JPS6257255A - Manufacture of compound semiconductor device - Google Patents

Manufacture of compound semiconductor device

Info

Publication number
JPS6257255A
JPS6257255A JP19594985A JP19594985A JPS6257255A JP S6257255 A JPS6257255 A JP S6257255A JP 19594985 A JP19594985 A JP 19594985A JP 19594985 A JP19594985 A JP 19594985A JP S6257255 A JPS6257255 A JP S6257255A
Authority
JP
Japan
Prior art keywords
film
stress
substrate
semiconductor substrate
gaas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19594985A
Other languages
Japanese (ja)
Inventor
Yoshinori Imamura
今村 慶憲
Masaru Miyazaki
勝 宮崎
Shigeo Goshima
五島 滋雄
Nobutoshi Matsunaga
松永 信敏
Naoyuki Matsuoka
直之 松岡
Nobuo Kodera
小寺 信夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP19594985A priority Critical patent/JPS6257255A/en
Publication of JPS6257255A publication Critical patent/JPS6257255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To prevent deterioration in characteristics due to stress, by using protecting films, wherein a film that imparts tensile stress to a GaAs semiconductor substrate and a film that imparts compression stress to the substrate are laminated, as the surface protecting films of the GaAs substrate at the time of annealing, thereby reducing the effective stress of the GaAs substrate. CONSTITUTION:Ions are implanted in the surface of a compound semiconductor 1. An insulating film 12 imparts tensle stress to the semiconductor substrate 1. An insulating film 13 or a conducting film imparts compression stress to the semiconductor substrate 1. Protecting films are formed by a laminated structure of the film 12 and the film 13. After the formation of the protecting film 12 and 13, heat treatment is performed. Thereafter parts, where electrodes 6 and 7 are to be formed at the surface of the semiconductor substrate 1 corresponding to said protecting films 12 and 13, are removed. For example, an N-channel 2 is formed by activation using an Si<+> ion implantation method and annealing in the surface in the GaAs substrate 1. Then, a WSi gate 5 is formed. Therefore, a part other than source and drain gates is covered with photoresist 10. The source and drain regions are formed by the ion implantation method in a self-aligning mode. Then the SiO2 film 12 is deposited by a sputtering method. The SiO2 film 13 is deposited by a chemical vapor deposition method at a normal pressure.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、Iff −V族化合物半導体装置の製造方法
に係り、特にGaAsを用いた大規模集積回路に好適な
半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of manufacturing an If-V group compound semiconductor device, and particularly to a method of manufacturing a semiconductor device suitable for large-scale integrated circuits using GaAs.

〔発明の背景〕[Background of the invention]

G a A s半導体を基板として用いた集積回路では
、板本構成素子として、ゲート部分に金属−半導体接触
のショットキー障壁を用いたMES−FETが使用され
る。このFETは、第1図に断面図を示すように、基板
1にイオン注入によって形成されたn型チャネル層2と
n十型のソース領域3゜ドレイン領域4及びそれぞれの
表面に形成されたゲート電極5.ソース電極6.ドレイ
ン電極7とから構成されており、チャネル層2を通して
ソース電極6.トレイン電極7の間を流れる電極をゲー
ト電極5に加えた電界によって制御することで動作させ
るものである。
In an integrated circuit using a GaAs semiconductor as a substrate, a MES-FET using a metal-semiconductor contact Schottky barrier in a gate portion is used as a board component. As shown in the cross-sectional view of FIG. 1, this FET consists of an n-type channel layer 2 formed by ion implantation into a substrate 1, an n-type source region 3, a drain region 4, and gates formed on their respective surfaces. Electrode 5. Source electrode 6. A drain electrode 7 and a source electrode 6 through the channel layer 2. It is operated by controlling the electrode flowing between the train electrodes 7 by an electric field applied to the gate electrode 5.

従来のGaAs基板上にMES−FETを形成する工程
を第2図に示す。すなわち、まず第2図(a)に示す如
く、Q a A s基板1上に、n型チャネル層2を形
成したのち、高融点金属から成るゲート5を形成する。
FIG. 2 shows the process of forming a conventional MES-FET on a GaAs substrate. That is, as shown in FIG. 2(a), first, an n-type channel layer 2 is formed on a QaAs substrate 1, and then a gate 5 made of a high melting point metal is formed.

高融点金属としては、W。W as the high melting point metal.

Ti−W合金、W−Si合金、W−AΩ合金、窒化タン
グステンWNなどを用いている。次に(b)に示す如く
、ソース、ドレイン領域を形成するためにイオン打込法
によりSi+イオン8を2×1013個/Cl112打
込む。この方法によればチャネル層に対してソース、ド
レイン領域が自己整合的に形成されるため、高性能のF
ETが作成可能である。次に(c)に示す如<5jn2
.Si3N4などの絶縁膜9を積層した後、700〜9
00℃でアニールし、イオン打込み領域を活性化する。
Ti-W alloy, W-Si alloy, W-AΩ alloy, tungsten nitride WN, etc. are used. Next, as shown in (b), 2×10 13 Si+ ions 8/Cl 112 are implanted by the ion implantation method to form source and drain regions. According to this method, the source and drain regions are formed in a self-aligned manner with respect to the channel layer.
ET can be created. Next, as shown in (c), <5jn2
.. After laminating the insulating film 9 such as Si3N4, 700~9
Annealing is performed at 00° C. to activate the ion implantation region.

更に(d)に示す如くソース、ドレイン電極6゜7を形
成してMES−FETが完成される。(c)に於いて絶
縁膜9を被覆する理d(lま700〜900℃での高温
アニール時にG a A s基板表面のGaやAsが蒸
発して結晶が変質するのを防ぐためである。
Further, source and drain electrodes 6.7 are formed as shown in (d) to complete the MES-FET. In (c), the reason for covering the insulating film 9 is to prevent Ga and As on the surface of the GaAs substrate from evaporating and changing the quality of the crystal during high-temperature annealing at 700 to 900°C. .

上記従来技術では、第2図(c)に示したGaAs表面
保護用絶縁膜9として、気相化学成長法、プラズマ誘起
気相化学成長法、スパッタリング法(リアクティブスパ
ッタリングも含む)、電子ビーム蒸着法などで形成した
二酸化硅素、窒化硅素、窒化アルミニウムおよびこれら
の積層構造膜や混成膜を使用することが報告されている
(米国特許405841.3号明細書等参照)。
In the above-mentioned conventional technology, the GaAs surface protection insulating film 9 shown in FIG. It has been reported that silicon dioxide, silicon nitride, aluminum nitride, and a laminated structure film or composite film thereof formed by a method or the like is used (see US Pat. No. 405,841.3, etc.).

これら報告されている絶縁膜はいずれも、作成方法ある
いは作成条件によって絶縁膜内に内部応力が発生し、前
記半導体基板に対して圧縮又は引張応力を及ぼしている
。この応力が高温アニール時の絶縁膜の膜はがれ、ある
いはG a A s基板中に添加した不純物元素の異常
拡散によるFET特性劣化の原因となるという問題があ
った。
In all of these reported insulating films, internal stress is generated in the insulating film depending on the manufacturing method or the manufacturing conditions, and compressive or tensile stress is exerted on the semiconductor substrate. There is a problem in that this stress causes peeling of the insulating film during high-temperature annealing or deterioration of FET characteristics due to abnormal diffusion of impurity elements added into the GaAs substrate.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、アニール時にGaAs基板に実効的に
応力を及ぼすことのない保護膜を有する化合物半導体装
置の製造方法を提供することにある。
An object of the present invention is to provide a method for manufacturing a compound semiconductor device having a protective film that does not effectively apply stress to a GaAs substrate during annealing.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するため、アニール時のGa
As基板表面保護膜として、GaAs半導体基板に対し
て引張り応力を及ぼす膜と圧縮応力を及ぼす膜とを積層
した保護膜を用いることを特徴とする。これにより、G
 a A、 s基板に及ぼす実効的な応力を減少させて
、応力に起因する特性劣化を少なくすることが可能とな
る。
In order to achieve the above object, the present invention provides Ga
The present invention is characterized in that a protective film in which a film that exerts tensile stress and a film that exerts compressive stress are stacked on the GaAs semiconductor substrate is used as the As substrate surface protective film. As a result, G
a A, s It becomes possible to reduce the effective stress exerted on the substrate and to reduce the deterioration of characteristics due to stress.

〔発明の実施例〕[Embodiments of the invention]

化合物半導体のイオン打込み層を活性化する方法として
、高耐熱性保護膜で化合物半導体表面を被覆したのち7
00〜900℃の高温でアニールする、いわゆるキャッ
プアニール法が最も簡便かつ効果的であることは良く知
られている。
As a method of activating the ion implantation layer of a compound semiconductor, the surface of the compound semiconductor is coated with a highly heat-resistant protective film, and then
It is well known that the so-called cap annealing method, which is annealing at a high temperature of 00 to 900° C., is the simplest and most effective method.

化合物半導体に使用できる高耐熱性材料は、5i02.
Al11203.Si3N4.AflN、RN。
Highly heat resistant materials that can be used for compound semiconductors include 5i02.
Al11203. Si3N4. AflN, RN.

SiCなどの絶縁物、W 、 T a 、 Hf 、 
M o 、 N b 。
Insulators such as SiC, W, Ta, Hf,
Mo, Nb.

Zr、Cr、V、Tiの高融点金属、および前記高融点
金属の窒化物、酸化物、炭化物、ホウ化物硅化物などが
考えられる。
Refractory metals such as Zr, Cr, V, and Ti, and nitrides, oxides, carbides, borides, silicides, and the like of the refractory metals can be considered.

これら高耐熱性材料を薄膜化して化合物半導体基板上に
付着した場合、この前記薄膜が化合物半導体基板に与え
る応力は、作成方法および作成条件によって異なってく
る。表1および表2に、これについて我々の実験した結
果を示す。表1に、前記高耐熱性材料のうちGaAs基
板に対して引張り応力を与える材料の種類と作成方法お
よび代表的作成条件を相対値で表わした引張り応力の大
きさとともに示す。表2に、前記高耐熱性材料のうちG
 a A s基板に対して圧縮応力をケえる材料の種類
と作成方法および代表作成条件を相対値で表わした圧縮
応力の大きさとともに示す。
When these highly heat-resistant materials are formed into a thin film and adhered onto a compound semiconductor substrate, the stress exerted by the thin film on the compound semiconductor substrate varies depending on the manufacturing method and manufacturing conditions. Tables 1 and 2 show the results of our experiments regarding this. Table 1 shows the types of materials that give tensile stress to the GaAs substrate among the highly heat-resistant materials, their manufacturing methods, and typical manufacturing conditions, along with the magnitude of the tensile stress expressed in relative values. Table 2 shows G among the high heat resistant materials.
The types of materials, manufacturing methods, and typical manufacturing conditions that can withstand compressive stress with respect to the aA s substrate are shown together with the magnitude of the compressive stress expressed as a relative value.

表   1 GaAs基板に引張り応力を及ぼす高耐熱性材料a・・
・スパッタリング法 b・・・プラズマ誘起気相化学成長法 表   2 G a A s基板に圧縮応力を及ぼす高耐熱性材料表
面の汚染等に対する保護膜としての役割も有する。した
がって、圧縮応力又は引張り応力を持った前記材料のう
ちGaAs基板−1〕に最初に積層されるものは絶縁体
であることが必要である。この必要性から圧縮応力もつ
材料と引張り応力を持つ材料の組合わせは次のようにな
る。
Table 1 High heat resistant materials a... that exert tensile stress on GaAs substrates
- Sputtering method b... Plasma-induced vapor phase chemical growth method Table 2 GaAs It also serves as a protective film against contamination on the surface of a highly heat-resistant material that exerts compressive stress on the substrate. Therefore, among the materials having compressive stress or tensile stress, the material first laminated on the GaAs substrate-1] needs to be an insulator. Due to this necessity, the combinations of materials with compressive stress and materials with tensile stress are as follows.

表   3 但しA又はBの組合わせで、第2層に高融点金属あるい
は高融点金属の硅化物、窒化物あるいはホウ化物など導
電性材料を使用した場合は、素子完成時には、素子間を
電気的に分離するため、使用した前記第2層材料を除去
しなければならない。
Table 3 However, in combinations A and B, if a conductive material such as a refractory metal or a refractory metal silicide, nitride, or boride is used for the second layer, electrical connections between the elements will not be established when the element is completed. For separation, the used second layer material must be removed.

また、Bの組合わせは、GaAs基板に付着する第1J
f1の材料は気相化学成長法で形成されるが、この方法
で、形成した薄膜は、G a A s基板や高融点金属
ゲート上への付着力が弱く、第2層に使用する材料の引
張り応力が大きいと、膜はがれを生ずる事がある。Aの
組合わせでは、G a A s基板や一7= 高融点金属ゲート上へ付着する第1層目の材料は、スパ
ッタリング法又はプラズマ誘起気相化学成長法で形成さ
れるため付着力が強く、前記Bの組合わせで説明したよ
うな問題は生ぜず、最も良好である。スパッタリング法
あるいはプラズマ誘起気表2の材料を組み合わせるには
次のようにする。
Moreover, the combination of B is the first J attached to the GaAs substrate.
The material f1 is formed by vapor phase chemical growth, but the thin film formed by this method has weak adhesion to the GaAs substrate or high melting point metal gate, and the material used for the second layer is If the tensile stress is large, the film may peel off. In combination A, the first layer of material deposited on the GaAs substrate and the high melting point metal gate has a strong adhesion force because it is formed by sputtering or plasma-induced vapor phase chemical growth. , does not cause the problem described with the combination B above, and is the best. The sputtering method or the combination of the plasma-induced air surface materials 2 is performed as follows.

d、F、−d2F2=0 の関係から各層の膜厚が決定される。たとえば表1中の
スパッタ法で形成した5jO2(50nm)を第1層に
、表2中の気相化学成長法に形成した5jo2と第2層
に用いるとすれば、この膜厚はとなる。
The film thickness of each layer is determined from the relationship d, F, -d2F2=0. For example, if 5jO2 (50 nm) formed by the sputtering method shown in Table 1 is used for the first layer, and 5jo2 formed by the vapor phase chemical growth method shown in Table 2 is used for the second layer, the film thicknesses will be as follows.

以下、図面を用いて本発明の実施例を詳細に説明する。Embodiments of the present invention will be described in detail below with reference to the drawings.

実施例では、半導体基板としてG a A sを使用す
する。イオン打込み量は加速電圧40KeVで、エンハ
ンスメント形FETを形成する場合は]、8X1012
個/ cm ” 、ディプレッション形FETの場合は
、3.6X1.012個/ cm 2とする。
In the embodiment, GaAs is used as the semiconductor substrate. The amount of ion implantation is 40KeV acceleration voltage, and when forming an enhancement type FET], 8X1012
3.6 x 1.012 pieces/cm 2 for depression type FETs.

また活性化のアニールは、800℃、15分間、水素中
で行なう。次に、スパッタリング法により高融点金属W
 S i x (x = 0 、6 )を厚さ300n
mだけ堆積し、リングラフィ技術と、フッ素ガス(CF
4.CHF3.NF3,5F6)を用いたドライエツチ
ング法により、W S i xゲート5を形成する。次
に(b)に示す如く、ソース・トレイン部以外を厚さ1
.6μmのホトレジスト10で被覆し、イオン打込み法
により、加速電圧] 75KeVで、2 X ] O”
’個/Cm2のSi+イオンを打込み、ソースドレイン
領域を自己整合的に形成する。
Activation annealing is performed in hydrogen at 800° C. for 15 minutes. Next, high-melting point metal W was sputtered using a sputtering method.
S i x (x = 0, 6) with a thickness of 300n
m, and using phosphorography technique and fluorine gas (CF
4. CHF3. A W Si x gate 5 is formed by a dry etching method using NF3, 5F6). Next, as shown in (b), the thickness of the area other than the source train part is 1
.. It was coated with a 6 μm photoresist 10 and was deposited by ion implantation at an acceleration voltage of 75 KeV and 2×]O”.
Si+ ions are implanted at a density of 1/Cm2 to form source/drain regions in a self-aligned manner.

という条件にした。このスパッタ膜が、G a A s
基板に及ぼす応力は引張り応力であり、表1の相対的応
力表示を用いると、d□・F、=60X]2である。次
に、この」二に常圧気相化学成長法により5i02膜1
3を堆積する。このS」02膜13の膜厚d2は、表2
の相対圧縮応力を用いると、と決定される。上記2種類
の膜を組み合わせた結果、GaAs基板に働く応力は、
表12表2の説明で用いた応力の相対表示法で約−1,
5〜+1.5(−は圧縮応力、十は引張り応力を示す)
となり従来方法の4〜20に比べて大幅に低減された。
I made this condition. This sputtered film is GaAs
The stress exerted on the substrate is tensile stress, and using the relative stress expression in Table 1, it is d□·F,=60X]2. Next, this 5i02 film 1 is grown by atmospheric pressure vapor phase chemical growth method.
Deposit 3. The film thickness d2 of this S'02 film 13 is shown in Table 2.
Using the relative compressive stress of , it is determined that As a result of combining the above two types of films, the stress acting on the GaAs substrate is
Table 12 Approximately -1 according to the relative expression method of stress used in the explanation of Table 2,
5 to +1.5 (- indicates compressive stress, 10 indicates tensile stress)
This was significantly reduced compared to 4 to 20 in the conventional method.

次に(d)に示す工程を説明する。リソグラフィ技術に
より、A u G e/ N i / A 11からな
るソース、およびドレイン電極6,7を形成し、オーミ
ックいわゆる短ゲート効果が低減できている事がわかる
。また、第5図は、上記第4図と同一の試料における、
ゲート耐圧とゲート幅の関係を示している。点線17で
示すように、従来法では、ゲート幅の大きいFETは耐
圧が1v程度と極めて低いのに対して、本発明によれば
、実線16で示すようにゲート幅の大きいFETの耐圧
が大幅に改善されていることがわかる。
Next, the step shown in (d) will be explained. It can be seen that the ohmic so-called short gate effect can be reduced by forming the source and drain electrodes 6 and 7 made of AuGe/Ni/A11 using lithography technology. In addition, FIG. 5 shows the same sample as in FIG. 4 above.
It shows the relationship between gate breakdown voltage and gate width. As shown by the dotted line 17, in the conventional method, a FET with a large gate width has a very low breakdown voltage of about 1 V, whereas according to the present invention, as shown by a solid line 16, the breakdown voltage of an FET with a large gate width is significantly lower. It can be seen that this has been improved.

実施例2゜ 本実施例の製造工程手順と第6図(a)、(b)に示す
。実施例1の(a)、(b)と同様にして、チャネル層
2、ソース・ドレイン領域3,4、高融点ゲート5を形
成したのち、プラズマ誘起気相化学成長法により厚さ1
50nmの5i3N418を堆積する。堆積条件は、反
応ガスとしてN2希釈4%のS j、 H4を用い、圧
力0.5Torr、基板温度は室温とした。この時のW
Sjx+8の膜厚とした。このように、プラズマ誘起気
相化学成長法で堆積したSi3N4と、スパッタリング
法で形成したW S i x (x −0、6)を堆積
した場合、上記の膜厚の組合わせでは、G a A s
基板に及ぼす応力は、−2,0〜+0.5の範囲であり
、大幅に低減されていた。
Example 2 The manufacturing process procedure of this example is shown in FIGS. 6(a) and 6(b). After forming the channel layer 2, the source/drain regions 3 and 4, and the high melting point gate 5 in the same manner as in Example 1 (a) and (b), the layer was formed to a thickness of 1 by plasma-induced vapor phase chemical growth.
Deposit 50 nm of 5i3N418. The deposition conditions were as follows: 4% Sj, H4 diluted with N2 was used as the reaction gas, the pressure was 0.5 Torr, and the substrate temperature was room temperature. W at this time
The film thickness was Sjx+8. In this way, when Si3N4 deposited by plasma-induced vapor phase chemical growth method and W Si x (x -0, 6) formed by sputtering method are deposited, with the above film thickness combination, Ga A s
The stress exerted on the substrate was in the range of -2.0 to +0.5, which was significantly reduced.

次に前記キャップ膜18.19を形成した後、N2中で
800℃、20分間アニールし、ソース・ドレイン領域
を活性化する。更に、キャップ膜の応力を低減するため
に堆積したWSjX(X=0.6)層19をCF4ガス
を用いた、ラジカル輸送形化学ドライエツチング法によ
り除去したのち、第6図()))に示す如<、AuGe
/Ni/Auからなるソース・ドレイン電極6,7を堆
積、アロイしてFETが完成される。
Next, after forming the cap films 18 and 19, annealing is performed in N2 at 800° C. for 20 minutes to activate the source/drain regions. Furthermore, after removing the WSjX (X=0.6) layer 19 deposited to reduce the stress of the cap film by a radical transport chemical dry etching method using CF4 gas, the film shown in FIG. As shown, AuGe
Source/drain electrodes 6 and 7 made of /Ni/Au are deposited and alloyed to complete the FET.

本方法によっても、実施例1で説明したと同様−、、、
W S i x (x = 0 、6 )の代わりに表
2中の〔発明の効果〕 本発明によれば、アニール時のG’aAs基板表面保護
膜として、G a A s基板に対して引張り応力を及
ぼす膜と圧縮応力を及ぼす膜を積層した保護膜を用い、
GaAs基板に実効的に及ぼす応力を大幅に低減できる
ので、応力に起因する不純物の異常拡散による、F E
 Tのしきい値電圧の変動やゲート耐圧の劣化が生じな
いという効果がある。
This method is also similar to that explained in Example 1.
[Effect of the Invention] According to the present invention, instead of W S i x (x = 0, 6) in Table 2, a tensile film is Using a protective film consisting of a layered film that applies stress and a film that applies compressive stress,
Since the stress effectively exerted on the GaAs substrate can be significantly reduced, F E due to abnormal diffusion of impurities caused by stress
This has the effect that fluctuations in the threshold voltage of T and deterioration of gate breakdown voltage do not occur.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、M ES −F E T (7)断面図、第
2図(a)(b)(c)(d)は従来方法によるMES
−FETの製作工程を示す図、第3図(、)(b)(C
)(d)および第6図(a)(b)は本発明によるM 
E S−F T:!: Tの製作二[稈を示す図、第4
および5図は、本発明の効果を示す図である。 1・・・GaAs基板、2・・チャネル層、3・・・ソ
ースFETのゲート幅と耐圧の関係、17・・・従来法
によるゲート幅と耐圧の関係。 =15= 躬7図 3 2  ゲ 、ぐ ¥4図 ケ゛−トシ’v、(P欠O 第5図 ケ゛−F字%  (p漕Q 第す図 夕 3 2  ゲ
Figure 1 is a cross-sectional view of MES-FET (7), and Figures 2 (a), (b), (c), and (d) are MES by the conventional method.
- Diagrams showing the FET manufacturing process, Figure 3 (,) (b) (C
)(d) and FIGS. 6(a) and (b) are M according to the present invention.
E S-F T:! : Production of T 2 [Diagram showing the culm, 4th
5 and 5 are diagrams showing the effects of the present invention. 1... GaAs substrate, 2... Channel layer, 3... Relationship between gate width and breakdown voltage of source FET, 17... Relationship between gate width and breakdown voltage according to conventional method. =15= 躬7Fig.

Claims (1)

【特許請求の範囲】[Claims] 1、所定の化合物半導体基板表面にイオン注入する工程
、該半導体基板に対して引張り応力を及ぼす絶縁膜と前
記半導体基板に対して圧縮応力を及ぼす絶縁膜又は導電
膜との積層構造である保護膜を形成する工程、該保護膜
を形成後熱処理する工程、前記保護膜のうち前記半導体
基板表面に電極を形成する部分を除去する工程を有する
ことを特徴とする化合物半導体装置の製造方法。
1. A step of implanting ions into the surface of a predetermined compound semiconductor substrate, a protective film having a laminated structure of an insulating film that exerts tensile stress on the semiconductor substrate and an insulating film or conductive film that exerts compressive stress on the semiconductor substrate. 1. A method for manufacturing a compound semiconductor device, comprising the steps of forming a protective film, heat-treating the protective film after forming the protective film, and removing a portion of the protective film where an electrode is to be formed on the surface of the semiconductor substrate.
JP19594985A 1985-09-06 1985-09-06 Manufacture of compound semiconductor device Pending JPS6257255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19594985A JPS6257255A (en) 1985-09-06 1985-09-06 Manufacture of compound semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19594985A JPS6257255A (en) 1985-09-06 1985-09-06 Manufacture of compound semiconductor device

Publications (1)

Publication Number Publication Date
JPS6257255A true JPS6257255A (en) 1987-03-12

Family

ID=16349655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19594985A Pending JPS6257255A (en) 1985-09-06 1985-09-06 Manufacture of compound semiconductor device

Country Status (1)

Country Link
JP (1) JPS6257255A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308912A (en) * 1987-06-10 1988-12-16 Sharp Corp Manufacture of semiconductor device
JPS6433934A (en) * 1987-07-30 1989-02-03 Nec Corp Semiconductor device
JPS6459921A (en) * 1987-08-31 1989-03-07 Nec Corp Semiconductor device
JPS6461019A (en) * 1987-09-01 1989-03-08 Nec Corp Manufacture of compound semiconductor device
JPS6482632A (en) * 1987-09-25 1989-03-28 Nec Corp Semiconductor device
JPS6482633A (en) * 1987-09-25 1989-03-28 Nec Corp Semiconductor device
JPH02253614A (en) * 1989-03-27 1990-10-12 Matsushita Electric Ind Co Ltd Annealing of compound semiconductor
EP0525824A2 (en) * 1987-08-18 1993-02-03 Fujitsu Limited A semiconductor device having metal wiring layers and method of manufacturing such a device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149173A (en) * 1984-01-17 1985-08-06 Hitachi Ltd Manufacture of compound semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60149173A (en) * 1984-01-17 1985-08-06 Hitachi Ltd Manufacture of compound semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63308912A (en) * 1987-06-10 1988-12-16 Sharp Corp Manufacture of semiconductor device
JPS6433934A (en) * 1987-07-30 1989-02-03 Nec Corp Semiconductor device
EP0525824A2 (en) * 1987-08-18 1993-02-03 Fujitsu Limited A semiconductor device having metal wiring layers and method of manufacturing such a device
JPS6459921A (en) * 1987-08-31 1989-03-07 Nec Corp Semiconductor device
JPS6461019A (en) * 1987-09-01 1989-03-08 Nec Corp Manufacture of compound semiconductor device
JPS6482632A (en) * 1987-09-25 1989-03-28 Nec Corp Semiconductor device
JPS6482633A (en) * 1987-09-25 1989-03-28 Nec Corp Semiconductor device
JPH02253614A (en) * 1989-03-27 1990-10-12 Matsushita Electric Ind Co Ltd Annealing of compound semiconductor

Similar Documents

Publication Publication Date Title
JP4996781B2 (en) Method for forming an improved cobalt silicide layer on an integrated circuit structure using two capping layers
JP5995309B2 (en) Semiconductor device and manufacturing method thereof
JPS6257255A (en) Manufacture of compound semiconductor device
JPH0235462B2 (en)
JPH08298267A (en) Semiconductor device and manufacture thereof
JPH0212015B2 (en)
JPH05326445A (en) Manufacture of semiconductor device
JPS6160591B2 (en)
WO2022208865A1 (en) Method for manufacturing semiconductor device
JPS6279675A (en) Compound semiconductor device
JP3035917B2 (en) Field effect type semiconductor device and method of manufacturing the same
JPH11186548A (en) Semiconductor device and manufacture thereof
JP2917872B2 (en) Method for manufacturing semiconductor device
JPH0260215B2 (en)
JP3072335B2 (en) Method for manufacturing field effect transistor
JPH06168958A (en) Manufacture of semiconductor device
JPH11135727A (en) Semiconductor and its manufacture
JPS609120A (en) Manufacture of semiconductor device
JP2889240B2 (en) Compound semiconductor device and method of manufacturing the same
JPS63246870A (en) Compound semiconductor device and manufacture thereof
JPH0945707A (en) Semiconductor device and manufacture thereof
JPH07161637A (en) Sputtering film formation
JPS6190470A (en) Manufacture of compound semiconductor device
JPH04206741A (en) Formation of schottky junction
JPH01187876A (en) Manufacture of compound semiconductor device