective for the highly conductive metal layer, and if the working stress is large, Cu-ρ, -7-
, A Hata Kokakinada; Female parent φ71 Next, we will explain the manufacturing method of the above-mentioned room-temperature damper shield 1. As an example, in each layer of the room-temperature damper shield 1, the highly conductive metal layer 2 is made of a Cu-Cr alloy. A case in which the high-strength metal layers 3a and 3b are made of austenitic steel (9TM-286) and the bonding layer is made of Ag--Pb solder will be described with reference to FIG.
あらかじめ950C〜1100 Gで溶体化処理し。Solution treatment was performed in advance at 950C to 1100G.
700 ′C〜goo rで時効硬化処理を施した高強
度金属3bであるAsTM−人286合金の中空内筒1
3bの外周に0.5〜1.0 IIm厚のAg−Pbは
んだ薄板19bを第3図(、)に示すよう(二巻き付は
点溶接で固定する。Hollow inner cylinder 1 made of AsTM-286 alloy, which is a high-strength metal 3b subjected to age hardening treatment at 700'C~goor.
A thin Ag-Pb solder plate 19b having a thickness of 0.5 to 1.0 IIm is attached to the outer periphery of the solder plate 3b as shown in FIG.
その後450 r 〜500 Gに加熱したCu−Cr
合金の中空円筒12を第311(b)E示すように入g
−Pbはんだ薄板を巻き付けた中空内筒13bに焼きば
める。Cu-Cr was then heated to 450 r to 500 G.
Insert the hollow cylinder 12 of the alloy as shown in No. 311(b)E.
- Shrink fit into the hollow inner cylinder 13b wrapped with a Pb solder thin plate.
この時、Ag−Pbはんだ薄板19bが焼きばめ時の熱
で溶融する。その後、第3図(c)に示すように中空円
筒12の外周に0゜5〜1.01厚のAg−Pbはんだ
薄板19mを巻き付は点溶接で固定する。次に溶体化処
理1時効硬化処理をすでに施したN286合金の中空外
筒13aを450 t:’ 〜500 Cで第3図(d
)lニー示すよ5に入g −Pbはんだ薄板19aを巻
き付けた中空円筒12に焼きばめる。この詩人g −p
bはんだ薄板19aが溶融し、中空円筒12及び中空外
筒13aと金属的に結合され、常温ダンパーシールド1
が形成される。At this time, the Ag--Pb solder thin plate 19b is melted by the heat during shrink fitting. Thereafter, as shown in FIG. 3(c), a thin Ag--Pb solder plate 19m having a thickness of 0.5 to 1.01 mm is wrapped around the outer periphery of the hollow cylinder 12 and fixed by spot welding. Next, the N286 alloy hollow outer cylinder 13a, which has already been subjected to solution treatment 1 and age hardening treatment, is heated at 450 t:' to 500 C in Fig. 3 (d).
) Insert the knee as shown in 5 and shrink-fit it into the hollow cylinder 12 around which the thin Pb solder plate 19a is wrapped. This poet g-p
b The thin solder plate 19a is melted and metallically connected to the hollow cylinder 12 and the hollow outer cylinder 13a, thereby forming the room temperature damper shield 1.
is formed.
以上のよ5に、高導電性金属層2と高強度金属層3a、
3bとの夫々の間に接合層9a、Ti)bを形成し、一
体化したので第2図に示すように接合層9m。As described in 5 above, the highly conductive metal layer 2 and the high strength metal layer 3a,
A bonding layer 9a, Ti) and a bonding layer 9b were formed between the bonding layer 9a and the bonding layer 3b, respectively, and were integrated, resulting in a bonding layer 9m as shown in FIG.
9bが隙間を5めるよプに形成され、これらの層は金属
的に結合される。このため超電導回転子を高速で回転さ
せた場合、第4図に示すよ)に各11間のト)ルク差に
基ずくずれに対する抗高力を高めると共に局部的な温度
差に基ずくずれに対する抵抗力も高められ、高速長時間
運転に調けるずれの発生の可能性を低くすることができ
る。9b is formed to widen the gap 5, and these layers are bonded metallically. For this reason, when the superconducting rotor is rotated at high speed, as shown in Figure 4, the high strength against collapse is increased based on the torque difference between each 11), and the resistance against collapse is increased due to the local temperature difference. Resistance is also increased, making it possible to reduce the possibility of slippage occurring during high-speed, long-term operation.
また常温ダンパーシールド1のいずれかの層に割れが生
じた場合、接合層9 m + 9 bの存在#春嘲によ
り従来のようこ急激に層間にずれを生じたり、急激にバ
ランスを崩すという現象を緩和できる。In addition, if a crack occurs in any layer of the room-temperature damper shield 1, the presence of the bonding layer 9m + 9b will prevent the conventional phenomenon of a sudden shift between the layers or sudden loss of balance due to the presence of the bonding layer 9m + 9b. It can be alleviated.
さらにCu −Cr合金の中空円筒12を入286合金
の中空内筒13b l:焼きばめと同時にAg −pb
はんだ薄を
板19ヲ溶融することができ、さらにAg −pbはん
だ薄板を介して450C〜500 Cで焼きばめするの
で、この時この温度でCu −Cr合金の中空円筒12
の時効硬化処理を同時に行なうことができ、作業時間を
短縮することができる。Furthermore, a hollow cylinder 12 of Cu-Cr alloy is inserted into a hollow inner cylinder 13b of 286 alloy.
Since the thin solder plate 19 can be melted and the thin Ag-pb solder plate is shrink-fitted at 450 to 500 C, the hollow cylinder 12 of Cu-Cr alloy can be melted at this temperature.
The age hardening treatment can be performed simultaneously, reducing the working time.
また上記一実施例は何ら特殊な装置を便用′fることな
〈従来の焼きはめ設備をそのまま利用して行な5ことが
できる。Further, the above-mentioned embodiment can be carried out by using conventional shrink-fitting equipment as is, without using any special equipment.
上記実施例においては中空円筒12にCu −cr金合
金用いたがより高強度にするためにCu −Cr −Z
【合金を用いても上記と同様な作用・効果が得られる。In the above embodiment, a Cu-Cr gold alloy was used for the hollow cylinder 12, but in order to achieve higher strength, a Cu-Cr-Z
[The same effects and effects as above can be obtained by using an alloy.
また接合層にAg −Pbはんだを用いたがAg−pb
はんだに限定されることなくAg −Cdはんだ、Sn
−pbはんだを1更用することもできる。In addition, although Ag-Pb solder was used for the bonding layer, Ag-pb
Not limited to solder, Ag-Cd solder, Sn
It is also possible to use one additional pb solder.
次(二個の実施例について説明する。Next (two examples will be described).
溶体化処理前のASTM−A286合金の中空内筒13
bの外周E O,5〜1.OSml厚の人g−Pbはん
だ薄板19bを第3図(、)に示すよプに巻き付は点溶
接で固定する。その後900 C〜1100 Cに加熱
した純銅の中空円筒玲を第3図(b)に示すようにムg
−pbはんだ薄板19bを巻きつけた中空内筒13b
に鳩きばめる。この焼きはめ時の熱でAg −pbはん
だが溶融する。その後第3図(c)に示すように中空円
筒nの外周にAg −Pbはんだ薄板19aを巻き付は
点溶接で固定する。次に溶体化処理前の入STM−人2
86合金の中空外周13aを第3図(d)に示すよ5に
900C−1100CでAg −pbはんだ薄板19a
を巻き付けた中空円筒臣に焼きばめる。この時Ag −
pbはんた薄板19!が溶融し、中空円筒12及び中空
外筒13aと金属的に結合し、常温ダンパーシールド1
が形成される。その後常温ダンパ−シールド1全体を6
50C〜800Cにして中空内筒13b、中空外周13
mの時効処理を行)。Hollow inner cylinder 13 of ASTM-A286 alloy before solution treatment
Outer circumference E O of b, 5 to 1. A thin G-Pb solder plate 19b having a thickness of OS ml is wound around the plate and fixed by spot welding as shown in FIG. Thereafter, a pure copper hollow cylinder heated to 900 to 1100 C was heated to a mug as shown in Figure 3(b).
- Hollow inner cylinder 13b wrapped with pb solder thin plate 19b
Place doves on it. The Ag-pb solder melts due to the heat during this shrink fitting. Thereafter, as shown in FIG. 3(c), a thin Ag--Pb solder plate 19a is wrapped around the outer periphery of the hollow cylinder n and fixed by spot welding. Next, input STM-person 2 before solution treatment
As shown in FIG. 3(d), the hollow outer periphery 13a of 86 alloy is soldered with Ag-pb solder thin plate 19a at 900C-1100C.
Shrink-fit it onto the hollow cylindrical retainer wrapped around it. At this time Ag −
PB solder thin plate 19! is melted and metallically combined with the hollow cylinder 12 and the hollow outer cylinder 13a, forming the room temperature damper shield 1.
is formed. After that, remove the entire room temperature damper shield 1 by 6
50C to 800C, hollow inner cylinder 13b, hollow outer circumference 13
m aging treatment).
以上の方法によって製造することによっても前記一実施
例と同様な作用・効果が得られる。なお前記一実施例(
二にいては焼きばめ時にCu −Cr合金の中空円筒1
2の時効硬化処理を行っていたがこの実施例においては
人STM−人286合金の中空内l 13b及び中空外
筒13aの溶体化処理を焼きばめ時に行な)ことができ
る。By manufacturing according to the above method, the same functions and effects as in the embodiment described above can be obtained. Note that the above-mentioned example (
In the second case, the hollow cylinder 1 of the Cu-Cr alloy is
However, in this embodiment, the hollow inner cylinder 13b and the hollow outer cylinder 13a of the STM-286 alloy can be subjected to solution heat treatment at the time of shrink fitting.
さらに他の実施例について説明する。前記一実施例;二
おける中空内筒13b及び中空外筒13暑を溶体化処理
をすでに施したASTM−人286合金とし、中空円筒
J2を純銅とし、接合層をAgろ5とし、焼きはめ時の
温度を650C〜800Cにし同様な方法によって製造
すること鑑=よっても前記一実施例と同様な作用効果が
得られる。なおこの実施例においては焼きはめ時に中空
内筒13b、中空外筒13aの時効硬化処理を行な5こ
とができる1、
次にさらに他の実施例について説明する。Still other embodiments will be described. In the above-mentioned embodiment, the hollow inner cylinder 13b and the hollow outer cylinder 13 are made of ASTM-286 alloy which has already been subjected to solution treatment, the hollow cylinder J2 is made of pure copper, the bonding layer is made of Ag grout 5, and when shrink-fitting Even if the temperature is 650C to 800C and the same method is used to produce the same, the same effects as in the embodiment described above can be obtained. In this embodiment, the hollow inner tube 13b and the hollow outer tube 13a can be subjected to age hardening treatment at the time of shrink fitting.1 Next, another embodiment will be described.
上記で説明した3つの一実施例に二にいて、中空内筒1
3b及び中空外筒13aに入f3’l’M−人286合
金を用いていたがNi基時効硬化戯合金(例えばインコ
ネル718.インコネルX750等)−jたはT!金合
金例えばTi−6人2−4v等)を用いることによって
も前記実施例と同様な作用効果を得ることができる。Second, in the three embodiments described above, the hollow inner cylinder 1
3b and the hollow outer cylinder 13a, Ni-based age hardening alloy (for example, Inconel 718, Inconel X750, etc.) was used. The same effects as in the above embodiment can also be obtained by using a gold alloy such as Ti-62-4V.
また、接合層を中空内筒13b及び中空円筒12のそれ
ぞれ外周に形成する方法として上記実施例においてはろ
う材の薄板19b 、 19aを巻き付けているが、ろ
う材を溶射することによって接合層を形成してもよい。Further, as a method of forming a bonding layer on the outer periphery of the hollow inner cylinder 13b and the hollow cylinder 12, in the above embodiment, the thin plates 19b and 19a of brazing material are wrapped around each other, but the bonding layer is formed by thermal spraying the brazing material. You may.
さらに中空内r:413b及び中空外周13aをNiメ
ッキした熱処理可能な合金とすることにより接合層との
ぬれ性を向上させることができる。Furthermore, the wettability with the bonding layer can be improved by making the hollow inner part 413b and the hollow outer periphery 13a a heat-treatable alloy plated with Ni.
本発明によれば接合層を高導電性金属層と高強度金g4
mとの間に形成し、焼きばめ時の熱により接合層を溶融
し、各層間を結合したので、各層間が金属的に結合され
各層のずれを防止することができ信頼性の高い超電導回
転子を提供することができる。According to the present invention, the bonding layer is made of a highly conductive metal layer and a high strength gold G4.
The bonding layer is melted by the heat during shrink fitting, and the layers are bonded together, so each layer is metallically bonded and displacement of each layer is prevented, making it a highly reliable superconductor. A rotor can be provided.
またろ5材の解融、各層間の金属的結合を焼きはめ時に
行ない接合層を形成するので、従来の焼きばめ設備が使
用でき、特殊な設備を用いることなく容易に製作するこ
とができる。Since the bonding layer is formed by melting the filter 5 material and metallically bonding each layer during shrink-fitting, conventional shrink-fitting equipment can be used and it can be easily manufactured without using special equipment. .
第1図は本発明の一実施例による超電導回転子に、P6
ける常温ダンパーシールドを示す断面図、第2図は第1
図におけるA部の拡大図、第3図は第1図(:示す常温
ダンパーシールドの製造工程を示す説明図、第4図は常
温ダンパーシールドの性能を示すトルク−変位線図、第
5図は従来の超電導回転子を示す断面図、第6図は第5
肉におけるB部拡大図である。
1・・・常温ダンパーシールド 2・・・高導電性金属
層3a、3b・・・高強度金属層 9a、9b・・・接
合層12・・・中空円筒 13a・・・中空外筒13b
・・・中空円WJ19a 、 19b・・・はんだ薄板
代理人 弁諷士 則 近 憲 佑
同 三俣弘文
第 1 図
第2図
トルク →
第4図FIG. 1 shows a superconducting rotor according to an embodiment of the present invention with P6
Figure 2 is a cross-sectional view showing the normal temperature damper shield.
Figure 3 is an enlarged view of part A in the figure, Figure 3 is an explanatory diagram showing the manufacturing process of the room temperature damper shield shown in Figure 1, Figure 4 is a torque-displacement diagram showing the performance of the room temperature damper shield, Figure 5 is A cross-sectional view showing a conventional superconducting rotor, FIG.
It is an enlarged view of part B of meat. 1... Normal temperature damper shield 2... Highly conductive metal layer 3a, 3b... High strength metal layer 9a, 9b... Bonding layer 12... Hollow cylinder 13a... Hollow outer cylinder 13b
...Hollow circle WJ19a, 19b... Solder thin plate agent Noriyoshi Chika Yudo Hirofumi Mitsumata No. 1 Fig. 2 Torque → Fig. 4
Claims (9)
にして配置された常温ダンパーシールドとを有し、前記
常温ダンパーシールドは、高導電性材料よりなる中空円
筒と、この中空円筒の内外周側に夫々嵌合された高強度
材料よりなる中空内筒及び中空外筒とにより形成された
超電導回転子において、前記中空内筒、中空円筒及び中
空外筒の夫々の間に第1の接合層及び第2の接合層を設
けるとともに、前記中空内筒、中空円筒、中空外筒第1
の接合層及び第2の接合層を焼ばめして常温ダンパーを
形成したことを特徴とする超電導回転子。(1) It has a superconducting winding and a room-temperature damper shield arranged to cover the outer periphery of the superconducting winding, and the room-temperature damper shield includes a hollow cylinder made of a highly conductive material, and a hollow cylinder made of a highly conductive material. In a superconducting rotor formed of a hollow inner cylinder and a hollow outer cylinder made of a high-strength material fitted on the inner and outer peripheral sides, a first A bonding layer and a second bonding layer are provided, and the hollow inner cylinder, the hollow cylinder, and the first hollow outer cylinder are provided.
A superconducting rotor characterized in that a room-temperature damper is formed by shrink-fitting a bonding layer and a second bonding layer.
りなる第1の接合層を形成し、この第1の接合層を介し
て前記中空内筒の外周側に前記ろう材の融点以上の所定
温度で高導電性材料よりなる中空円筒を焼きばめをして
結合し、その後この中空円筒の外周側にろう材よりなる
第2の接合層を形成し、この第2の接合層を介して前記
中空円筒の外周側に前記ろう材の融点以上の所定温度で
高強度材料よりなる中空外筒を焼きばめして常温ダンパ
ーシールドを形成したことを特徴とする超電導回転子の
製造方法。(2) A first bonding layer made of a brazing material is formed on the outer periphery of a hollow inner cylinder made of a high-strength material, and the melting point of the brazing material is applied to the outer periphery of the hollow inner cylinder through this first bonding layer. A hollow cylinder made of a highly conductive material is bonded by shrink fitting at the above predetermined temperature, and then a second bonding layer made of a brazing material is formed on the outer circumferential side of the hollow cylinder. A method for producing a superconducting rotor, characterized in that a hollow outer cylinder made of a high-strength material is shrink-fitted to the outer circumferential side of the hollow cylinder at a predetermined temperature equal to or higher than the melting point of the brazing material to form a room-temperature damper shield. .
した高強度材料よりなることを特徴とする特許請求の範
囲第2項に記載の超電導回転子の製造方法。(3) The method for manufacturing a superconducting rotor according to claim 2, wherein the hollow inner tube and the hollow outer tube are made of a high-strength material plated with nickel.
施した時効硬化温合金であり、前記高導電性材料がCu
−Cr合金またはCu−Cr−Zr合金であり、前記接
合層がAg−PbまたはAg−CdまたはSn−Pbの
ろう材により形成されるとともに前記所定温度が400
〜500℃であることを特徴とする特許請求の範囲第2
項または第3項に記載の超電導回転子の製造方法。(4) The high strength material is an age hardening temperature alloy subjected to solution treatment and age hardening treatment, and the high conductivity material is Cu.
-Cr alloy or Cu-Cr-Zr alloy, the bonding layer is formed of a brazing material of Ag-Pb, Ag-Cd, or Sn-Pb, and the predetermined temperature is 400°C.
Claim 2 characterized in that the temperature is ~500°C
The method for manufacturing a superconducting rotor according to item 1 or 3.
導電性材料がCuであり、前記接合層がニッケルろうま
たは銀ろうにより形成されるとともに前記所定温度が9
00〜1100℃であることを特徴とする特許請求の範
囲第2項または第3項に記載の超電導回転子の製造方法
。(5) The high-strength material is an age-hardening alloy, the highly conductive material is Cu, the bonding layer is formed of nickel solder or silver solder, and the predetermined temperature is 90%
The method for manufacturing a superconducting rotor according to claim 2 or 3, wherein the temperature is 00 to 1100°C.
金であり、前記高導電性材料がCuであり、前記接合層
が銀ろうにより形成されるとともに前記所定温度が65
0〜800℃であることを特徴とする特許請求の範囲第
2項または第3項に記載の超電導回転子の製造方法。(6) The high-strength material is an age-hardened alloy subjected to solution treatment, the highly conductive material is Cu, the bonding layer is formed of silver solder, and the predetermined temperature is 65%.
The method for manufacturing a superconducting rotor according to claim 2 or 3, wherein the temperature is 0 to 800°C.
ンコネル718、インコネルX750またはTi−6A
l−4V合金のいずれかであることを特徴とする特許請
求の範囲第4項乃至第6項に記載の超電導回転子の製造
方法。(7) The age hardening alloy is ASTM-A286 alloy, Inconel 718, Inconel X750 or Ti-6A.
7. The method for manufacturing a superconducting rotor according to claims 4 to 6, characterized in that the superconducting rotor is one of l-4V alloys.
空内筒の外周及び中空円筒の外周に巻付して形成したこ
とを特徴とする特許請求の範囲第2項乃至第7項に記載
の超電導回転子の製造方法。(8) The first and second bonding layers are formed by wrapping a thin plate-shaped brazing material around the outer periphery of the hollow inner cylinder and the outer periphery of the hollow cylinder. The method for manufacturing a superconducting rotor according to item 7.
外周及び中空円筒の外周に溶射して形成したことを特徴
とする特許請求の範囲第2項乃至第7項に記載の超電導
回転子の製造方法。(9) The first and second bonding layers are formed by thermally spraying a brazing material onto the outer periphery of the hollow inner cylinder and the outer periphery of the hollow cylinder. A method for manufacturing a superconducting rotor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19379285A JPS6258868A (en) | 1985-09-04 | 1985-09-04 | Superconducting rotor and its preparation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19379285A JPS6258868A (en) | 1985-09-04 | 1985-09-04 | Superconducting rotor and its preparation |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6258868A true JPS6258868A (en) | 1987-03-14 |
Family
ID=16313861
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19379285A Pending JPS6258868A (en) | 1985-09-04 | 1985-09-04 | Superconducting rotor and its preparation |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6258868A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6169353B1 (en) | 1999-09-28 | 2001-01-02 | Reliance Electric Technologies, Llc | Method for manufacturing a rotor having superconducting coils |
US6262442B1 (en) * | 1999-04-30 | 2001-07-17 | Dmitri G. Kravtchenko | Zener diode and RC network combination semiconductor device for use in integrated circuits |
-
1985
- 1985-09-04 JP JP19379285A patent/JPS6258868A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6262442B1 (en) * | 1999-04-30 | 2001-07-17 | Dmitri G. Kravtchenko | Zener diode and RC network combination semiconductor device for use in integrated circuits |
US6169353B1 (en) | 1999-09-28 | 2001-01-02 | Reliance Electric Technologies, Llc | Method for manufacturing a rotor having superconducting coils |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6081052A (en) | Rotor for rotating machine, process for producing the same, and magnet unit | |
JPH0233111B2 (en) | ||
CN106605277B (en) | Superconducting coil | |
US3514850A (en) | Electrical conductors | |
US4049475A (en) | SECo5 -Permanent magnet joined to at least one iron mass and method of fabricating such a permanent magnet | |
JPS6258868A (en) | Superconducting rotor and its preparation | |
JP2020025014A (en) | High-temperature superconducting coil and superconducting magnet device | |
US5843584A (en) | Superconductive article and method of making | |
JP2017117772A (en) | Method for producing oxide superconducting wire rod and method for producing superconducting coil | |
JPH065342A (en) | Superconducting wire connecting method | |
JPS6246278B2 (en) | ||
JP2013186966A (en) | Oxide superconducting wire and manufacturing method therefor | |
JPS627671B2 (en) | ||
JP6078522B2 (en) | Superconducting wire and superconducting coil using the same | |
JPS5952492B2 (en) | Method for manufacturing a cable core consisting of a plurality of unit cores having an intermetallic compound-based superconducting coating | |
JPS6381709A (en) | Superconductor | |
JPS5836442B2 (en) | superconducting wire | |
JPH04188706A (en) | Superconducting coil | |
JP3166339B2 (en) | Heat-generating alloy wire for hard-to-reach ice and snow wires | |
JP2013187103A (en) | Oxide superconducting wire and manufacturing method therefor | |
JPS58191407A (en) | Superconducting coil | |
JPH06163248A (en) | Superconducting hybrid magnet | |
JPS60205016A (en) | Manufacturing method of slidable compound member | |
JPS57183508A (en) | Compound valve seat | |
JPS58191406A (en) | Manufacture of superconducting coil |