JPS6237109A - Forming device for solid form - Google Patents

Forming device for solid form

Info

Publication number
JPS6237109A
JPS6237109A JP60176688A JP17668885A JPS6237109A JP S6237109 A JPS6237109 A JP S6237109A JP 60176688 A JP60176688 A JP 60176688A JP 17668885 A JP17668885 A JP 17668885A JP S6237109 A JPS6237109 A JP S6237109A
Authority
JP
Japan
Prior art keywords
resin layer
resin
light
layer
supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60176688A
Other languages
Japanese (ja)
Inventor
Takashi Morihara
隆 森原
Fumitaka Abe
文隆 安部
Satoshi Itami
伊丹 敏
Tadashi Ogasawara
正 小笠原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60176688A priority Critical patent/JPS6237109A/en
Publication of JPS6237109A publication Critical patent/JPS6237109A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C64/00Additive manufacturing, i.e. manufacturing of three-dimensional [3D] objects by additive deposition, additive agglomeration or additive layering, e.g. by 3D printing, stereolithography or selective laser sintering
    • B29C64/10Processes of additive manufacturing
    • B29C64/106Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material
    • B29C64/124Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified
    • B29C64/129Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask
    • B29C64/135Processes of additive manufacturing using only liquids or viscous materials, e.g. depositing a continuous bead of viscous material using layers of liquid which are selectively solidified characterised by the energy source therefor, e.g. by global irradiation combined with a mask the energy source being concentrated, e.g. scanning lasers or focused light sources

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)

Abstract

PURPOSE:To form a solid form precisely by controlling the layer thickness and the surface position of each resin layer correctly, by providing a resin surface optical detecting mechanism constituted of an optical system comprising an irradiation beam light source and condenser and of a received-light detecting part measuring and detecting a position of a resin surface, on the surface of a liquid photo-setting type resin layer. CONSTITUTION:An auxiliary scanning table 31 is lowered by dimensions of thickness of said supply resin layer 32 so that the surface of the supply resin layer 32 becomes a focal point position of an irradiation laser beam 29 at the time when an amount of a liquid photo- setting type resin material for a layer has been supplied to the inside of a resin holding vessel 30. A non-photo-setting wave length light 37 emitted from, an irradiation beam light source 33 to the surface of the supply resin layer 32 is made to incident through a slant direction and is received by a received light detecting part 36. Then formation of a high- precision solid form becomes possible by a method wherein a position deviation of the supply resin layer surface against a prescribed resin surface position is measured highly precisely by a non-contact mode, and feed back of a corrective signal to an elevator mechanism part and resin material supply mechanism of the auxiliary scanning table 31 is performed by detecting the position deviation between the position of a reflected light 38 from a prescribed resin surface position and that of a reflected light 39.

Description

【発明の詳細な説明】 〔概 要〕 本発明は3次元的な立体情報を表示する立体形状を、液
状光硬化型樹脂とレーザビーム光学系を用いて積層状に
形成する装置において、樹脂収容容器に対応して、該樹
脂収容容器内に順次供給形成される液状光硬化型樹脂層
表面に対して、非光硬化波長光を斜め方向より入射する
照射ビーム光源と集光レンズとからなる光学系と、該入
射光が樹脂層面で反射した反射光を受光して前記樹脂面
の位置を測定検出する受光検出部とからなる樹脂面光学
検出機構を付設することにより、供給された液状光硬化
型樹脂層表面位置を測定検出可能とし、この検出信号に
より副走査台の昇降機構や樹脂供給機構を制御して各樹
脂層の層厚及び表面位置を正確に調整し、立体形状を高
精度に形成し得るようにしたものである。
Detailed Description of the Invention [Summary] The present invention provides an apparatus for forming a three-dimensional shape displaying three-dimensional information in a layered manner using a liquid photocurable resin and a laser beam optical system. An optical system consisting of an irradiation beam light source and a condensing lens that obliquely impinges non-photocuring wavelength light on the surface of a liquid photocurable resin layer that is sequentially supplied and formed in the resin storage container corresponding to the container. By attaching a resin surface optical detection mechanism consisting of a system and a light reception detection section that measures and detects the position of the resin surface by receiving the reflected light of the incident light reflected on the resin layer surface, the supplied liquid photocurable The surface position of the mold resin layer can be measured and detected, and this detection signal controls the elevating mechanism of the sub-scanning table and the resin supply mechanism to accurately adjust the layer thickness and surface position of each resin layer, making the three-dimensional shape highly accurate. It is designed so that it can be formed.

〔産業上の利用分野〕[Industrial application field]

本発明は順次供給された液状光硬化型樹脂層にレーザビ
ーム光学系を用いて選択的に露光硬化を行い、3次元立
体情報を表示する積層状の立体模型形状を形成する立体
形状形成装置に係り、順次、供給形成された液状光硬化
型樹脂層の表面位置を光学的に検出可能にし、各樹脂層
の表面位置を正確に制御するようにした装置構成に関す
るものである。
The present invention is directed to a three-dimensional shape forming apparatus that selectively exposes and hardens successively supplied liquid photocurable resin layers using a laser beam optical system to form a laminated three-dimensional model shape for displaying three-dimensional three-dimensional information. This invention relates to an apparatus configuration in which the surface positions of liquid photocurable resin layers that are sequentially supplied and formed can be optically detected and the surface positions of each resin layer can be accurately controlled.

3次元的な立体情報を表示する方法として、透視図表示
、投影図表示、等高線表示、或いはホログラフィ−によ
る立体視表示等が開発され、一般に広(用いられている
。しかし、これらの方法は何れも表示した立体形状を直
感的に把握し、充分に理解するには必ずしも満足できる
ものではなく、また実在しない立体仮想物体や立体的な
鳥U敢図などを形成表示することは容易でない。
As methods for displaying three-dimensional stereoscopic information, perspective view display, projection view display, contour line display, stereoscopic display using holography, etc. have been developed and are generally widely used. However, none of these methods is widely used. However, it is not always satisfactory to intuitively grasp and fully understand the displayed three-dimensional shape, and it is not easy to form and display non-existent three-dimensional virtual objects or three-dimensional bird figures.

このようなことから、近来、立体情報を直感的に把握し
、理解し易く表示するために、模型的な立体形状を比較
的容易に形成する方法として、例えば光硬化型樹脂とレ
ーザビーム光学系を用い、該光硬化型樹脂を立体情報に
基づいて選択的に光硬化せしめて、複雑な立体模型形状
を積層状に形成することが提案されている。
For this reason, in recent years, in order to intuitively grasp 3D information and display it in an easy-to-understand manner, methods for relatively easily forming model-like 3D shapes have been developed, such as using photocurable resin and laser beam optical systems. It has been proposed to selectively photocure the photocurable resin based on 3D information using a 3D model to form a complex 3D model shape in a layered manner.

ところでこのような積層状の立体形状を形成する際に、
樹脂収容容器内に順次供給される各層単位の液状光硬化
型樹脂層の表面位置は、その樹脂材供給量の制御と該樹
脂材供給量から予測される樹脂層厚、即ち表面位置増加
分を樹脂収容容器が載置された副走査台の昇降機構によ
り調整することで規定しているため、各樹脂層表面位置
にズレが生じ易く、またこのズレ補正に対処することが
難しい問題があり、かかる問題の解消が望まれている。
By the way, when forming such a laminated three-dimensional shape,
The surface position of each liquid photocurable resin layer sequentially supplied into the resin storage container is determined by controlling the amount of resin material supplied and calculating the resin layer thickness predicted from the amount of resin material supplied, that is, the increase in surface position. Since the adjustment is made by adjusting the elevating and lowering mechanism of the sub-scanning table on which the resin storage container is placed, there is a problem that the surface position of each resin layer is likely to be misaligned, and it is difficult to correct this misalignment. It is desired to solve this problem.

〔従来の技術〕[Conventional technology]

従来、光硬化型樹脂を用い、レーザビーム照射  。 Conventionally, photocurable resin was used and laser beam irradiation was used.

手段によって3次元的な立体情報を表示する模型形状を
形成するには、先ず第3図(alに示すように昇降可能
な副走査台2に載置された樹脂収容容器1内に、作成す
べき立体模型形状を幾つかの輪切り状に分割した厚さに
対応する第−要分の液状光硬化型樹脂材を供給すると共
に、その供給樹脂層5表面が照射するレーザビーム4の
焦点位置となるように副走査台2を上下方向に微調整す
る。
In order to form a model shape that displays three-dimensional three-dimensional information, first, as shown in FIG. The liquid photocurable resin material corresponding to the thickness obtained by dividing the three-dimensional model shape into several slices is supplied, and the surface of the supplied resin layer 5 is adjusted to the focal position of the laser beam 4 irradiated. Finely adjust the sub-scanning table 2 in the vertical direction so that the

次に第3図(blに示すように前記樹脂層5表面に対し
、作成すべき立体模型形状を幾つかの輪切り状に分割し
た立体形状パターン信号に基づいてレーザビーム光学系
から走査反射鏡3を反射したレーザビーム4、または前
記副走査台2をX、 Y方向に移動走査してレーザビー
ム照射を行い、選択的に露光硬化させた第一硬化樹脂層
5aを形成する。
Next, as shown in FIG. 3 (bl), based on a three-dimensional shape pattern signal obtained by dividing the three-dimensional model shape to be created into several slices on the surface of the resin layer 5, a laser beam optical system is sent to the scanning reflecting mirror 3. The reflected laser beam 4 or the sub-scanning table 2 is moved and scanned in the X and Y directions to perform laser beam irradiation, thereby forming a first cured resin layer 5a that is selectively cured by exposure.

次に第3図(C1に示すように第二層分の液状光硬化型
樹脂材を供給すると共に、その供給樹脂層6表面が照射
するレーザビーム4の焦点位置となるように再度、副走
査台2を上下方向に微調整した後、第3図fdlに示す
ように該樹脂層6表面に前記立体形状パターン信号に基
づき、同様にしてレーザビーム照射を行い、選択的に露
光硬化させた第二硬化樹脂層6aを形成する。
Next, as shown in FIG. 3 (C1), the liquid photocurable resin material for the second layer is supplied, and the sub-scanning is performed again so that the surface of the supplied resin layer 6 becomes the focus position of the irradiated laser beam 4. After finely adjusting the table 2 in the vertical direction, as shown in FIG. A bicured resin layer 6a is formed.

以下同様の工程により第3図(e)に示すように供給さ
れた第二層分の液状光硬化型樹脂層7を選択的に露光硬
化させて第三硬化樹脂層7aを形成することにより、最
終的にこれら液状光硬化型樹脂材中に積層状の立体硬化
樹脂像が形成される。
Thereafter, in a similar process, as shown in FIG. 3(e), the supplied second layer of liquid photocurable resin layer 7 is selectively exposed and cured to form a third cured resin layer 7a. Finally, a laminated three-dimensional cured resin image is formed in these liquid photocurable resin materials.

この立体硬化樹脂像を該液状光硬化型樹脂材中より取り
出し、洗浄溶液等で液状光硬化型樹脂材を洗い流すこと
によって、第3図(flに示すように所望とする3次元
的な立体情報を表示する立体模型形状8を作成している
By taking out this three-dimensional cured resin image from the liquid photocurable resin material and washing away the liquid photocurable resin material with a cleaning solution or the like, desired three-dimensional three-dimensional information is obtained as shown in FIG. 3 (fl). A three-dimensional model shape 8 is created to display the .

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで、上記のような従来の形成方法によって積層状
の立体形状を形成する際において、前記樹脂収容容器I
内に順次供給される層単位の液状光硬化型樹脂層5.6
.7の表面位置の制御は、層単位の樹脂材供給量の制御
及び該樹脂材供給量から予測される樹脂層厚、即ち表面
位置増加分を樹脂収容容器1が載置された副走査台2の
昇降機構による調整により規定しているため、各樹脂層
表面位置にズレが生じ易く、またその位置ズレの発生に
対する適切な補正処理が出°来ないことから精度の良い
立体形状が得られないという欠点があった。
By the way, when forming a laminated three-dimensional shape by the conventional forming method as described above, the resin container I
5.6 Layer-by-layer liquid photocurable resin layer sequentially supplied inside
.. Control of the surface position in step 7 involves controlling the amount of resin material supplied on a layer-by-layer basis and adjusting the resin layer thickness predicted from the amount of resin material supplied, that is, the increase in surface position, on the sub-scanning table 2 on which the resin container 1 is placed. Because the adjustment is made by the lifting mechanism, it is easy for the surface position of each resin layer to shift, and since it is not possible to perform appropriate correction processing for the positional shift, it is not possible to obtain a highly accurate three-dimensional shape. There was a drawback.

本発明はこのような従来の欠点に鑑み、液状光硬化型樹
脂材の供給により変位する各供給樹脂層表面位置を光学
的に非接触で検出し、この検出信号により樹脂材供給量
や昇降機構を制御して、該樹脂層表面位置を正確に調整
することにより、高精度な立体形状を形成し得るように
した新規な立体形状形成装置を提供することを目的とす
るものである。
In view of these conventional drawbacks, the present invention optically detects the surface position of each supplied resin layer that is displaced due to the supply of liquid photocurable resin material, and uses this detection signal to determine the amount of resin material supplied and the lifting mechanism. An object of the present invention is to provide a novel three-dimensional shape forming apparatus that can form a highly accurate three-dimensional shape by controlling the surface position of the resin layer and accurately adjusting the surface position of the resin layer.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は上記目的を達成するため、第1図に示すように
レーザ装置21、光変調器22、反射鏡23、レンズ2
4.25、回転多面鏡26、fθレンズ27からなるレ
ーザビーム光学系からのレーザビーム29を走査反射鏡
28にて反射せしめて、樹脂収容容器30内に順次供給
された液状光硬化型樹脂層32表面に照射して、該樹脂
層32を選択的に硬化せしめ、積層状の立体形状を形成
する装置に対して、上記レーザビーム光学系とは別に、
前記液状光硬化型樹脂層32表面にある傾斜角度で入射
した光が反射し、その反射光の反射方向位置が樹脂層表
面位置の変動により変化する特性を利用して、樹脂層表
面に非光硬化波長光37を斜め方向より投射するための
半導体レーザ素子等の照射ビーム光源33と集光レンズ
34.35とからなる光学系と、該樹脂層表面、で反射
した反射光39を受光して、樹脂表面位置を検出するア
レイ状の受光素子などからなる受光検出部36とで構成
された樹脂面光学検出機構が付設されている。
In order to achieve the above object, the present invention includes a laser device 21, an optical modulator 22, a reflector 23, a lens 2, and a
4.25. A liquid photocurable resin layer that is sequentially supplied into the resin container 30 by reflecting the laser beam 29 from the laser beam optical system consisting of the rotating polygon mirror 26 and the fθ lens 27 by the scanning reflector 28. In addition to the above-mentioned laser beam optical system, for a device that selectively hardens the resin layer 32 by irradiating the surface of the resin layer 32 to form a stacked three-dimensional shape,
Light that is incident on the surface of the liquid photocurable resin layer 32 at a certain inclination angle is reflected, and the reflection direction position of the reflected light changes depending on the fluctuation of the resin layer surface position. An optical system consisting of an irradiation beam light source 33 such as a semiconductor laser device for projecting curing wavelength light 37 from an oblique direction and condensing lenses 34 and 35 receives reflected light 39 reflected from the surface of the resin layer. A resin surface optical detection mechanism is provided, which includes a light reception detecting section 36 consisting of an array of light receiving elements and the like that detects the position of the resin surface.

〔作 用〕[For production]

しかして、このように樹脂面光学検出機構が付設された
立体形状形成装置にあっては、立体形状を81m状に形
成するために、樹脂収容容器30内に順次−要分の液状
光硬化型樹脂材を供給した際に、その供給樹脂層32表
面が照射するレーザビーム29の焦点位置となるように
、副走査台31を該供給樹脂層32の厚さ寸法だけ降下
させると共に、その供給樹脂層32表面に対して樹脂面
光学検出機構における半導体レーザ素子等の照射ビーム
光源33より集光レンズ34.35を介して出射された
、非光硬化波長光37を斜め方向より入射させ、この時
、該樹脂表面で反射した反射光39をアレイ状受光素子
などからなる受光検出部36にて受光する。
Therefore, in a three-dimensional shape forming apparatus equipped with a resin surface optical detection mechanism, in order to form a three-dimensional shape with a length of 81 m, necessary liquid photocuring molds are sequentially placed in the resin container 30. When the resin material is supplied, the sub-scanning table 31 is lowered by the thickness of the supplied resin layer 32 so that the surface of the supplied resin layer 32 becomes the focus position of the irradiated laser beam 29, and the supplied resin is lowered by the thickness of the supplied resin layer 32. Non-photocuring wavelength light 37 emitted from an irradiation beam light source 33 such as a semiconductor laser element in a resin surface optical detection mechanism through a condenser lens 34 and 35 is incident on the surface of the layer 32 from an oblique direction. , the reflected light 39 reflected from the resin surface is received by a light detection section 36 consisting of an array of light receiving elements or the like.

そうして、規定の樹脂表面位置からの反射光の受光位置
と該供給樹脂表面からの反射光39の受光位置との位置
ズレを検出することにより、規定の樹脂表面位置に対す
る供給樹脂層表面の位置ズレを非接触で高精度に測定す
ることが可能となる。
Then, by detecting the positional deviation between the receiving position of the reflected light from the specified resin surface position and the receiving position of the reflected light 39 from the supplied resin surface, the position of the supplied resin layer surface relative to the specified resin surface position is detected. It becomes possible to measure positional deviations with high precision without contact.

従って、この位置ズレの補正信号を副走査台31の昇降
機構部と樹脂材供給機構にフィードバックすることによ
り、前記供給樹脂層の表面位置を規定の表面位置に正確
に制御することができ、高ti度な立体形状を形成する
ことが可能となる。
Therefore, by feeding back the correction signal for this positional deviation to the elevating mechanism section of the sub-scanning table 31 and the resin material supply mechanism, the surface position of the supplied resin layer can be accurately controlled to a specified surface position, and the height can be increased. It becomes possible to form a three-dimensional shape with a ti degree.

〔実施例〕〔Example〕

以下図面を用いて本発明の実施例について詳細に説明す
る。
Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明に係る立体形状形成装置の一実施例を示
す概略構成図である。
FIG. 1 is a schematic diagram showing an embodiment of a three-dimensional shape forming apparatus according to the present invention.

図において、21はレーザ装置、22は電気光学効果等
の機能素子を用いた光変調器、23は反射鏡、24、2
5はレンズ、26は回転多面鏡、27はfθレンズ、2
8は走査反射鏡であり、これらによりレーザビーム光学
系が構成されている。
In the figure, 21 is a laser device, 22 is an optical modulator using a functional element such as an electro-optic effect, 23 is a reflecting mirror, 24, 2
5 is a lens, 26 is a rotating polygon mirror, 27 is an fθ lens, 2
Reference numeral 8 denotes a scanning reflecting mirror, which constitutes a laser beam optical system.

また30は液状光硬化型樹脂材32が収容された樹脂収
容容器であり、該収容容器30は矢印Aの方向に昇降調
整可能で、かつ矢印Bの方向に移動走査可能な副走査台
31に載置されている。
Reference numeral 30 denotes a resin storage container in which a liquid photocurable resin material 32 is stored. It is placed.

更に、上記レーザビーム光学系とは別に、前記樹脂収容
容器30内に順次、供給形成された各液状光硬化型樹脂
層32表面に対して、該液状光硬化型樹脂層32が光硬
化しない波長の光を斜め方向から入射するための半導体
レーザ素子等の照射ビーム光源33及び集光レンズ34
.35とからなる照射ビーム光学系と、該樹脂層表面で
反射したその反射光を受光して、樹脂表面位置を検出す
る多数の受光セル36aをアレイ状に構成した受光素子
などからなる受光検出部36とで構成された樹脂面光学
検出機構が付設されている。
Furthermore, apart from the laser beam optical system, the surface of each liquid photocurable resin layer 32 sequentially supplied and formed in the resin storage container 30 is set at a wavelength at which the liquid photocurable resin layer 32 is not photocured. An irradiation beam light source 33 such as a semiconductor laser device and a condensing lens 34 for incident light from an oblique direction.
.. 35; and a light-receiving detection section comprising a light-receiving element configured in an array of a number of light-receiving cells 36a that receive the reflected light reflected from the surface of the resin layer and detect the position of the resin surface. A resin surface optical detection mechanism consisting of 36 is attached.

しかして、上記樹脂面光学検出機構により樹脂収容容器
30内に順次、供給形成された液状光硬化型樹脂層32
の表面位置ズレを検出するには、第2図に示すように液
状光硬化型樹脂層32の規定の表面位置41に対する前
記照射ビーム光学系からの入射光37の入射角をθ、該
規定の樹脂層表面位置41に対して供給形成された液状
光硬化型樹脂層32のずれた表面位置42とのズレをΔ
lとすると、該樹脂層32の規定の表面位置41での反
射光38に対する前記Δβ値ずれた供給樹脂層32の表
面位置42での反射光39との反射位置ズレは、規定の
樹脂層32の表面に平行な方向のズレΔSa、同じく垂
直方向のズレΔsbとして次式で表される。
Thus, the liquid photocurable resin layer 32 is sequentially supplied and formed into the resin container 30 by the resin surface optical detection mechanism.
In order to detect the surface position shift, as shown in FIG. The deviation from the surface position 42 of the liquid photocurable resin layer 32 supplied and formed to the resin layer surface position 41 is calculated as
1, the deviation of the reflection position between the reflected light 38 at the specified surface position 41 of the resin layer 32 and the reflected light 39 at the surface position 42 of the supplied resin layer 32 which is shifted by the Δβ value is The deviation ΔSa in the direction parallel to the surface of , and the deviation Δsb in the vertical direction are expressed by the following equation.

Δ5a=2・Δ(1−tan θ・・・(l)Δ5b=
2・Δl     ・・・(2)また、上記関係式より
入射角θとしては、45度以下では前記規定の樹脂層3
2の表面に平行な方向の反射位置ズレΔSa幅が小さく
、逆に入射角θを45度以上にするとその反射位置ズレ
ΔSa幅が大きく拡大される。
Δ5a=2・Δ(1-tan θ...(l) Δ5b=
2・Δl (2) Also, from the above relational expression, when the incident angle θ is 45 degrees or less, the specified resin layer 3
The width of the reflected positional deviation ΔSa in the direction parallel to the surface of 2 is small, and conversely, when the incident angle θ is set to 45 degrees or more, the width of the reflected positional deviation ΔSa is greatly expanded.

従って、上記供給樹脂層32の表面に対して照射ビーム
光学系からの入射光37を45度以上の入射角θにより
入射せしめ、該入射光37の規定の樹脂層32表面位置
41での反射位置に対して供給樹脂層32表面位置42
での反射位置の平行方向の位置ズレΔSaを求めること
により、供給樹脂層表面位置42の規定樹脂層表面位置
4工からの位置ズレΔlを光学的に非接触で高精度に測
定することが可能となる。
Therefore, the incident light 37 from the irradiation beam optical system is made incident on the surface of the supply resin layer 32 at an incident angle θ of 45 degrees or more, and the incident light 37 is reflected at a prescribed surface position 41 of the resin layer 32. Supply resin layer 32 surface position 42
By determining the displacement ΔSa of the reflection position in the parallel direction, it is possible to optically and non-contactly measure the displacement Δl of the supplied resin layer surface position 42 from the specified resin layer surface position 4. becomes.

尚、用いられる液状光硬化型樹脂材として、例えば波長
400nm以下の紫外線照射により光硬化し、波長78
0nm程度の光照射で硬化しない紫外線硬化型樹脂材を
適用するならば、照射ビーム光源33に発光波長が78
0nm程度の半導体レーザ素子、或いは発光ダイオード
等を用いることができる。これらの光源33からの光に
、光硬化させる波長成分が含まれる場合には、該光源3
3と光硬化樹脂層表面との間に光硬化波長のみをカプト
する波長帯域フィルタ、またはカットフィルタ等を介在
させるようにすればよい。
The liquid photocurable resin material used is, for example, photocurable by irradiation with ultraviolet light with a wavelength of 400 nm or less, and
If an ultraviolet curable resin material that does not harden when irradiated with light of about 0 nm is used, the irradiation beam light source 33 has an emission wavelength of 78 nm.
A semiconductor laser element of about 0 nm, a light emitting diode, or the like can be used. When the light from these light sources 33 contains a wavelength component to be photocured, the light from the light sources 33
A wavelength band filter, a cut filter, or the like that cuts only the photocuring wavelength may be interposed between the photocuring resin layer 3 and the surface of the photocuring resin layer.

また供給樹脂層32表面での反射光39の位置ズレΔS
aを測定する受光検出部36としては、複数の受光セル
をアレイ状に一体構成した受光素子、複数の受光素子を
直線状に列設構成したもの、或いはナイフェツジやスリ
ット等により受光出力を変化させた受光素子構成のもの
などが用いられる。
Also, the positional deviation ΔS of the reflected light 39 on the surface of the supplied resin layer 32
The light receiving detection unit 36 for measuring a may be a light receiving element that has a plurality of light receiving cells integrated into an array, a plurality of light receiving elements arranged in a straight line, or a light receiving element that changes the light receiving output using a knife, a slit, etc. A device with a light-receiving element configuration is used.

上記複数の受光セルを所定のピッチPでアレイ状に一体
構成した受光素子を適用する場合には、照射ビーム光源
33からの出射ビーム径rが次式を満足するように集光
レンズ34.35の設定を調節して前記受光セル36a
の配設ピッチPと等しくする。
When applying a light-receiving element in which the plurality of light-receiving cells are integrally configured in an array at a predetermined pitch P, the condenser lens 34.35 by adjusting the settings of the light receiving cell 36a.
be equal to the arrangement pitch P.

r=P−cosθ    ・・・(3)かくすれば、受
光検出部36の出力は供給樹脂層32表面からの反射光
39が入射するl受光セル、または2受光セルの出力が
得られる。ここで出力が生じた受光セルの内、最大出力
を生じている受光セルの中心に反射光39が入射してい
るとした場合、その受光セル上での位置ズレ測定の最大
誤差としては±P/2となる。
r=P-cos θ (3) In this way, the output of the light reception detection section 36 can be obtained from one light receiving cell or two light receiving cells into which the reflected light 39 from the surface of the supply resin layer 32 is incident. If the reflected light 39 is incident on the center of the light-receiving cell that produces the maximum output among the light-receiving cells that generate the output, the maximum error in measuring the positional deviation on that light-receiving cell is ±P. /2.

一方、供給樹脂層表面位置42の規定樹脂層表面位置4
1からの位置ズレΔlと受光検出部36上での受光位置
の変化量との比は、(1)式で表されるため、供給樹脂
層表面位置42の最大測定誤差Δleは、前記照射ビー
ム光学系からの入射光37の入射角θにより次式によっ
て求められる。
On the other hand, the specified resin layer surface position 4 of the supply resin layer surface position 42
Since the ratio of the positional deviation Δl from 1 to the amount of change in the light receiving position on the light receiving detection unit 36 is expressed by equation (1), the maximum measurement error Δle of the supply resin layer surface position 42 is It is determined by the following equation using the incident angle θ of the incident light 37 from the optical system.

Δie =±P/4・tan θ・・(41そこで各受
光セル36aの配設ピッチPが600μmの受光検出部
36を用い、供給樹脂層32表面に対する照射ビーム光
学系からの入射光37のビーム径rが155μm1その
入射角θを75度とすれば、該供給樹脂層32表面の位
置を±40μmの測定精度で検出することが可能となる
Δie = ±P/4・tan θ... (41 Therefore, using the light receiving detection section 36 in which the arrangement pitch P of each light receiving cell 36a is 600 μm, the beam of the incident light 37 from the irradiation beam optical system is applied to the surface of the supply resin layer 32. If the diameter r is 155 μm and the incident angle θ is 75 degrees, it becomes possible to detect the position of the surface of the supplied resin layer 32 with a measurement accuracy of ±40 μm.

さて、このような装置構成によって3次元的な立体情報
を表示する立体模型形状を形成するには、前記第1図に
示すように副走査台31上に載置された樹脂収容容器3
0内に、作成すべき立体模型形状を幾つかの輪切り状に
分割した厚さに対応する第−要分の液状光硬化型樹脂材
32を供給する。
Now, in order to form a three-dimensional model shape that displays three-dimensional three-dimensional information using such an apparatus configuration, as shown in FIG.
A liquid photocurable resin material 32 of a first component corresponding to the thickness obtained by dividing the three-dimensional model shape to be created into several slices is supplied into the container.

次に半導体レーザ素子等からなる照射ビーム光源33か
らのレーザビーム37の径rを集光レンズ34゜35に
より受光検出部36の受光セル36aの配設ピッチPと
同等に調節して該第−要分の液状光硬化型樹脂層32表
面に所定入射角θで照射する。
Next, the diameter r of the laser beam 37 from the irradiation beam light source 33 consisting of a semiconductor laser element or the like is adjusted to be equal to the arrangement pitch P of the light receiving cells 36a of the light receiving detector 36 using the condensing lens 34°35. The light is irradiated onto the surface of the liquid photocurable resin layer 32 at a predetermined angle of incidence θ.

該表面で反射した反射光39は受光検出部36にて受光
され、上記した測定方法により前記第−要分の液状光硬
化型樹脂層32の表面位置を検出する。
The reflected light 39 reflected from the surface is received by the light receiving and detecting section 36, and the surface position of the liquid photocurable resin layer 32 of the first component is detected by the above-described measuring method.

この時、該樹脂層32の表面位置が規定の表面位置より
も低位置にあれば、上記検出信号を副走査台31の昇降
機構、或いは樹脂供給機構にフィードバックして規定の
樹脂層表面位置に制御する。
At this time, if the surface position of the resin layer 32 is lower than the specified surface position, the detection signal is fed back to the elevating mechanism of the sub-scanning table 31 or the resin supply mechanism to bring the resin layer to the specified surface position. Control.

この表面位置制御により該樹脂層32の表面に対するf
θレンズ27の焦点位置、即ち露光硬化用レーザビーム
29の集光位置も設定される。
By this surface position control, f with respect to the surface of the resin layer 32 is
The focal position of the θ lens 27, that is, the condensing position of the exposure hardening laser beam 29 is also set.

従って、樹脂収容容器30が載置された副走査台31を
矢印Aの方向に副走査させると共に、前記樹脂層32表
面に対して、作成すべき立体模型形状を幾つかの輪切り
状に分割した第一層目の立体形状パターン信号に基づい
てレーザビーム29照射を主走査して選択的に露光硬化
せしめて第一硬化樹脂層を形成する。
Therefore, the sub-scanning table 31 on which the resin storage container 30 was placed was sub-scanned in the direction of arrow A, and the three-dimensional model shape to be created was divided into several slices on the surface of the resin layer 32. A first cured resin layer is formed by selectively exposing and curing the resin by main-scanning irradiation with the laser beam 29 based on the three-dimensional pattern signal of the first layer.

以下、同様な工程操作を繰り返して層厚が正確に制御さ
れた露光硬化樹脂層を順次積層形成し、この積層状の立
体硬化樹脂像を従来と同様に液状光硬化型樹脂材中より
取り出して該液状光硬化型樹脂材の除去処理を行うこと
によって、高精度な3次元的な立体情報を表示する3次
元的な立体情報を表示する立体模型形状を容易に得るこ
とが可能となる。
Thereafter, the same process operations are repeated to sequentially form exposed photocurable resin layers with accurately controlled layer thicknesses, and this laminated three-dimensional cured resin image is taken out from the liquid photocurable resin material in the same way as before. By performing the removal process of the liquid photocurable resin material, it becomes possible to easily obtain a three-dimensional model shape that displays three-dimensional three-dimensional information with high precision.

〔発明の効果〕〔Effect of the invention〕

以上の説明から明らかなように、本発明に係る立体形状
形成装置によれば、積層状の立体形状を形成するために
、光硬化樹脂層を形成する度毎に樹脂収容容器内に順次
供給される各層単位の液状光硬化型樹脂層の表面位置を
正確に測定検出することが可能となり、該樹脂層の層厚
及び表面位置の調整が容易化され、3次元的な立体情報
を表示する立体模型形状を高精度に形成することができ
る優れた利点を有する。
As is clear from the above description, according to the three-dimensional shape forming apparatus according to the present invention, in order to form a laminated three-dimensional shape, the photocurable resin layer is sequentially supplied into the resin storage container each time the photocurable resin layer is formed. It becomes possible to accurately measure and detect the surface position of the liquid photocurable resin layer for each layer, making it easier to adjust the layer thickness and surface position of the resin layer, and making it possible to easily adjust the layer thickness and surface position of the resin layer. It has the excellent advantage of being able to form a model shape with high precision.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る立体形状形成装置の一実施例を示
す概略構成図、 第2図は本発明の立体形状形成装置における樹脂面光学
検出機構の原理説明図、 第3図は従来の立体形状の形成方法を説明するための要
部断面図である。 第1図乃至第2図において、 21はレーザ装置、27はfθレンズ、28は走査反射
鏡、29はレーザビーム、30は樹脂収容容器、31は
副走査台、32は液状光硬化型樹脂層、33は照射ビー
ム光源、34゜35は集光レンズ、36は受光検出部、
36aは受光セル、41は規定の樹脂層表面位置、42
はずれた樹脂層表面位置をそれぞれ示す。 本発明/l笑絶g′Jを零1翫眸掻賎゛凹第 1 図
FIG. 1 is a schematic configuration diagram showing an embodiment of the three-dimensional shape forming apparatus according to the present invention, FIG. 2 is a diagram explaining the principle of the resin surface optical detection mechanism in the three-dimensional shape forming apparatus of the present invention, and FIG. FIG. 2 is a cross-sectional view of a main part for explaining a method of forming a three-dimensional shape. 1 and 2, 21 is a laser device, 27 is an fθ lens, 28 is a scanning reflector, 29 is a laser beam, 30 is a resin container, 31 is a sub-scanning table, and 32 is a liquid photocurable resin layer. , 33 is an irradiation beam light source, 34° 35 is a condensing lens, 36 is a light receiving detection unit,
36a is a light receiving cell, 41 is a specified resin layer surface position, 42
The surface positions of the resin layers that have come off are shown. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 順次、供給形成された液状光硬化型樹脂層表面に光照射
を行って、該樹脂層を選択的に硬化せしめ、積層状の立
体形状を形成する装置において、上記供給形成された液
状光硬化型樹脂層表面に対して、非光硬化波長光を斜め
方向より入射する光学系と、該入射光が樹脂層面で反射
した反射光を受光することにより、前記樹脂面の位置を
検出する受光検出部とからなる樹脂面光学検出機構を付
設して成ることを特徴とする立体形状形成装置。
In an apparatus that sequentially irradiates the surface of the supplied liquid photocurable resin layer with light to selectively cure the resin layer and form a laminated three-dimensional shape, the supplied liquid photocurable resin layer is an optical system that makes non-photocuring wavelength light incident on the resin layer surface from an oblique direction; and a light reception detection section that detects the position of the resin surface by receiving reflected light that is reflected by the incident light on the resin layer surface. A three-dimensional shape forming device comprising: a resin surface optical detection mechanism;
JP60176688A 1985-08-10 1985-08-10 Forming device for solid form Pending JPS6237109A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60176688A JPS6237109A (en) 1985-08-10 1985-08-10 Forming device for solid form

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60176688A JPS6237109A (en) 1985-08-10 1985-08-10 Forming device for solid form

Publications (1)

Publication Number Publication Date
JPS6237109A true JPS6237109A (en) 1987-02-18

Family

ID=16017985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60176688A Pending JPS6237109A (en) 1985-08-10 1985-08-10 Forming device for solid form

Country Status (1)

Country Link
JP (1) JPS6237109A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0361847A2 (en) * 1988-09-26 1990-04-04 3D Systems, Inc. Recoating of stereolithographic layers
US5174931A (en) * 1988-09-26 1992-12-29 3D Systems, Inc. Method of and apparatus for making a three-dimensional product by stereolithography
US5258146A (en) * 1988-09-26 1993-11-02 3D Systems, Inc. Method of and apparatus for measuring and controlling fluid level in stereolithography
US5358673A (en) * 1990-02-15 1994-10-25 3D Systems, Inc. Applicator device and method for dispensing a liquid medium in a laser modeling machine
WO1997023342A1 (en) * 1995-12-22 1997-07-03 Ciba Specialty Chemicals Holding Inc. Process for the stereolithographic preparation of three-dimensional objects using a radiation-curable liquid formulation which contains fillers
US5902537A (en) * 1995-02-01 1999-05-11 3D Systems, Inc. Rapid recoating of three-dimensional objects formed on a cross-sectional basis
JP2009113294A (en) * 2007-11-05 2009-05-28 Sony Corp Optical modeling apparatus and optical modeling method
CN109693375A (en) * 2017-10-20 2019-04-30 Cl产权管理有限公司 For adding type manufacture the equipment of three-dimension object
JP2022028805A (en) * 2016-02-18 2022-02-16 ヴェロ・スリー・ディー・インコーポレイテッド Accurate three-dimensional printing
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US11999110B2 (en) 2019-07-26 2024-06-04 Velo3D, Inc. Quality assurance in formation of three-dimensional objects
US12070907B2 (en) 2016-09-30 2024-08-27 Velo3D Three-dimensional objects and their formation

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5651934A (en) * 1988-09-26 1997-07-29 3D Systems, Inc. Recoating of stereolithographic layers
US5258146A (en) * 1988-09-26 1993-11-02 3D Systems, Inc. Method of and apparatus for measuring and controlling fluid level in stereolithography
US5891382A (en) * 1988-09-26 1999-04-06 3D System, Inc. Recoating of stereolithographic layers
EP0361847A2 (en) * 1988-09-26 1990-04-04 3D Systems, Inc. Recoating of stereolithographic layers
EP0681905A1 (en) * 1988-09-26 1995-11-15 3D Systems, Inc. Recoating of stereolithographic layers
EP0681904A2 (en) * 1988-09-26 1995-11-15 3D Systems, Inc. Stereolithographic apparatus with means to measure and control the level of fluid
EP0681904A3 (en) * 1988-09-26 1996-02-07 3D Systems Inc Stereolithographic apparatus with means to measure and control the level of fluid.
US6048487A (en) * 1988-09-26 2000-04-11 3D Systems, Inc. Recoating stereolithographic layers
US5174931A (en) * 1988-09-26 1992-12-29 3D Systems, Inc. Method of and apparatus for making a three-dimensional product by stereolithography
US5358673A (en) * 1990-02-15 1994-10-25 3D Systems, Inc. Applicator device and method for dispensing a liquid medium in a laser modeling machine
US5902537A (en) * 1995-02-01 1999-05-11 3D Systems, Inc. Rapid recoating of three-dimensional objects formed on a cross-sectional basis
WO1997023342A1 (en) * 1995-12-22 1997-07-03 Ciba Specialty Chemicals Holding Inc. Process for the stereolithographic preparation of three-dimensional objects using a radiation-curable liquid formulation which contains fillers
JP2009113294A (en) * 2007-11-05 2009-05-28 Sony Corp Optical modeling apparatus and optical modeling method
JP2022028805A (en) * 2016-02-18 2022-02-16 ヴェロ・スリー・ディー・インコーポレイテッド Accurate three-dimensional printing
US11691343B2 (en) 2016-06-29 2023-07-04 Velo3D, Inc. Three-dimensional printing and three-dimensional printers
US12070907B2 (en) 2016-09-30 2024-08-27 Velo3D Three-dimensional objects and their formation
CN109693375A (en) * 2017-10-20 2019-04-30 Cl产权管理有限公司 For adding type manufacture the equipment of three-dimension object
US11999110B2 (en) 2019-07-26 2024-06-04 Velo3D, Inc. Quality assurance in formation of three-dimensional objects

Similar Documents

Publication Publication Date Title
US5133987A (en) Stereolithographic apparatus and method
US11899421B2 (en) Calibrating a scanner device
JP3209641B2 (en) Optical processing apparatus and method
CN101772733B (en) Alignment system and method for a substrate in a nano-imprint process
US7833000B2 (en) Optical modeling apparatus
JP5088114B2 (en) Stereolithography equipment
EP3562649B1 (en) Sensor that simulates resin optical properties
KR101894167B1 (en) Imprint apparatus and method of manufacturing article
EP2067607B1 (en) Optical shaping apparatus and optical shaping method
JPS6237109A (en) Forming device for solid form
JP5023975B2 (en) Stereolithography apparatus and stereolithography method
US11794411B2 (en) Part quality monitoring in a stereolithographic additive manufacturing system
KR101850222B1 (en) Apparatus and method for correcting axial error of three-dimensional printer
KR101716933B1 (en) Imprint apparatus and method of manufacturing article
KR101798533B1 (en) Molding apparatus and method by the 3d printer
CN107615473B (en) Control method for moving body, exposure method, device manufacturing method, moving body apparatus, and exposure apparatus
US20230302538A1 (en) Improvements in or relating to an optical scanner for directing electromagnetic radiation to different locations within a scan field
JP2009113294A (en) Optical modeling apparatus and optical modeling method
JP2017034126A (en) Imprint method
JP2013528819A (en) Precision control of web materials with micro-replicating lens arrays
US20090316127A1 (en) Substrate, and method and apparatus for producing the same
US7522323B2 (en) Method and apparatus for printing a pattern with improved focus correction and higher throughput
US11518099B2 (en) Apparatus and method for producing an object by means of additive manufacturing
EP3470210B1 (en) Three-dimensional printing apparatus
JP2000043148A (en) Light shaping method and device therefor