JPS6244975B2 - - Google Patents

Info

Publication number
JPS6244975B2
JPS6244975B2 JP54117647A JP11764779A JPS6244975B2 JP S6244975 B2 JPS6244975 B2 JP S6244975B2 JP 54117647 A JP54117647 A JP 54117647A JP 11764779 A JP11764779 A JP 11764779A JP S6244975 B2 JPS6244975 B2 JP S6244975B2
Authority
JP
Japan
Prior art keywords
catalyst
silica
molded body
calcium silicate
exhaust gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54117647A
Other languages
Japanese (ja)
Other versions
JPS5644043A (en
Inventor
Kikuji Tsuneyoshi
Hiroshi Fujita
Hideto Mitsutake
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP11764779A priority Critical patent/JPS5644043A/en
Publication of JPS5644043A publication Critical patent/JPS5644043A/en
Publication of JPS6244975B2 publication Critical patent/JPS6244975B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は窒素酸化物(NOx)含有ガスの処理
触媒に関し、特に重油焚きボイラ、石炭焚きボイ
ラ、各種の化学装置に付設する燃焼炉などから排
出されるダスト及び硫黄酸化物(SOx)を多量に
含有する排出ガス中の窒素酸化物を無害化除去す
る場合に用いて好適な触媒の製造方法に関するも
のである。排ガス中のNOx除去方法としては吸
着法、酸化吸収法、固体化捕集法、接触還元法な
どがあるが、後処理不要の接触還元法が経済的、
技術的にも有利であるため各方面で開発が試みら
れている。 接触還元反応も還元剤の選択により二種類の方
法が考えられるが排ガス中の酸素の有無による影
響を受けない選択的接触還元法が経済的にも有利
である。本発明はこの反応に適用しうる触媒に関
するものであり、特にNH3を還元剤とした場合が
有利であるため、以下この方法によつて更に本発
明を詳述する。 従来、選択的接触還元プロセスに適用する触媒
の担体としては、アルミナ、チタニア、ジルコニ
ア、シリカ、ケイソウ土、ゼオライトなどの多孔
性耐火物質を単独あるいは組合せて使用していた
がいずれも造粒して使用するため、高価となる上
に活性賦与成分を担持させるため、触媒の製造コ
ストが嵩むという欠点があつた。 ところで蒸留油やガス燃料(例えばLNG,
LPG)からの排ガス中にはダストが皆無に近い状
態であるため、前述の担体を球状、円柱状などの
任意の形状に造粒成形し、触媒層へ垂直に排ガス
を接触させることが可能である。 一方、重油ナフサ、石炭を燃料としたボイラ排
ガス、ゴミ焼却炉、コークス炉排ガスなどのダス
トを多量に含有する排ガス処理技術の開発にはダ
ストの触媒層への蓄積防止の対策を講じる必要が
ある。そのために触媒形状を円筒状ハニカム状な
どにしてダストの通過を容易にさせる方法、粒状
触媒を移動することにより付着ダストを飛散させ
る方法などが検討されているが、排ガスを触媒層
に並行流で流すことによりダストの付着を防止す
る方法も有望であり、本発明者らもこの方式に適
用しうる触媒の開発に鋭意取り組んでいる。この
方式での最適の触媒形状は板状構造体であり、前
述のアルミナ、チタニア、ジルコニア、シリカ、
ケイソウ土、ゼオライトなどの多孔性耐火物質を
大型の板に成形することは現状では困難であるた
め安価に製造でき軽量でかなりの強度を有する担
体材料が望まれる。しかも、重油石炭などを燃料
としたボイラ排ガス中にはダストの他にSOxが含
まれるためSOxに安定な材料であることも望まれ
る。 上述の点を考慮し、本発明者らは、この要求に
適合する担体及び触媒について研究した結果、先
に提案した特願昭52−16874号に記載の方法、即
ち珪酸と石灰を主原料としたスラリー物質に必要
に応じて石綿ガラス繊維などの無機質添加剤を混
合し加熱、加圧下で反応して得られる珪酸カルシ
ウムを担体とし、これに活性成分を担持させた触
媒及びその製造方法の発明を更に発展させ軽量で
かつSOxにも極めて安定な触媒の製造方法を発明
するに至つた。 すなわち、先に提案した上述の触媒は担体とし
て安価な珪酸原料と石灰原料に必要に応じて石
綿、ガラス繊維などの無機添加剤を混合し、水に
懸濁して得られるスラリー状の物質を5〜20Kg/
cm2程度の加圧下、150〜300℃で加熱、撹拌しなが
ら、あるいは一時撹拌を中止して、水熱合成反応
と結晶化を進めて得られる珪酸カルシウム結晶の
活性スラリーを成形し、乾燥して作られる珪酸カ
ルシウム成形体を使用し、これに触媒とするため
の活性成分を担持させたものであり、安価に製造
できること、軽量でかつ強度的に優れるところに
大きな特徴がある。 しかし石炭焚きボイラの如く、特にSOxを多量
に含有する排ガスに適用した場合は、担体基材で
ある、珪酸カルシウムが水分との共存において
SOx特にSO3と急激に反応し、これが石こうとシ
リカに分離して強度低下及び熱変形に伴う、クラ
ツクを生じるなど触媒担体として必ずしも完全な
ものとは言いがたい点があつた。 珪酸カルシウムと排ガス中のSO3との反応は次
式によつて進行し石こうとシリカに分離するが
SO3の如く強い酸性ガスが急激に接触すると分離
するシリカの結晶は強度的に弱くなりこのため触
媒の構造体自体の強度が低下し、更には熱歪みに
よるクラツクを生じて触媒の担持強度が低下する
こととなる。 6CaO・6SiO2・H2O+6SO3+nH2O →6CaSO4+6SiO2・nH2O そこで本発明者らは珪酸カルシウム組成中の
CaOとSO3との急激な反応を避けるため、少なく
とも触媒成分を担持させる担体表面層の前処理方
法について実験検討を重ねた結果少なくともSO3
と反応しやすいCaOを弱酸性の物質で予め中性化
させ強度不変のシリカ結晶に分離転換しておけ
ば、解決可能なこと、更にはこの弱酸性の物質と
してシユウ酸及びその化合物が、特に好ましいこ
とを見出し本発明を完成するに至つた。 すなわち、本発明者らは珪酸カルシウム系成形
体の中性化処理についての検討過程において上記
成形体をシユウ酸及びその化合物の水溶液と接触
させた場合には、その成形体を構成する、珪酸カ
ルシウムは、 シユウ酸カルシウムとシリカゲルに転化される
にもかかわらず、その転化した成形体の形状は実
質的に変化せず、しかも、その強度を保持し、か
くして得られるシリカ−シユウ酸カルシウム複合
体は硫酸及び塩酸のような強い酸と接触させて
も、その成形体は初期の状態及び強度を保持した
ままであるというおどろくべき事実を見出し本発
明を完成するに至つた。 本発明はこの知見にもとずいて完全されたもの
であつて珪酸カルシウム系成形体にシユウ酸もし
くはその化合物の水溶液を接触させ、得られるシ
リカ−シユウ酸カルシウム複合体を担体としてこ
れを触媒とするべく次に、触媒成分を含有するス
ラリーを塗布などして添加後、乾燥焼成すること
によりなる排ガス処理用触媒の製造方法を骨子と
するものである。本発明において出発材料とする
珪酸カルシウム成形体としてはその製造方法や、
これを構成する珪酸カルシウムの結晶化度、結晶
系等にかかわることなく珪酸カルシウムを主成分
とする各種成形体がいずれも使用可能である。例
えば珪酸カルシウムについて云えばその製造方法
によりゾノトライト、トベルモライト、フオシヤ
ジヤイト、ジヤイロライト、準結晶質珪酸カルシ
ウム(CSHn)等の各種結晶化度の異なる組成の
ものが得られ、いずれも使用可能であるが特に触
媒用担体としての適性をみた場合はゾノトライト
結晶(6CaO・6SiO2・H2O)からなるものが好ま
しく強度、熱特性の面に優れる点で好適である。
本発明において珪酸カルシウム系成形体をシユウ
酸カルシウムとシリカに分離させることは、上記
成形体をシユウ酸あるいはその化合物の水溶液と
接触させることにより簡単に行える。この場合、
シユウ酸との反応を短時間で完結させるには、常
温で行うより加温して行うのが良く、又接触させ
る方法としては上記液中に浸漬するのが良い。シ
ユウ酸の濃度は反応を完結させるに充分な濃度で
あれば特に限定するものではなく、ただ、溶解度
との関係で必要以上に濃度を高めても効果はな
い。 又、本発明ではシユウ酸以外、その化合物、例
えばシユウ酸アンモン、シユウ酸鉄、及びシユウ
酸バナジルなども適用できる。 かくして、成形体を構成する珪酸カルシウム
は、シユウ酸及びその化合物の水溶液との接触に
より、シリカゲルとシユウ酸カルシウムの微粒結
晶とに転化される。すなわち珪酸カルシウム結晶
の骨格構造をなすSiO4四面体の連鎖構造をその
まま保持しその連鎖構造によつて結晶形態を保持
した偽結晶質シリカゲルとその偽結晶質シリカゲ
ルに付着して存在する極く微粒なシユウ酸カルシ
ウムが生成するのである。本発明における上記シ
ユウ酸との反応をゾノトライト結晶からなる珪酸
カルシウムで例示すれば次のとおりとなる。 6CaO・6SiO2・H2O+6H2C2O4・2H2O →6CaC2O4・H2O+6SiO2・nH2O 上記で示される反応式により偽結晶質シリカゲ
ルと極微細シユウ酸カルシウムが得られるという
事実は電子顕微鏡観察、X線回折及び化学分析結
果から認められる。 以上のようにして得られるシリカ−シユウ酸カ
ルシウムの複合体をSOxを多量に含有する排ガス
と接触させた場合は、遊離した、シユウ酸カルシ
ウムがSOxと反応するのみで偽結晶質シリカゲル
はSiO4四面体の連鎖構造を保持したままの状態
で、これが強度構成材として残り、仮りに、SOx
との急激な反応が起つても極度な強度低下及び熱
歪みによるクラツクなどを引き起す恐れがない。 次に上記シリカ―シユウ酸カルシウムの複合体
を脱硝触媒とするための活性成分の担持方法であ
るが、これについては従来公知のアルミナ、チタ
ニア、シリカ、ケイソウ土、ゼオライトへの担持
方法と同様の操作が可能である。担持法として
は、一般に混練法、含浸法、塗布法などが知られ
ているが、シリカ―シユウ酸カルシウム複合体へ
の担持法としては、その成形体を単なる基材と考
えこの表面に触媒活性成分を塗布する方法が好適
である。 塗布する方法としては、浸漬法、スプレー法、
ハケ塗り法などいずれも適用可能であるが実用性
を考えると浸漬法が好適である。 塗布する好適な方法は珪酸カルシウム成形体を
まずシユウ酸又はその化合物の溶液中に浸漬し、
予上記成形体の構成成分である珪酸カルシウムを
シリカとシユウ酸カルシウムの複合体に転化さ
せ、このままの状態あるいは一旦乾燥してこれを
触媒成分を含有するスラリー中に浸漬する方法又
は上記シユウ酸処理にてシリカとシユウ酸カルシ
ウムに転化させた複合体を触媒活性成分との接着
性をよくするために、例えば無水珪酸の超微粒子
を水中に分散させたコロイド溶液(以下シリカゾ
ルと略称する)に浸漬し、次いでこれを触媒成分
を含有するスラリー中に浸漬して塗布する方法な
どいずれも適用可能である。 次に本発明に適用しうる触媒成分であるが、こ
れについては従来から知られているバナジウム、
ダングステン、クロム、鉄、銅、ニツケル、モリ
ブデン、チタンなどの金属酸化物又は、これらの
塩類化合物が適用でき、上記成分を一種あるいは
二種以上の組合わせで使用できる。この時触媒自
体をスラリー溶液にしておいて、これに担体を浸
漬し、乾燥するだけの方法でも良いが、本発明方
法は乾燥又は焼成することにより触媒となるべく
成分を含有するスラリー溶液中に浸漬したるのち
乾燥焼成することで、活性体の安定性を増し、又
基材担体との結合性を増加させるところに特徴を
有する。 以下、本発明を実施例により詳述する。 〔実施例 1〕 石灰と珪酸とのモル比を0.98とし、水対固形分
の比を12/1とした原料スラリーを12Kg/cm2
(191℃)の加圧下で8時間撹拌しながら、水熱反
応させて得たゾノトライト結晶(6CaO・
6SiO2・H2O)のスラリーにカリガラス繊維と石
綿をゾノトライト結晶の重量に対して3wt%、お
よび6wt%添加し、充分に混合した後、このスラ
リーを型枠に入れ、プレス脱水成形し、120〜150
℃で10時間乾燥して珪酸カルシウム成形体を得
た。 この成形体をシユウ酸5wt%、温度50℃の水溶
液中に3分間浸漬しシリカ−シユウ酸カルシウム
の複合体を得た。 〔実施例 2〕 実施例1で得た珪酸カルシウム成形体をシユウ
酸アンモン1%、温度60℃の水溶液中に3分間浸
漬しシリカ―シユウ酸カルシウム複合体を得た。 〔実施例 3〕 石灰と珪酸とのモル比を0.83とし、水対固形分
の重量比を12/1として8Kg/cm2(175℃)で撹拌
しながら水熱反応させてトベルモライト結晶
(5CaO・6SiO2・5H2O)のスラリーを得、これに
ガラス繊維と石綿を上記結晶の重量に対して3wt
%と6wt%添加し、これを実施例1と同様に成
形、乾燥して珪酸カルシウム成形体を得た。この
成形体をシユウ酸10wt%、温度40℃の水溶液中
に1分間浸漬し、シリカ―シユウ酸カルシウムの
複合成形体を得た。 〔実施例 4〕 実施例1,2,3で得たシリカ―シユウ酸カル
シウムの複合体をX線回折により観察したところ
いずれも出発材料を構成するゾノトライト結晶
(6CaO・6SiO2・H2O)及びトベルモライト結晶
(5CaO・6SiO2・5H2O)は消失し、、代りにシユ
ウ酸カルシウムの結晶が確認された。 〔実施例 5〕 実施例1,2,3で得たシリカ―シユウ酸カル
シウムの複合成形体を各々200×400×10mmtの
大きさに切断し、これを五酸化バナジウム20gを
シユウ酸50gと水1200gで溶解した溶液に酸化チ
タン1000gとタングステン酸80gを混合したスラ
リー液中に約30秒間浸漬し、150℃で5時間乾燥
後次に550℃で3時間焼成して各々の触媒を得
た。 〔実施例 6〕 実施例1で得たシリカ―シユウ酸カルシウムの
複合成形体を200×400×10mmtの大きさに切断
し、これをメタバナジン酸アンモン25gとモリブ
デン酸アンモン100gを水1000g、モノエタノー
ルアミン300gで溶解した溶液に酸化チタン1000
gを混合したスラリー液中に約30秒間浸漬し150
℃で5時間乾燥後、次に550℃で3時間焼成して
触媒を得た。 〔実施例 7〕 実施例1で得たシリカ―シユウ酸カルシウムの
複合成形体を200×400×10mmtの大きさに切断
し、これを無水珪酸20〜21%、酸化ナトリウム
0.04%以下を含有するコロイド溶液(PH3〜4)
に10分間浸漬し、乾燥が不充分な状態で実施例5
の触媒活性成分を含有するスラリー液中に約30秒
間浸漬し、実施例5と同じ操作、方法により乾
燥、焼成して触媒を得た。 〔試験例 1〕 実施例5,6,7で得た本発明触媒の耐SOx性
をみるためSOx 1000〜1500ppm、SO3 20〜
30ppmを含有する重油焚きボイラ排ガス中に触
媒をおき、350〜380℃で耐久試験を行つた結果、
5000時間後も異常なく極度の強度低下や、クラツ
クの発生、及び活性体の担持強度の低下は認めら
れなかつた。これに対し比較触媒としてシユウ酸
で処理しない珪酸カルシウム成形体を担体として
実施例5に準じ、調製した触媒はクラツクの発生
活性体の担持強度の低下が見られ強度も約1/3に
低下した。表1に耐久試験後の強度変化と外観変
化を示した。
The present invention relates to a catalyst for treating nitrogen oxide (NOx)-containing gas, and in particular to a catalyst for treating gas containing nitrogen oxides (NOx), particularly for treating large amounts of dust and sulfur oxides (SOx) emitted from heavy oil-fired boilers, coal-fired boilers, and combustion furnaces attached to various chemical equipment. The present invention relates to a method for producing a catalyst suitable for use in detoxifying and removing nitrogen oxides contained in exhaust gas. Methods for removing NOx from exhaust gas include adsorption methods, oxidation absorption methods, solidification collection methods, and catalytic reduction methods, but catalytic reduction methods that do not require post-treatment are economical and
Since it is technically advantageous, development efforts are being made in various fields. There are two possible methods for the catalytic reduction reaction depending on the selection of the reducing agent, but the selective catalytic reduction method is economically advantageous as it is not affected by the presence or absence of oxygen in the exhaust gas. The present invention relates to a catalyst that can be applied to this reaction, and since it is particularly advantageous to use NH 3 as the reducing agent, the present invention will be further detailed below using this method. Conventionally, porous refractory materials such as alumina, titania, zirconia, silica, diatomaceous earth, and zeolite have been used alone or in combination as carriers for catalysts applied to selective catalytic reduction processes, but none of these materials have been granulated. This method has disadvantages in that it is expensive to use, and the production cost of the catalyst increases because it supports an activation-imparting component. By the way, distilled oil and gas fuel (e.g. LNG,
Since there is almost no dust in the exhaust gas from LPG), it is possible to granulate the aforementioned carrier into any shape such as spherical or cylindrical, and bring the exhaust gas into contact with the catalyst layer perpendicularly. be. On the other hand, in order to develop exhaust gas treatment technology that contains a large amount of dust, such as heavy oil naphtha, coal-fired boiler exhaust gas, garbage incinerator exhaust gas, and coke oven exhaust gas, it is necessary to take measures to prevent dust from accumulating in the catalyst layer. . For this purpose, methods are being considered, such as making the catalyst shape into a cylindrical honeycomb shape to make it easier for the dust to pass through, and moving the granular catalyst to scatter the adhering dust. A method of preventing dust adhesion by flowing is also promising, and the present inventors are also working hard to develop a catalyst that can be applied to this method. The optimal catalyst shape for this method is a plate-like structure, and the above-mentioned alumina, titania, zirconia, silica,
Since it is currently difficult to form porous refractory materials such as diatomaceous earth and zeolite into large plates, a support material that can be produced at low cost, is lightweight, and has considerable strength is desired. Furthermore, since the exhaust gas from boilers using fuel such as heavy oil and coal contains SOx in addition to dust, it is also desirable that the material be stable against SOx. Taking the above points into consideration, the present inventors conducted research on carriers and catalysts that meet these requirements, and as a result, they developed the method described in Japanese Patent Application No. 16874/1983, which uses silicic acid and lime as the main raw materials. Invention of a catalyst in which an active ingredient is supported on a calcium silicate carrier obtained by mixing an inorganic additive such as asbestos glass fiber as necessary with a slurry material and reacting the mixture under heating and pressure, and a method for producing the same. Further development of this led to the invention of a method for producing a lightweight and extremely stable catalyst against SOx. That is, the above-mentioned catalyst proposed earlier mixes inexpensive silicic acid raw materials and lime raw materials as a carrier with inorganic additives such as asbestos and glass fiber as necessary, and suspends the slurry in water. ~20Kg/
The active slurry of calcium silicate crystals obtained by proceeding with the hydrothermal synthesis reaction and crystallization is formed by heating at 150 to 300℃ under a pressure of about cm 2 and stirring, or by temporarily discontinuing stirring, and dried. This product uses a calcium silicate molded body made from carbon dioxide and supports an active ingredient as a catalyst, and its major features are that it can be manufactured at low cost, is lightweight, and has excellent strength. However, when applied to exhaust gas containing a large amount of SOx, such as from a coal-fired boiler, calcium silicate, which is a carrier base material, cannot coexist with moisture.
SOx reacts rapidly with SO3 , especially SO3, which separates into gypsum and silica, resulting in decreased strength and thermal deformation, resulting in cracks, so it cannot be said to be perfect as a catalyst carrier. The reaction between calcium silicate and SO 3 in the exhaust gas proceeds according to the following equation and separates into gypsum and silica.
When a strong acidic gas such as SO 3 comes into sudden contact with the silica crystals, the strength of the separated silica crystals becomes weaker, which reduces the strength of the catalyst structure itself, and also causes cracks due to thermal distortion, reducing the supporting strength of the catalyst. This will result in a decline. 6CaO・6SiO 2・H 2 O+6SO 3 +nH 2 O →6CaSO 4 +6SiO 2・nH 2 O Therefore, the present inventors investigated the calcium silicate composition.
In order to avoid a rapid reaction between CaO and SO 3 , we have repeatedly conducted experimental studies on a pretreatment method for the surface layer of the carrier that supports at least the catalyst component.
This problem can be solved by neutralizing CaO, which easily reacts with oxidants, in advance with a weakly acidic substance and separating and converting it into silica crystals whose strength does not change. The present invention was completed based on these favorable findings. That is, when the present inventors brought the above-mentioned molded body into contact with an aqueous solution of oxalic acid and its compounds in the process of investigating the neutralization treatment of a calcium silicate-based molded body, the calcium silicate constituting the molded body Although it is converted into calcium oxalate and silica gel, the shape of the converted molded product does not substantially change and maintains its strength, and the silica-calcium oxalate composite thus obtained is The present invention was completed based on the surprising fact that the molded product retains its initial state and strength even when brought into contact with strong acids such as sulfuric acid and hydrochloric acid. The present invention has been completed based on this knowledge, and involves contacting a calcium silicate-based molded body with an aqueous solution of oxalic acid or its compound, using the resulting silica-calcium oxalate composite as a carrier, and using it as a catalyst. Next, a method for producing a catalyst for exhaust gas treatment is proposed, in which a slurry containing a catalyst component is applied, added, and then dried and fired. The calcium silicate molded body used as the starting material in the present invention includes a manufacturing method thereof,
Any of various molded bodies containing calcium silicate as a main component can be used regardless of the crystallinity, crystal system, etc. of the calcium silicate constituting the molded body. For example, regarding calcium silicate, depending on the manufacturing method, products with different crystallinity such as xonotlite, tobermolite, phosiyaite, diairolite, and quasi-crystalline calcium silicate (CSHn) can be obtained, and any of them can be used. Particularly in terms of suitability as a catalyst carrier, those made of xonotrite crystals (6CaO.6SiO 2 .H 2 O) are preferred because they have excellent strength and thermal properties.
In the present invention, separation of a calcium silicate-based molded body into calcium oxalate and silica can be easily carried out by bringing the molded body into contact with an aqueous solution of oxalic acid or its compound. in this case,
In order to complete the reaction with oxalic acid in a short time, it is better to carry out the reaction by heating rather than at room temperature, and as a method for contacting it, it is preferable to immerse it in the above liquid. The concentration of oxalic acid is not particularly limited as long as it is sufficient to complete the reaction; however, increasing the concentration more than necessary in relation to solubility will not be effective. In addition to oxalic acid, compounds thereof such as ammonium oxalate, iron oxalate, and vanadyl oxalate can also be used in the present invention. Thus, the calcium silicate constituting the molded body is converted into silica gel and fine crystals of calcium oxalate by contact with an aqueous solution of oxalic acid and its compounds. In other words, pseudocrystalline silica gel retains the chain structure of SiO 4 tetrahedrons that make up the skeleton structure of calcium silicate crystals, and maintains its crystal form due to the chain structure, and extremely fine particles that exist attached to the pseudocrystalline silica gel. Calcium oxalate is produced. An example of the reaction with oxalic acid in the present invention using calcium silicate consisting of xonotlite crystals is as follows. 6CaO・6SiO 2・H 2 O+6H 2 C 2 O 4・2H 2 O →6CaC 2 O 4・H 2 O+6SiO 2・nH 2 O Pseudo-crystalline silica gel and ultrafine calcium oxalate are obtained by the reaction formula shown above. This fact is confirmed by electron microscopy, X-ray diffraction, and chemical analysis results. When the silica-calcium oxalate composite obtained as described above is brought into contact with exhaust gas containing a large amount of SOx, only the liberated calcium oxalate reacts with SOx and the pseudocrystalline silica gel becomes SiO 4 While maintaining the chain structure of tetrahedrons, this remains as a strength component, and temporarily, SOx
Even if a sudden reaction occurs, there is no risk of an extreme decrease in strength or cracks due to thermal distortion. Next is a method for supporting the active ingredient in order to use the silica-calcium oxalate complex as a denitrification catalyst, which is similar to the conventional method for supporting on alumina, titania, silica, diatomaceous earth, and zeolite. Operation is possible. Generally, kneading methods, impregnation methods, coating methods, etc. are known as supporting methods, but in order to support the silica-calcium oxalate composite, the molded body is considered to be a mere base material and the surface is coated with catalytic activity. A method of applying the components is preferred. Application methods include dipping, spraying,
Although any method such as brush coating is applicable, the dipping method is preferable in terms of practicality. A preferred method of application is to first immerse the calcium silicate molded body in a solution of oxalic acid or its compound;
A method of converting calcium silicate, which is a component of the above-mentioned molded body, into a composite of silica and calcium oxalate, and immersing it in a slurry containing a catalyst component as it is or once dried, or the above-mentioned oxalic acid treatment. In order to improve the adhesion of the composite material converted into silica and calcium oxalate with the catalytic active component, it is immersed in a colloidal solution (hereinafter abbreviated as silica sol) in which ultrafine particles of silicic anhydride are dispersed in water. Then, any method such as applying the slurry by dipping it in a slurry containing a catalyst component can be applied. Next, the catalyst components that can be applied to the present invention are conventionally known vanadium,
Metal oxides such as dungsten, chromium, iron, copper, nickel, molybdenum, and titanium, or salt compounds thereof can be used, and the above components can be used alone or in combination of two or more. At this time, a method may be used in which the catalyst itself is made into a slurry solution, the carrier is immersed in the slurry solution, and the carrier is dried, but in the method of the present invention, the catalyst is immersed in a slurry solution containing as many components as possible by drying or baking. By subsequently drying and firing, the active substance is characterized in that its stability is increased and its bondability with the base carrier is increased. Hereinafter, the present invention will be explained in detail with reference to Examples. [Example 1] A raw material slurry with a molar ratio of lime and silicic acid of 0.98 and a water to solid content ratio of 12/1 was prepared at 12 kg/cm 2
Zonotlite crystals (6CaO・
Potassium glass fiber and asbestos were added to the slurry of 6SiO 2 H 2 O) at 3wt% and 6wt% based on the weight of the xonotrite crystals, and after thorough mixing, the slurry was placed in a mold and dehydrated by pressing. 120-150
It was dried at ℃ for 10 hours to obtain a calcium silicate molded body. This molded body was immersed in an aqueous solution containing 5 wt % oxalic acid at a temperature of 50° C. for 3 minutes to obtain a silica-calcium oxalate composite. [Example 2] The calcium silicate molded body obtained in Example 1 was immersed in an aqueous solution containing 1% ammonium oxalate at a temperature of 60° C. for 3 minutes to obtain a silica-calcium oxalate composite. [Example 3] The molar ratio of lime and silicic acid was set to 0.83, the weight ratio of water to solids was set to 12/1, and a hydrothermal reaction was carried out with stirring at 8 kg/cm 2 (175°C) to form tobermolite crystals ( Obtain a slurry of 5CaO・6SiO 2・5H 2 O), and add glass fiber and asbestos to this by 3wt relative to the weight of the above crystals.
% and 6 wt %, and this was molded and dried in the same manner as in Example 1 to obtain a calcium silicate molded body. This molded body was immersed in an aqueous solution containing 10 wt % oxalic acid at a temperature of 40° C. for 1 minute to obtain a silica-calcium oxalate composite molded body. [Example 4] When the silica-calcium oxalate composites obtained in Examples 1, 2, and 3 were observed by X-ray diffraction, xonotrite crystals (6CaO・6SiO 2・H 2 O), which constitute the starting material, were observed. and tobermolite crystals (5CaO・6SiO 2・5H 2 O) disappeared, and calcium oxalate crystals were confirmed in their place. [Example 5] The silica-calcium oxalate composite molded bodies obtained in Examples 1, 2, and 3 were each cut into a size of 200 x 400 x 10 mm, and 20 g of vanadium pentoxide was mixed with 50 g of oxalic acid and water. Each catalyst was immersed in a slurry solution of 1200 g of dissolved titanium oxide and 80 g of tungstic acid for about 30 seconds, dried at 150°C for 5 hours, and then calcined at 550°C for 3 hours to obtain each catalyst. [Example 6] The silica-calcium oxalate composite molded body obtained in Example 1 was cut into a size of 200 x 400 x 10 mm, and mixed with 25 g of ammonium metavanadate and 100 g of ammonium molybdate, 1000 g of water, and monoethanol. 1000 g of titanium oxide in a solution of 300 g of amine
150 g for about 30 seconds in a slurry solution mixed with
After drying at 550°C for 5 hours, the catalyst was then calcined at 550°C for 3 hours. [Example 7] The silica-calcium oxalate composite molded body obtained in Example 1 was cut into a size of 200 x 400 x 10 mm, and mixed with 20 to 21% silicic anhydride and sodium oxide.
Colloidal solution containing 0.04% or less (PH3-4)
Example 5
The catalyst was immersed for about 30 seconds in a slurry liquid containing a catalytically active component, dried and calcined in the same manner as in Example 5 to obtain a catalyst. [Test Example 1] To check the SOx resistance of the catalysts of the present invention obtained in Examples 5, 6, and 7, SOx was 1000 to 1500 ppm, SO 3 was 20 to
A catalyst was placed in the exhaust gas of a heavy oil-fired boiler containing 30ppm, and a durability test was conducted at 350-380℃.
Even after 5,000 hours, there was no abnormality, and no extreme decrease in strength, occurrence of cracks, or decrease in the strength of supporting the active substance was observed. On the other hand, a comparison catalyst prepared using a calcium silicate molded body not treated with oxalic acid as a carrier according to Example 5 showed a decrease in the supporting strength of the crack-generating active substance, and the strength also decreased to about 1/3. . Table 1 shows changes in strength and appearance after the durability test.

〔試験例 2〕[Test example 2]

実施例5,6で得られた板状の触媒を石炭を燃
料とするボイラの排ガス経路に接続された脱硝装
置の反応器内に15mm間隔で排ガスと並行流になる
ように固定設置した。並行流板状触媒反応器の態
様の1例を第1図に示す。第1図において1は脱
硝装置の反応器、2は排ガスの流れ方向、3はア
ンモニア注入装置、4は本発明の脱硝用触媒を示
す。同反応器にNOxを含有するボイラ排ガスを
流し、表2に示す試験条件で触媒の性能試験を実
施し、第2図に示す脱硝性能を得た。
The plate-shaped catalysts obtained in Examples 5 and 6 were fixedly installed in a reactor of a denitrification device connected to the exhaust gas path of a coal-fired boiler at intervals of 15 mm so as to flow in parallel with the exhaust gas. An example of an embodiment of a parallel flow plate-shaped catalytic reactor is shown in FIG. In FIG. 1, 1 is a reactor of a denitrification device, 2 is a flow direction of exhaust gas, 3 is an ammonia injection device, and 4 is a denitrification catalyst of the present invention. Boiler exhaust gas containing NOx was passed through the reactor, and a catalyst performance test was conducted under the test conditions shown in Table 2, and the denitrification performance shown in FIG. 2 was obtained.

〔試験例 3〕[Test example 3]

実施例7で得た触媒を試験例2の方法条件で脱
硝装置内に設置し、約5000時間触媒の性能試験を
行つて脱硝性能と触媒強度の経時変化、外観変化
をみた。この結果を第3図に示す。 第3図は約5000時間試験した場合の脱硝性能及
び強度の経時変化を示したもので図中AはNH3
〔ppm〕/NOx〔ppm〕=1.0での脱硝率の変化を
示しB1は同触媒の曲げ強度の変化、B2は従来の
触媒、即ち、シユウ酸処理しない珪酸カルシウム
成形体を実施例7に準じて調製した触媒の曲げ強
度変化を示したものである。又クラツクの発生及
び活性体担持強度の低下をみた結果、本発明触媒
は何ら異常は認められなかつたが、従来の比較触
媒は約3000時間で異常が発生した。 〔試験例 4〕 試験例3で5000時間試験した触媒について熱膨
張収縮をみるためJRS2617の熱間線膨張収縮率試
験法に準じて測定し第4図、第5図に示す結果を
得た。 この結果、本発明触媒は熱的変化が小さく耐久
性において極めて優れることが確認された。 第4図は本発明触媒の熱間膨張収縮曲線を示す
もので、図中においてaの曲線は試験前、a′の曲
線は5000時間試験後の値を示す。 又第5図は比較材としての従来触媒の熱間膨張
収縮曲線を示すもので、bは試験前、b′は5000時
間試験後の曲線を示したものである。
The catalyst obtained in Example 7 was installed in a denitrification device under the method conditions of Test Example 2, and the performance test of the catalyst was conducted for about 5,000 hours to observe changes over time in denitration performance and catalyst strength, and changes in appearance. The results are shown in FIG. Figure 3 shows the change in denitrification performance and strength over time after testing for about 5,000 hours. A in the figure shows NH 3
[ppm] / NOx [ppm] = 1.0 shows the change in denitrification rate. B 1 shows the change in bending strength of the same catalyst. B 2 shows the change in the conventional catalyst, that is, the calcium silicate molded body not treated with oxalic acid, in Example 7. This figure shows the change in bending strength of the catalyst prepared according to the method. Further, as a result of looking at the occurrence of cracks and the decrease in the strength of supporting the active material, no abnormalities were observed in the catalyst of the present invention, but abnormalities occurred in the conventional comparative catalyst after about 3000 hours. [Test Example 4] In order to check the thermal expansion and contraction of the catalyst tested for 5000 hours in Test Example 3, the thermal expansion and contraction was measured according to the hot linear expansion and contraction rate test method of JRS2617, and the results shown in FIGS. 4 and 5 were obtained. As a result, it was confirmed that the catalyst of the present invention exhibits small thermal changes and extremely excellent durability. FIG. 4 shows the hot expansion/contraction curve of the catalyst of the present invention, in which the curve a shows the value before the test, and the curve a' shows the value after the 5000 hour test. Further, FIG. 5 shows the hot expansion/contraction curve of a conventional catalyst as a comparison material, where b is the curve before the test and b' is the curve after the 5000 hour test.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本発明による触媒の使用例を示す並
行流板状触媒を設置した反応器の一態様の説明
図、第2図〜第5図は本発明による触媒の性能を
示すグラフである。 1……反応器、3……注入装置、4……触媒。
FIG. 1 is an explanatory diagram of one embodiment of a reactor equipped with a parallel flow plate catalyst, showing an example of the use of the catalyst according to the present invention, and FIGS. 2 to 5 are graphs showing the performance of the catalyst according to the present invention. . 1...Reactor, 3...Injection device, 4...Catalyst.

Claims (1)

【特許請求の範囲】[Claims] 1 珪酸カルシウム成形体にシユウ酸もしくはそ
の化合物の水溶液を接触させ、得られるシリカ−
シユウ酸カルシウム複合体に触媒活性成分を含有
するスラリーを添加したのち、乾燥、焼成するこ
とを特徴とする排ガス処理用触媒の製造方法。
1. The silica obtained by contacting a calcium silicate molded body with an aqueous solution of oxalic acid or its compound.
A method for producing a catalyst for exhaust gas treatment, which comprises adding a slurry containing a catalytically active component to a calcium oxalate composite, followed by drying and firing.
JP11764779A 1979-09-13 1979-09-13 Production of catalyst for treating exhaust gas Granted JPS5644043A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11764779A JPS5644043A (en) 1979-09-13 1979-09-13 Production of catalyst for treating exhaust gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11764779A JPS5644043A (en) 1979-09-13 1979-09-13 Production of catalyst for treating exhaust gas

Publications (2)

Publication Number Publication Date
JPS5644043A JPS5644043A (en) 1981-04-23
JPS6244975B2 true JPS6244975B2 (en) 1987-09-24

Family

ID=14716851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11764779A Granted JPS5644043A (en) 1979-09-13 1979-09-13 Production of catalyst for treating exhaust gas

Country Status (1)

Country Link
JP (1) JPS5644043A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02106055U (en) * 1989-02-10 1990-08-23
JPH0624452Y2 (en) * 1987-12-17 1994-06-29 東陶機器株式会社 Washbasin with shower

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0624452Y2 (en) * 1987-12-17 1994-06-29 東陶機器株式会社 Washbasin with shower
JPH02106055U (en) * 1989-02-10 1990-08-23

Also Published As

Publication number Publication date
JPS5644043A (en) 1981-04-23

Similar Documents

Publication Publication Date Title
KR101394774B1 (en) Zeolite catalyst with improved nox reduction in scr
US4186109A (en) Catalyst for selectively reducing nitrogen oxides from oxygen-containing exhaust gases
JPH02194819A (en) Reducing method of nitrogen oxide present in waste gas containing oxygen
JPS62171738A (en) Method for purifying waste gas containing nitrogen oxide andsulfur oxide from combustion apparatus
US20040192538A1 (en) Catalyst based on ferrierite/iron for catalytic reduction of nitrous oxide content in gases, method for obtaining same and application
JPS5915022B2 (en) Catalyst for removing nitrogen oxides from exhaust gas
JPS6211892B2 (en)
US4224292A (en) Catalytic reduction of nitrogen oxides
JPH08195B2 (en) Catalyst for reducing the nitrogen oxide content of combustion exhaust gases
JPS594175B2 (en) Nitrogen oxide removal using coated catalysts
JPS6128454A (en) Catalyst for removing nitrogen oxide in exhaust gas
US4225462A (en) Catalyst for reducing nitrogen oxides and process for producing the same
JPS6244975B2 (en)
CA2033291C (en) Denitration catalyst for high-temperature exhaust gas
WO2013146729A1 (en) Method for cleaning discharged combustion gas, and denitration catalyst
CA2719289A1 (en) Exhaust gas purification catalyst suppressing influence of iron compound
JP6051084B2 (en) Combustion exhaust gas purification method and denitration catalyst
JPS6312348A (en) Catalyst for catalytic reduction of nitrogen oxide by ammonia
JPS6225417B2 (en)
JPS609863B2 (en) Method for manufacturing exhaust gas treatment catalyst
JPS6333891B2 (en)
JP2825343B2 (en) Method for producing catalyst for removing nitrogen oxides
JP2013226543A (en) Method for purifying combustion exhaust gas, and denitration catalyst
JPS6125418B2 (en)
CN111822008B (en) Denitration catalyst suitable for low-temperature sulfur-containing flue gas and preparation method thereof