JPS6248178A - Vertical outline compensating circuit of television receiver - Google Patents
Vertical outline compensating circuit of television receiverInfo
- Publication number
- JPS6248178A JPS6248178A JP18722285A JP18722285A JPS6248178A JP S6248178 A JPS6248178 A JP S6248178A JP 18722285 A JP18722285 A JP 18722285A JP 18722285 A JP18722285 A JP 18722285A JP S6248178 A JPS6248178 A JP S6248178A
- Authority
- JP
- Japan
- Prior art keywords
- vertical
- signal
- circuit
- outline part
- deflection
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Details Of Television Scanning (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、通常のテレビジョン受像機に係り、特に垂直
輪郭を明瞭にするのに好適な垂直輪郭補償回路に関する
。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a general television receiver, and particularly to a vertical contour compensation circuit suitable for making vertical contours clear.
従来の装置は、実公昭58−23171号公報に記載さ
れているようなものであり、以下に図を用いて説明する
。A conventional device is described in Japanese Utility Model Publication No. 58-23171, and will be explained below with reference to the drawings.
第8図は従来の輪郭補償装置の一例であり、テレビ受信
機の水平方向の走査速度変調回路を゛示すブロック図で
ある。同図において、801は映像信号入力端子、80
2はクロマ回路、および輝度回路の信号遅延分を補償す
るだめの遅延回路、803および805は微分回路、8
04罐幅回路、806は出力ドライブおよび出力回路、
807は補助偏向コイル、808は水平偏同用主コイル
、112はブラウン管である。紀8図の動作を第9図の
波形図を用いて説明する。先ず、映像信号入力端子80
1に第9図(ト)のような緩慢な立ち上り、立ち下シ部
分をもった映il tj号を加える。FIG. 8 is an example of a conventional contour compensation device, and is a block diagram showing a horizontal scanning speed modulation circuit of a television receiver. In the figure, 801 is a video signal input terminal;
2 is a chroma circuit and a delay circuit for compensating the signal delay of the luminance circuit; 803 and 805 are differentiating circuits;
04 can width circuit, 806 is output drive and output circuit,
807 is an auxiliary deflection coil, 808 is a main coil for horizontal deflection, and 112 is a cathode ray tube. The operation of Fig. 8 will be explained using the waveform diagram of Fig. 9. First, the video signal input terminal 80
Add to 1 a movie with a slow rise and fall part as shown in Figure 9 (G).
この映像信号へ)は遅延回路802で遅延された後、第
1の微分回路803により微分され、第9図(B)の−
次微分信号を得る。この−次微分信号(I3)は映像信
号(5)の輪郭部分を検出した信号であるが、ここでは
回路の時定数や浮遊容量の影響等によって完全な微分波
形となっておらず、三角彼で近似している。このように
して得た一次微分信号(B)は増幅回路804で増幅さ
れ、史に第2の微分回路805に加えられ、第9図0に
示す二次依分信号を得る。ここでも前述のようにその波
形を三角波で近似している。このようにして得られた二
次微分信号(0)は出力回路806で増幅した後にブラ
ウン管1112のネック部に設けられた補助偏向コイル
807に加えられ、その補助偏向電流によシミ子ビーム
の走査速度を変化させる。This video signal) is delayed by a delay circuit 802 and then differentiated by a first differentiating circuit 803, and the -
Obtain the second derivative signal. This -order differential signal (I3) is a signal that detects the contour part of the video signal (5), but here it does not have a perfect differential waveform due to the influence of the circuit time constant and stray capacitance, and the triangular It is approximated by The first-order differential signal (B) thus obtained is amplified by an amplifier circuit 804 and then applied to a second differential circuit 805 to obtain a second-order differential signal shown in FIG. 90. Here again, as mentioned above, the waveform is approximated by a triangular wave. The second-order differential signal (0) thus obtained is amplified by an output circuit 806 and then applied to an auxiliary deflection coil 807 provided at the neck of the cathode ray tube 1112, and its auxiliary deflection current scans the shimiko beam. Vary the speed.
このとき、二次微分信号(Qを補助偏向コイル807に
加えるとそこを渡れる[流は第9図00ような積分され
た波形となって入力映像信号(イ)の−次微分波形と同
様のものとなる。このような補助偏向コイル807の%
流0による補助偏向磁界を主偏向コイル80Bによる主
偏向磁界に加えた合計の偏向磁界に相当する等1曲偏向
電流は第9図■のようになる。At this time, if the second-order differential signal (Q) is applied to the auxiliary deflection coil 807, the flow will be an integrated waveform as shown in FIG. % of such auxiliary deflection coil 807
The equal-single deflection current corresponding to the total deflection magnetic field obtained by adding the auxiliary deflection magnetic field due to the current 0 to the main deflection magnetic field due to the main deflection coil 80B is as shown in FIG.
従って、この等価偏向゛屯流■のtl、t4期間では走
査速度は加速され、画面上の輝度は暗くなる・逆に、t
2.t3期間では走査速度は減速され輝度が明るくなる
。このため、画面上では第9図0に示すように、映像信
号(8)の立ち上り、立ち下り部分での走査速度1ll
tlJ御によシ、立ち上り部分では、その後半の部分2
で輝度が急激に明るくなり、他の部分1では輝度は暗く
なる。Therefore, during the tl and t4 periods of this equivalent deflection flow (2), the scanning speed is accelerated and the brightness on the screen becomes dark.
2. During the t3 period, the scanning speed is reduced and the brightness becomes brighter. Therefore, on the screen, as shown in FIG. 90, the scanning speed at the rising and falling parts of the video signal (8) is 1ll
tlJ thank you, in the rising part, the latter part 2
The brightness suddenly becomes brighter in the area 1, and the brightness becomes darker in the other part 1.
また、立ち下り部分では創生部分6で輝度が急激に明る
くなシ、その他の部分4では晰くなるその結果、映像の
輪郭部分のような輝度変化部分では輝度変化を急峻なも
のとすることができるため水平方向の一郭については画
資を改善できる。In addition, in the falling part, the brightness suddenly becomes brighter in the creation part 6, and becomes clearer in the other parts 4. As a result, the brightness change becomes steeper in the brightness change part such as the outline part of the image. Because of this, it is possible to improve the painting resources for a section in the horizontal direction.
しかし、上述した従来例については水平輪郭の補償は行
っているものの垂直方向の輪郭部分については何も考慮
されて訃らず、本来画像のもつ2次元的性格に反し一次
元処理しかなされないためによって、必ずしも最良な画
質が得られないという問題点があった。However, in the conventional example mentioned above, although the horizontal contour is compensated, no consideration is given to the vertical contour, and only one-dimensional processing is performed, contrary to the two-dimensional nature of the image. Therefore, there is a problem that the best image quality cannot necessarily be obtained.
本発明の目的は、テレビ受信機の垂直方向の走査速就変
調をも行って垂直輪郭部の明瞭な画像の得られる装置を
提供することにある。SUMMARY OF THE INVENTION An object of the present invention is to provide an apparatus that also performs scanning speed modulation in the vertical direction of a television receiver and can obtain clear images of vertical contours.
本発明は、従来例における水平輪郭補償の画像微分回路
に代えて、1H遅延素子を用いることて画像の垂直方向
微分を行うことで得られる制御信号によυ、陰極線管の
垂直磁界を補助的に操作することで、画像の垂直方向輪
郭部分についても輪郭補償を行うようにして、よシ自然
な輪郭補償を行なうものである。The present invention uses a 1H delay element to replace the image differentiation circuit for horizontal contour compensation in the conventional example, and uses a control signal obtained by performing vertical differentiation of the image to supplement the vertical magnetic field of the cathode ray tube. By performing this operation, contour compensation is also performed on the vertical contour portion of the image, resulting in more natural contour compensation.
以下、本発明の第1の実施例を第1図を用いて説明する
。第1図において、101は映像信号入力端子、102
および103は1H遅延素子、104および106はi
係数回路、105は一1係数回路107は加算器、10
8は出力ドライブ回路、109は出力回路、110はブ
ラウン管のネック部に設けられた垂直偏向用補助コイル
、111は垂直偏向用の主コイル、112はブラウン管
である。A first embodiment of the present invention will be described below with reference to FIG. In FIG. 1, 101 is a video signal input terminal, 102
and 103 is a 1H delay element, 104 and 106 are i
Coefficient circuit, 105 is 11 coefficient circuit 107 is adder, 10
8 is an output drive circuit, 109 is an output circuit, 110 is an auxiliary coil for vertical deflection provided at the neck of the cathode ray tube, 111 is a main coil for vertical deflection, and 112 is the cathode ray tube.
第1図の(ロ)路動作を第2図の波形図を参照しながら
説明する。The operation of path (b) in FIG. 1 will be explained with reference to the waveform diagram in FIG. 2.
第1図の映像入力端子101に第2図(α)に示すよう
な画像の垂直方向に緩慢な立ち上シの輪郭部分をもった
映像信号(α)を加える0次に、この映像信号(α)を
1H遅延素子102に与え、−水千期間分だけ遅延され
た映像信号(b)を得る。更にこの1H遅延された映像
信号(b)は1H遅延索子102と同一特性の1H遅延
素子103によシ、もう1水平期間分だけ遅延された映
像信号(C)となる、ここで、1H遅延素子としては、
電荷結合素子(COD )などのアナログ遅延素子や1
Hメモリ、RA Mなどのデジタルメモリを使用する。A video signal (α) having a slowly rising edge in the vertical direction of the image as shown in FIG. 2 (α) is applied to the video input terminal 101 in FIG. α) is applied to the 1H delay element 102 to obtain a video signal (b) delayed by −1,000 periods. Further, this 1H delayed video signal (b) is passed through a 1H delay element 103 having the same characteristics as the 1H delay element 102, and becomes a video signal (C) delayed by one more horizontal period. As a delay element,
Analog delay elements such as charge-coupled devices (CODs) and
Use digital memory such as H memory or RAM.
このようにして得られた映像信号(α)、(b)。Video signals (α) and (b) obtained in this way.
(C)をそれぞれ係数回路104.105.106に入
力し所定の係数倍の信号としだ後、加算器107により
映像信号の輪郭部における輝度変化の補償信号(d)が
得られる。(C) are respectively input to coefficient circuits 104, 105, and 106 and output as signals multiplied by a predetermined coefficient, and then an adder 107 obtains a compensation signal (d) for the brightness change in the contour portion of the video signal.
この補償信号(d)は出力ドライブ回路108によシ増
幅されコイル駆動電流を発生する出力回路109に入力
された後ブラウン管112のネック部に設けられた垂直
偏向用補助コイル110に印加され、その補助偏向電流
による補助磁界で垂直偏向用主コイル111により発生
された主磁界を補償し、電子ビームの垂直走置速度を変
化させる。This compensation signal (d) is amplified by the output drive circuit 108 and input to the output circuit 109 that generates a coil drive current, and then applied to the vertical deflection auxiliary coil 110 provided at the neck of the cathode ray tube 112. The auxiliary magnetic field generated by the auxiliary deflection current compensates for the main magnetic field generated by the vertical deflection main coil 111, and changes the vertical scanning speed of the electron beam.
この時に補助コイル110に流れる電流波形が第2図(
e)となる。The current waveform flowing through the auxiliary coil 110 at this time is shown in Figure 2 (
e).
このような補助偏向コイル110に#t、ねる補助偏向
電流(e)によって作られた補助偏向磁界を生コイル1
11による主偏向磁界に加え′成子ビームを偏向した場
合に、その合計した偏向磁界に相当する偏向系の等価偏
向′#L流は第2図(f)となる同図で縦軸が等価偏向
′1流値、横軸が垂直走査時間で実線の端から端までが
一垂直走査期間となる。The auxiliary deflection magnetic field created by the auxiliary deflection current (e) #t is applied to the auxiliary deflection coil 110 as shown in FIG.
In addition to the main deflection magnetic field due to 11, when the ``separate beam'' is deflected, the equivalent deflection of the deflection system corresponding to the total deflection magnetic field ``#L flow is shown in Figure 2 (f). In the same figure, the vertical axis is the equivalent deflection. '1 flow value, the horizontal axis is the vertical scanning time, and the period from one end of the solid line to the other is one vertical scanning period.
従って、等価偏向電流(f)の0部分において走査線は
テレビ画面上において通常走査位置よりも若干下側を走
査し、■部分においては、通常走査位置よりも若干上側
を走査するため、画像の垂直輪郭部において明暗かはっ
きシとなり、垂直輪郭補正が可能となる。Therefore, in the 0 portion of the equivalent deflection current (f), the scanning line scans slightly below the normal scanning position on the TV screen, and in the ■ portion, it scans slightly above the normal scanning position, so that the image The vertical contours become bright and dark, making it possible to correct the vertical contours.
ここで本実施例の主偏向磁界は第2図中)の1H遅延さ
れた映像信号に同期して発生しておりテレビ画像は映像
信号の)が映し出されている。Here, the main deflection magnetic field of this embodiment is generated in synchronization with the 1H-delayed video signal (in FIG. 2), and the television image is displayed as the video signal (in FIG. 2).
以上の動作を説明した図が第6図であり、同図で横軸が
垂直走査方向であり、縦軸が輝度レベルをまた、図面に
対して垂直方向が水平走査方向となる6図中、丸印A−
Eは第2図(b)の映像部分A−Eに対応しており、第
2図(e)の補助偏向電流によシ、垂直走査速度変調さ
れる。A diagram explaining the above operation is FIG. 6, in which the horizontal axis is the vertical scanning direction, the vertical axis is the brightness level, and the direction perpendicular to the drawing is the horizontal scanning direction. Circle mark A-
E corresponds to the image portion A-E in FIG. 2(b), and is modulated in vertical scanning velocity by the auxiliary deflection current in FIG. 2(e).
その結果、第3図中の丸印A、BijそれぞれA′B′
を走査するため、垂直輪郭部分では急峻となり垂直輪郭
部のはりきシとした明瞭な画像が得られる。As a result, the circles A and Bij in Figure 3 are A'B', respectively.
Since the vertical contour is scanned, the vertical contour becomes steep, and a sharp and clear image of the vertical contour can be obtained.
次に第2の実施例について説明する。第4図は第2の実
施例を示す回路ブロック図であり、401は減算器、4
02は垂直偏向用主コイル111の出力ドライブ回路、
403は減算回路、404は主コイル用111の垂直出
力回路であり、その他第1図と同一番号は同一機能を示
す。壕だ、第5図は第4図の動作説明をする波形図であ
り、同図を用いつつ、第2の実施例の動作説明を行う。Next, a second embodiment will be described. FIG. 4 is a circuit block diagram showing the second embodiment, in which 401 is a subtracter;
02 is an output drive circuit for the vertical deflection main coil 111;
403 is a subtraction circuit, 404 is a vertical output circuit for the main coil 111, and the same numbers as in FIG. 1 indicate the same functions. 5 is a waveform diagram for explaining the operation of FIG. 4, and using this diagram, the operation of the second embodiment will be explained.
映像入力端子101に第5図(5)に示す映像信号が入
力され、IH:M延素子102を経て第5図(13)に
示す一水十期間遅延しノこ信号を得ろ。この信号0と元
の映像信号(へ)との是が減算器401によって出力さ
れ、垂直輪郭補償信号0となる。The video signal shown in FIG. 5(5) is inputted to the video input terminal 101, and passes through the IH:M extension element 102 to obtain the hacksaw signal shown in FIG. 5(13) with a delay of one minute. The difference between this signal 0 and the original video signal is outputted by the subtracter 401, and becomes a vertical contour compensation signal 0.
この信号は次段の出力ドライブ回路108により増幅さ
れ、減算回路403に入力されるか、この減算回路40
3の他入力は従来の垂r1! 偏向用主コイルの出力ド
ライブ回路402より出力される垂直偏向用ノコギリ波
信号である。上記動作により減算回路403からは第5
図(カのように1同像の垂直輪郭部分の補償された信号
が得られ、これが、出力回路404に入力されるとブラ
ウン管112のネック部の主コイル111に偏向電がC
を流し、偏向磁界が作られる。ここで、第5図(d)の
信号は一垂1期間を周期とするノコギリ波信号で垂直輪
郭部を拡大して示しである。This signal is amplified by the next stage output drive circuit 108 and input to the subtraction circuit 403 or
3.Other inputs are the conventional drip r1! This is a vertical deflection sawtooth wave signal output from the output drive circuit 402 of the deflection main coil. Due to the above operation, the subtraction circuit 403 outputs the fifth
As shown in Figure (F), a signal compensated for the vertical contour of the same image is obtained, and when this is input to the output circuit 404, a deflection current is applied to the main coil 111 at the neck of the cathode ray tube 112.
flows, and a deflection magnetic field is created. Here, the signal in FIG. 5(d) is a sawtooth wave signal having a period of one period, and the vertical contour portion is shown in an enlarged manner.
第6図は第4図による実施例により垂直輪郭補償が行れ
る様子を示す概念図であり、給3 [MIと同様である
0図中丸印A−Eは第5図(5)の部分A−Eに対応し
ており、通常輪郭補償が行れない時は実線A−Eのよう
になる。さて、この時に第4図の回路によシ垂直輪郭補
偵を何うと・第5図(d)の■〜■で垂直走査速度が減
速され、第6図の丸印B−Eはそれぞれ丸印B′〜E/
へと移動する。従って垂直輪郭部において傾きが急とな
るため輪郭補償効果が得られる。FIG. 6 is a conceptual diagram showing how vertical contour compensation can be performed by the embodiment shown in FIG. -E, and when normal contour compensation cannot be performed, it becomes a solid line A-E. Now, at this time, no matter what the vertical contour detection is done by the circuit in Figure 4, the vertical scanning speed is reduced at points ■ to ■ in Figure 5(d), and the circles B to E in Figure 6 are respectively circled. Marks B'-E/
move to. Therefore, since the slope becomes steeper in the vertical contour portion, a contour compensation effect can be obtained.
さらに第7図は第5の実施例を示すブロック図であるが
、第7図は第4図の1H遅延形を2H遅延形としたもの
であシ、701は加算回路で、その他第1図および第4
図と同一符号は同一機能を示している。第7図の映像入
力端子101から出力ドライブ回路108までの動作は
第1図の場合と同様であシ、出力ドライブ回路108か
らは第2図(e)に示す輪郭補償信号となる。Further, FIG. 7 is a block diagram showing the fifth embodiment, in which the 1H delay type in FIG. and the fourth
The same reference numerals as in the figure indicate the same functions. The operation from the video input terminal 101 to the output drive circuit 108 in FIG. 7 is the same as that in FIG. 1, and the output drive circuit 108 produces the contour compensation signal shown in FIG. 2(e).
この補償信号が、加算回路701に入力され、王コイル
111をドライブする駆動パルス(通常−垂直期間を周
期とするノコギリ波であり、同期信号を含む)に加算さ
れ、第2図(f)に示す信号となる。更に、この信号は
出力回路404において、主コイル111に垂直偏向磁
界を発生させるだめの偏向′電流に変換される。ここで
偏向電流は垂直輪郭部において補償されているため、ブ
ラウン管112中を走査する電子ビームに加わる垂直磁
界は第1図の場合と同様であシ、従って、垂直輪郭補償
効果も同様となる。This compensation signal is input to the adder circuit 701 and added to the drive pulse (usually a sawtooth wave with a period of vertical period and includes a synchronization signal) that drives the king coil 111, and is This is the signal that indicates. Furthermore, this signal is converted in the output circuit 404 into a deflection current for generating a vertical deflection field in the main coil 111. Here, since the deflection current is compensated at the vertical contour, the vertical magnetic field applied to the electron beam scanning in the cathode ray tube 112 is the same as in the case of FIG. 1, and therefore the vertical contour compensation effect is also the same.
以上、述べたように本実施例によれば1H遅。As described above, according to this embodiment, the delay is 1H.
延素子および加算器、減算器を用いることで、垂直走査
速度変調をかけ、画像の垂直輪郭部分の輪郭補正によシ
、垂直輪郭の明瞭な画像が得られる。更には従来の水平
走査速度変調方式と組み合わせれば、2次元的にも輪郭
のはっき9とした良好な画像が得られ、画質の向上が可
能1となる。By using a spreading element, an adder, and a subtracter, vertical scanning speed modulation is applied and contour correction of the vertical contour portion of the image is performed, thereby obtaining an image with a clear vertical contour. Furthermore, if it is combined with the conventional horizontal scanning velocity modulation method, a good image with a clear two-dimensional outline can be obtained, making it possible to improve the image quality.
本発明によれば、1H遅延素子を1個または2個と減算
器または加算器を使用し、第1はブラウン管ネック部に
設けられる偏向補助コイルによシ補助磁界を発生させる
場合、第2は補助コイルを使用せず、簡単な信号加算回
路を追加することによシ王コイルに流れる偏向電流を制
御する場合であり、いずれの場合にも通常テレビセット
の垂直走査速度変調を行い、画像の垂直方向の輪郭補正
ができるので画質向上の効果がある。According to the present invention, when one or two 1H delay elements and a subtracter or an adder are used, the first generates an auxiliary magnetic field by a deflection auxiliary coil provided at the neck of the cathode ray tube, and the second This is a case where the deflection current flowing through the main coil is controlled by adding a simple signal addition circuit without using an auxiliary coil. Since it is possible to perform contour correction in the vertical direction, it has the effect of improving image quality.
第1図は本発明の一実施例による第1の垂直走査速度変
調回路を示すブロック図、第2図は第1図の動作を説明
する波形図、第3図は第1図の効果を説明する概念図、
第4図は本発明による第2の垂直走査速度変調回路を示
すブロック図、第5図は第4図の動作を説明する波形図
、第6図は第4図の効果を説明する概念図、第7図は本
発明による第3の垂直走査速度変調回路を示すブロック
図、第8図は従来の水平走査速度変調回路を示すブロッ
ク図、第9図は第8図の動作を説明する波形図である。
102および103・・・・・・1H遅延素子104お
よび106・・・・・・1係数器105・・・・・・−
1係数器
107・・・・・・加算器
108・・・・・・出力ドライブ回路
109・・・・・・出力回路
110・・・・・・垂直偏向用補助コイル111・・・
・・・垂厘偏向用主コイル112・・・・・・ブラウン
管
401・・・・・・減算器
402・・・・・・垂直偏向用出力ドライブ回路406
・・・・・・加算回路
404・・・・・・出力回路FIG. 1 is a block diagram showing a first vertical scanning velocity modulation circuit according to an embodiment of the present invention, FIG. 2 is a waveform diagram explaining the operation of FIG. 1, and FIG. 3 is an explanation of the effect of FIG. 1. conceptual diagram,
FIG. 4 is a block diagram showing a second vertical scanning speed modulation circuit according to the present invention, FIG. 5 is a waveform diagram explaining the operation of FIG. 4, and FIG. 6 is a conceptual diagram explaining the effect of FIG. 4. FIG. 7 is a block diagram showing a third vertical scanning speed modulation circuit according to the present invention, FIG. 8 is a block diagram showing a conventional horizontal scanning speed modulation circuit, and FIG. 9 is a waveform diagram explaining the operation of FIG. 8. It is. 102 and 103...1H delay elements 104 and 106...1 coefficient unit 105...-
1 coefficient unit 107... Adder 108... Output drive circuit 109... Output circuit 110... Vertical deflection auxiliary coil 111...
. . . Main coil for deflection 112 . . . Braun tube 401 . . . Subtractor 402 . . . Output drive circuit for vertical deflection 406
... Addition circuit 404 ... Output circuit
Claims (1)
輝度信号から映像の垂直輪郭位置を検出する手段と該検
出手段から、輪郭補償信号を発生する手段と該発生手段
を前記偏向手段に印加する手段とから成ることを特徴と
するテレビ受信機の垂直輪郭補償回路。1. A cathode ray tube including a vertical scanning line deflection means, a means for detecting a vertical contour position of an image from a luminance signal of the image, a means for generating a contour compensation signal from the detection means, and applying the generation means to the deflection means. A vertical contour compensation circuit for a television receiver, comprising means.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60187222A JPH0746830B2 (en) | 1985-08-28 | 1985-08-28 | Vertical contour correction circuit for TV receiver |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60187222A JPH0746830B2 (en) | 1985-08-28 | 1985-08-28 | Vertical contour correction circuit for TV receiver |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6248178A true JPS6248178A (en) | 1987-03-02 |
JPH0746830B2 JPH0746830B2 (en) | 1995-05-17 |
Family
ID=16202205
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60187222A Expired - Lifetime JPH0746830B2 (en) | 1985-08-28 | 1985-08-28 | Vertical contour correction circuit for TV receiver |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0746830B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4914028A (en) * | 1972-05-16 | 1974-02-07 | ||
JPS4952521A (en) * | 1972-09-21 | 1974-05-22 | ||
JPS58222671A (en) * | 1982-06-18 | 1983-12-24 | Matsushita Electric Ind Co Ltd | Controller of speed modulation |
JPS60223381A (en) * | 1984-04-20 | 1985-11-07 | Hitachi Ltd | Scanning speed modulating circuit |
-
1985
- 1985-08-28 JP JP60187222A patent/JPH0746830B2/en not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4914028A (en) * | 1972-05-16 | 1974-02-07 | ||
JPS4952521A (en) * | 1972-09-21 | 1974-05-22 | ||
JPS58222671A (en) * | 1982-06-18 | 1983-12-24 | Matsushita Electric Ind Co Ltd | Controller of speed modulation |
JPS60223381A (en) * | 1984-04-20 | 1985-11-07 | Hitachi Ltd | Scanning speed modulating circuit |
Also Published As
Publication number | Publication date |
---|---|
JPH0746830B2 (en) | 1995-05-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3752916A (en) | Method and apparatus for improving the horizontal sharpness of electronically scanned images | |
US4170785A (en) | Video signal reproducing apparatus with electron beam scanning velocity modulation | |
US5444500A (en) | Display device including a correction circuit, and correction circuit for use in a display device | |
KR100305413B1 (en) | Display device using scan speed modulation | |
KR100399494B1 (en) | Video display apparatus with vertical scan velocity modulation and video display method therefor | |
JPS6248178A (en) | Vertical outline compensating circuit of television receiver | |
JPH07118780B2 (en) | Image quality compensation device | |
JP2940229B2 (en) | Contour correction device | |
EP0598442B1 (en) | Display device including a correction circuit, and correction circuit for use in said device | |
JP2830587B2 (en) | Video signal processing device | |
JPH06326885A (en) | Scanning speed modulation circuit for television receiver | |
JP2907868B2 (en) | Horizontal deflection distortion automatic correction display | |
JP2755112B2 (en) | Contour correction circuit | |
JP3131449B2 (en) | Contour correction circuit | |
JPH02280465A (en) | Picture quality improvement circuit for crt | |
JPS61210769A (en) | Video reproducing device | |
JPH0326071A (en) | Contour correction circuit | |
JPH11122512A (en) | Image quality compensation device | |
JPS6017971Y2 (en) | Contour compensation device using scanning velocity modulation | |
KR930002151Y1 (en) | Apparatus for strengthen outlines of images of tv | |
JPH06205245A (en) | Contour compensation processor by scanning line density modulation of picture | |
JPS628621Y2 (en) | ||
JPH05252413A (en) | Scanning speed modulating circuit | |
JPH0230274A (en) | Dynamic video focus device | |
JPS5824989B2 (en) | tv jiyeonji yuzouki |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |