JPS62289249A - Extra-short pulse high voltage impressing type gas purifying apparatus - Google Patents
Extra-short pulse high voltage impressing type gas purifying apparatusInfo
- Publication number
- JPS62289249A JPS62289249A JP61134475A JP13447586A JPS62289249A JP S62289249 A JPS62289249 A JP S62289249A JP 61134475 A JP61134475 A JP 61134475A JP 13447586 A JP13447586 A JP 13447586A JP S62289249 A JPS62289249 A JP S62289249A
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- corona discharge
- corona
- gas
- gas purification
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000428 dust Substances 0.000 claims abstract description 50
- 230000005684 electric field Effects 0.000 claims abstract description 16
- 239000007789 gas Substances 0.000 claims description 233
- 238000000746 purification Methods 0.000 claims description 100
- 230000005540 biological transmission Effects 0.000 claims description 60
- 239000003990 capacitor Substances 0.000 claims description 38
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 37
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 230000008878 coupling Effects 0.000 claims description 16
- 238000010168 coupling process Methods 0.000 claims description 16
- 238000005859 coupling reaction Methods 0.000 claims description 16
- 238000007600 charging Methods 0.000 claims description 15
- 239000012717 electrostatic precipitator Substances 0.000 claims description 14
- 229910021529 ammonia Inorganic materials 0.000 claims description 13
- 239000002245 particle Substances 0.000 claims description 13
- 230000009471 action Effects 0.000 claims description 12
- 238000004146 energy storage Methods 0.000 claims description 12
- 238000002347 injection Methods 0.000 claims description 11
- 239000007924 injection Substances 0.000 claims description 11
- 239000007788 liquid Substances 0.000 claims description 11
- 239000000654 additive Substances 0.000 claims description 10
- 230000000996 additive effect Effects 0.000 claims description 9
- 239000010419 fine particle Substances 0.000 claims description 9
- 238000000926 separation method Methods 0.000 claims description 9
- 230000036961 partial effect Effects 0.000 claims description 8
- 238000012805 post-processing Methods 0.000 claims description 7
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 238000007599 discharging Methods 0.000 claims description 5
- 230000001902 propagating effect Effects 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 4
- 239000003344 environmental pollutant Substances 0.000 claims description 4
- 231100000719 pollutant Toxicity 0.000 claims description 4
- 230000007423 decrease Effects 0.000 claims description 3
- 238000005367 electrostatic precipitation Methods 0.000 claims description 3
- 230000002123 temporal effect Effects 0.000 claims description 3
- MWUXSHHQAYIFBG-UHFFFAOYSA-N nitrogen oxide Inorganic materials O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 claims 3
- XTQHKBHJIVJGKJ-UHFFFAOYSA-N sulfur monoxide Chemical class S=O XTQHKBHJIVJGKJ-UHFFFAOYSA-N 0.000 claims 1
- 229910052815 sulfur oxide Inorganic materials 0.000 claims 1
- 238000011144 upstream manufacturing Methods 0.000 claims 1
- 238000006477 desulfuration reaction Methods 0.000 abstract description 44
- 230000023556 desulfurization Effects 0.000 abstract description 42
- 230000002829 reductive effect Effects 0.000 abstract description 14
- 239000000126 substance Substances 0.000 abstract description 10
- 239000006096 absorbing agent Substances 0.000 abstract 1
- 239000004020 conductor Substances 0.000 description 35
- 238000000034 method Methods 0.000 description 29
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 27
- 230000005855 radiation Effects 0.000 description 24
- 230000000694 effects Effects 0.000 description 16
- 150000002500 ions Chemical class 0.000 description 16
- 239000012212 insulator Substances 0.000 description 14
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 13
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 13
- 235000011130 ammonium sulphate Nutrition 0.000 description 13
- 229910001868 water Inorganic materials 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 230000003647 oxidation Effects 0.000 description 8
- 238000007254 oxidation reaction Methods 0.000 description 8
- 230000001681 protective effect Effects 0.000 description 7
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000013078 crystal Substances 0.000 description 6
- 238000010894 electron beam technology Methods 0.000 description 6
- 238000007493 shaping process Methods 0.000 description 6
- 239000007787 solid Substances 0.000 description 6
- LSNNMFCWUKXFEE-UHFFFAOYSA-L sulfite Chemical compound [O-]S([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-L 0.000 description 6
- 230000006870 function Effects 0.000 description 5
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 230000000644 propagated effect Effects 0.000 description 5
- 230000009977 dual effect Effects 0.000 description 4
- 229910052602 gypsum Inorganic materials 0.000 description 4
- 239000010440 gypsum Substances 0.000 description 4
- 230000010355 oscillation Effects 0.000 description 4
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 3
- 239000002250 absorbent Substances 0.000 description 3
- 230000002745 absorbent Effects 0.000 description 3
- 238000013459 approach Methods 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 3
- 230000000747 cardiac effect Effects 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 239000007795 chemical reaction product Substances 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 210000003127 knee Anatomy 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 229910000019 calcium carbonate Inorganic materials 0.000 description 2
- 239000000920 calcium hydroxide Substances 0.000 description 2
- 235000011116 calcium hydroxide Nutrition 0.000 description 2
- 238000010531 catalytic reduction reaction Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000013016 damping Methods 0.000 description 2
- 238000000354 decomposition reaction Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- 241000557876 Centaurea cineraria Species 0.000 description 1
- 241000283153 Cetacea Species 0.000 description 1
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 1
- 206010011224 Cough Diseases 0.000 description 1
- 235000001637 Ganoderma lucidum Nutrition 0.000 description 1
- 240000008397 Ganoderma lucidum Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 241001072332 Monia Species 0.000 description 1
- 244000131360 Morinda citrifolia Species 0.000 description 1
- 235000008708 Morus alba Nutrition 0.000 description 1
- 240000000249 Morus alba Species 0.000 description 1
- 101100502819 Mus musculus Fimp gene Proteins 0.000 description 1
- 101100452374 Mus musculus Ikbke gene Proteins 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 241000286209 Phasianidae Species 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- LSNNMFCWUKXFEE-UHFFFAOYSA-N Sulfurous acid Chemical compound OS(O)=O LSNNMFCWUKXFEE-UHFFFAOYSA-N 0.000 description 1
- 235000011941 Tilia x europaea Nutrition 0.000 description 1
- 229920002522 Wood fibre Polymers 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 210000003323 beak Anatomy 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 235000010216 calcium carbonate Nutrition 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005660 chlorination reaction Methods 0.000 description 1
- RCTYPNKXASFOBE-UHFFFAOYSA-M chloromercury Chemical compound [Hg]Cl RCTYPNKXASFOBE-UHFFFAOYSA-M 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- VFNGKCDDZUSWLR-UHFFFAOYSA-N disulfuric acid Chemical compound OS(=O)(=O)OS(O)(=O)=O VFNGKCDDZUSWLR-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004043 dyeing Methods 0.000 description 1
- 230000005686 electrostatic field Effects 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003546 flue gas Substances 0.000 description 1
- 235000012907 honey Nutrition 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000010849 ion bombardment Methods 0.000 description 1
- 230000001678 irradiating effect Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000010977 jade Substances 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 239000004571 lime Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 229910000474 mercury oxide Inorganic materials 0.000 description 1
- UKWHYYKOEPRTIC-UHFFFAOYSA-N mercury(ii) oxide Chemical compound [Hg]=O UKWHYYKOEPRTIC-UHFFFAOYSA-N 0.000 description 1
- 239000003595 mist Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000017524 noni Nutrition 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000012716 precipitator Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000010278 pulse charging Methods 0.000 description 1
- 230000036632 reaction speed Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006722 reduction reaction Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 235000017550 sodium carbonate Nutrition 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 235000014347 soups Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000005987 sulfurization reaction Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 239000008400 supply water Substances 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000002747 voluntary effect Effects 0.000 description 1
- 230000003313 weakening effect Effects 0.000 description 1
- 239000002025 wood fiber Substances 0.000 description 1
Landscapes
- Treating Waste Gases (AREA)
- Electrostatic Separation (AREA)
Abstract
Description
【発明の詳細な説明】
3、発明の詳細な説明
[産業上の利用分野]
未発明はボイラー、焼結機等からのL業排ガス中に含ま
れる゛<シ大酸化物(以下NOxとよぶ)の酸化の分解
、二酸化硫黄(以ド502とよぶ)の酸化等々によりこ
れらを含む各種のガス状汚染物質を除去するための、「
極短パルス高電、圧加電式ガス節化装置」に関するもの
である。しかしその応用範囲は巾なるガス浄化にとどま
らず、電気集塵装置、加重式バグフィル等とM1合せて
ガス浄化と同時に集塵を行なったり、心(複万機、除電
:lA等コロナ放電を用しする装置で発生するNOxの
分解等にも利用でさ、また一般にガス11Jの放11t
化学的反応により特定ガス成分の醇化、−元、生成、分
解1を効果的に行なう為にも用し亀る車力ζできる。[Detailed Description of the Invention] 3. Detailed Description of the Invention [Field of Industrial Application] The uninvented invention is based on large oxides (hereinafter referred to as NOx) contained in industrial exhaust gas from boilers, sintering machines, etc. ), oxidation of sulfur dioxide (hereinafter referred to as 502), etc. to remove various gaseous pollutants including these.
``Ultra-short pulse high-voltage, pressure-type gas saving device.'' However, the scope of its application is not limited to wide gas purification; it can also be combined with electrostatic precipitators, weighted bag fillers, etc. to perform dust collection at the same time as gas purification, It can also be used to decompose NOx generated in equipment that releases gas, and is generally used to release 11 tons of gas.
It can also be used to effectively liquefy, produce, and decompose specific gas components through chemical reactions.
[従来の技術〕
従来、排ガスの脱硝や脱硫に実用されてし)るものl±
・Ilら化学的方法である。脱硝にCよ1として300
Il以上のガス温度で排ガス中にアンモニアを添加の
1−触h!でNOxを窒素と水分に分解する、I、sわ
ゆる「アンモニア接触還元方法が用いられてt−る、ま
たi脱硫に1f tとして石灰乳をミスト状にして排ガ
ス41に分散の上、これに502を吸収して亜硫酸石膏
としてガス力1ら除去する。いわゆる「石灰石膏法」力
ζ用I、%られてし)る。[Conventional technology] Conventionally, methods used for denitrification and desulfurization of exhaust gas have been used.
・It is a chemical method by Il et al. 300 as C1 for denitrification
1-Touch of adding ammonia to the exhaust gas at a gas temperature above Il! The so-called ammonia catalytic reduction method is used to decompose NOx into nitrogen and moisture, and for desulfurization, 1 ft of milk of lime is made into a mist and dispersed in the exhaust gas 41. 502 is absorbed and removed as sulfite gypsum.The so-called "lime gypsum method" is used for the gypsum.
−・方排ガスに予めアンモニアを添加のL、これに高エ
ネルギーの電子ビームを照射して、NOxと502を硫
硝安複塩の固体微粒子に転化し、これをガス′b1ら除
去する「電tビーム排ガス浄化方式Jも開発された。- Ammonia is added to the exhaust gas in advance, L is irradiated with a high-energy electron beam, and NOx and 502 are converted into solid fine particles of ammonium sulfate and nitrate, which are then removed from the gas 'b1. Beam exhaust gas purification method J was also developed.
またこの方式を電子ビームの照射室IIIIに電界を力
aえて、その反応速度を上げることにより改良する方法
もそのイl効性がア証されている。更に排ガス中に巾に
コロナ族’1liJ4iと非コロナ対向電極より成るコ
ロナ電極系のみを設け1両’iff極間にパルス高電圧
を加え、脱硝と脱硫を行なう方式も提案され、実験室規
模の装置での有効性が実証されている。しかしこれらは
いずれも実用化が極めて難しく、実用化に成功しないま
まに現在に15っている。Furthermore, the effectiveness of a method of improving this method by applying an electric field to the electron beam irradiation chamber III to increase the reaction speed has been proven to be effective. Furthermore, a method was proposed in which only a corona electrode system consisting of a corona group '1liJ4i and a non-corona opposing electrode was installed in the exhaust gas, and a pulsed high voltage was applied between the two 'if electrodes to perform denitrification and desulfurization. The effectiveness of the device has been demonstrated. However, all of these are extremely difficult to put into practical use, and there are currently 15 methods that have not been successfully put into practical use.
[発明が解決しようとする問題点]
l−記の[アンモニア接触還元法」、「石灰石膏法」等
の化学的方法は建設費・運転費が極めて高く、そのに装
置の腐蝕、触媒の寿命1の問題がある。「電子ビーム排
ガスb化方斌」は脱硝と脱硫を同時に行なうことが出来
、触媒も費らず、完全な乾式プロセスなので、装置が簡
単で保守も用aであるが、設備費・運転費が共に非常に
高いヒ、放射線防護に高価な対策を8夛とする。この方
式で電子ビームの照射空間に電界を加えて脱硝−脱硫反
応を促進する方式も基本的には電子ビームを使用する事
には変わりがないので設備費の高くなるのは避けられな
い、結局もっとも簡単で経済的な方法は、排ガス中に巾
にコロナ電極系のみを設けて両電極間に輻の短いパルス
高電圧を周期的に印加し、パルス的コロナ放電を発生さ
せ、これによって純電気的に排ガスの脱硫・脱硝あるい
はその他の浄化を行なう方法である。しかしこれも大型
の装置では全くその効果がないことが認められており、
この方式を実用化する為の方策は全くケっていないのが
実情であった。[Problems to be solved by the invention] Chemical methods such as the "ammonia catalytic reduction method" and the "lime-gypsum method" described in section 1-1 have extremely high construction and operating costs, as well as corrosion of the equipment and short lifespan of the catalyst. There is one problem. The "electron beam exhaust gas converting method" can perform denitrification and desulfurization at the same time, does not require a catalyst, and is a completely dry process, so the equipment is simple and maintenance is simple, but equipment and operating costs are high. Both are extremely high and require eight expensive measures to protect against radiation. This method, which applies an electric field to the electron beam irradiation space to promote the denitrification-desulfurization reaction, still basically uses the electron beam, so it is inevitable that the equipment cost will increase. The simplest and most economical method is to install only a corona electrode system in the exhaust gas and periodically apply a short pulsed high voltage between the two electrodes to generate a pulsed corona discharge, which produces pure electricity. This is a method to desulfurize, denitrify, or otherwise purify exhaust gas. However, it is recognized that this is not effective at all with large equipment.
The reality is that there are no plans at all to put this method into practical use.
本発明はト記の困難を克服して「極短パルス高電圧によ
るコロナ放電を用いたガス浄化方式Jを大’!’! !
a ;aで実用化するπを目的とする。The present invention overcomes the above-mentioned difficulties and greatly improves the gas purification method using corona discharge using ultra-short pulsed high voltage!
a ; Aim for π to be put to practical use in a.
[間m直を解決するためのp段]
本発明は、NOx、302等のガス状汚染物質を含有す
るガス中に、少なくとも一個をコロナ放電極、少なくと
も他の一個を該コロナ放電極と対向した対向’を極とし
て相l「に絶縁の1;A!設せる二個以Hの独ケな電極
より成るコロナ゛准極系を設け、該コロナ放電極と他の
電極との間にパルス巾の極めて短いJ17バルス高心圧
を印加する・hによりガスの脱硝−脱硫を図る装置に於
て、該極短パルス高電圧の洩高イ111電圧Vpの値を
該コロナ族’、it J4と該対向TL極間の距離的モ
均電界強度の時間的ピーク値BPが、少なくとも臨界値
E p o = 8 d (kV/am)
口J以l;となる如き極めて高い値に選定する1tに
より、に記の問題点を解決する。[P-stage for solving the problem of directivity] The present invention provides at least one corona discharge electrode and at least one other corona discharge electrode facing the corona discharge electrode in a gas containing gaseous pollutants such as NOx and 302. A corona quasi-polar system consisting of two or more unique electrodes is provided with the opposite electrodes as poles, and a pulse is applied between the corona discharge electrode and the other electrodes. In a device that aims at denitrification and desulfurization of gas by applying an extremely short J17 pulse high cardiac pressure, the value of the leakage voltage Vp of the extremely short pulse high voltage is determined as the corona group', it J4 and the temporal peak value BP of the uniform electric field strength over the distance between the opposing TL poles is at least the critical value E p o = 8 d (kV/am)
By selecting 1t to be an extremely high value such that
ここにdはガスの「相対密度」で、0111’C,1気
圧における″1訣ガスの密度を1とする時の1問題とな
る温度・圧力におけるガスの密度をあられす。Here, d is the "relative density" of the gas, which is the density of the gas at the temperature and pressure that is one problem when the density of the gas is 1 at 0111'C and 1 atmosphere.
即ち本発明者は、NOx 、SO2等を含むガスのガス
通路を横切ってパルス的コロナ放電を発生せしめ。That is, the present inventor generated a pulsed corona discharge across a gas path of a gas containing NOx, SO2, etc.
その間隙におけるE、が少なくともL記条ff (1)
のEpoをこえる如き極めて高い(1、&fましくは1
2d(kV/cal以ヒの値をとるようにする嘔により
、はじめてNOおよびSO2をそれぞれ水溶性のNO2
およびSO3へと酸化出来、a当な吸収剤ないし吸収液
9例えば水やNaOH,Na2CO3,Ca (OH)
2゜CaCO3の欠溶液又は懸濁水への接触吸収により
ガス中から41効に除去できる°1tを見出した。この
場合かかるNO2)SO3等の吸収液は、1偵対向電極
の表面に液膜の形で流下せしめると、もっとも41効か
つk(適である。またNoの酸化で生成したNO2は更
に極短パルス高電圧によるパルス的コロナ放′市の作用
で分Hされるが、この際予めガス中にNOxと等星のア
ンモニアを添加しておく債によりNO2の分解が著しく
促進される事が見出された。またSO2やSO3もアン
モニアの添加により固体微粒子に転化固定される1tが
見出された。またNOxとSO2がガス中にJ(存する
時には、n゛パルスコロナ用いる際先ずNOxの醸化0
公解が先行し、しかる後502の酸化が行なわれる事が
判明した。またガス中に含まれる木tJ1蒸気もL記パ
ルス的コロナ放電により極めて有効に酸化されて固体の
酸化水銀となり、またHCL等の存在下に可溶性の塩化
水銀となることが知られている。E in the gap is at least L ff (1)
Extremely high, exceeding the Epo of (1, &f preferably 1
2d (kV/cal or higher), NO and SO2 are converted to water-soluble NO2 for the first time.
and SO3, a suitable absorbent or absorbing liquid 9 such as water, NaOH, Na2CO3, Ca (OH)
We have found that 2°1t can be effectively removed from gas by catalytic absorption of 2°CaCO3 in depleted solution or suspended water. In this case, the absorption liquid such as NO2)SO3 is most effective and suitable if it is allowed to flow down in the form of a liquid film on the surface of the first counter electrode.Also, the NO2 generated by the oxidation of No is even more extremely short-lived. The decomposition of NO2 is significantly accelerated by adding ammonia equivalent to NOx to the gas in advance. It was also found that SO2 and SO3 are converted and fixed into solid fine particles by adding ammonia.Also, when NOx and SO2 are present in the gas, when using n pulse corona, NOx is first fermented. 0
It was found that the oxidation of 502 occurred first, followed by the oxidation of 502. It is also known that the wood tJ1 vapor contained in the gas is very effectively oxidized by the pulsed corona discharge to solid mercury oxide, and also to soluble mercury chloride in the presence of HCL or the like.
また本発明によるNoの酸化、N02の分解、S02の
酸化、木銀屑気の酸化や塩化等の放電化学的ガス浄化反
応はガス通路における間隙平均電界強度の波高値E、を
上記(1)式の臨界(IEpoを越えて更に高くすれば
する程、またコロナ放m、極の曲+ヤ径を小さくしたり
、鋭い突起をつけてパルス・コロナ放tttt活発なら
しめる程、より効果的におこなわれることも判明した。In addition, in the discharge chemical gas purification reactions such as oxidation of No, decomposition of N02, oxidation of S02, oxidation and chlorination of wood and silver dust according to the present invention, the peak value E of the gap average electric field strength in the gas passage is determined by the above (1). The higher the equation is raised beyond the criticality (IEpo), the smaller the radius of corona radiation, the radius of the polar curve, or the more sharp protrusions are added to make pulsed corona radiation more active, the more effective it becomes. It was also found that this was done.
J、記(1)式のEpoを越える著しく高い平均電界強
度の波高(#1IEpを、火花の発生なしにE記ガス通
路のコロナ空間に形成するには印加すべき上記極短パル
ス高電圧の幅を極めて短くする必要がある。この場合パ
ルス111を? (110Tpであられすと、その所要
f内は用いるコロナ電極系の構成・電極形状・寸法やガ
スの組成・温度・圧力等に依存するが1通常Tpを長く
ても1000n5以下、好ましくは500ns以下と極
度に短くする必要がある事が実験により見出された。J, the wave height of the extremely high average electric field intensity (#1IEp exceeding Epo in equation (1)) that should be applied in order to form the corona space of the gas passage in E without generating sparks. It is necessary to make the width extremely short. In this case, the pulse 111? It has been found through experiments that it is necessary to make Tp extremely short, typically 1000n5 or less, preferably 500ns or less.
未発IIIに用いるコロナ電極系としてはガス通路を隔
てて生いに対向した該コロナ放電極と該対向電極の二種
類の独ケ電極から成る二電極系を用いてもよく、また放
電極の近傍に更に第三の電極を絶縁配設した三電極系を
用いてもよい、また本発明に用いる該コロナ放′−ヒ極
としては線状φ角線状・刺付き線状・突起付き棒状・ス
トリップ状◆突起付きストリップ状等、適ちな如何なる
形状・構aφ材質のものを用いてもよいが、!、述の通
りコロナ放゛准が活発におこる様な形状にするほど放電
化学作用が旺盛となるので一般には好適である。またこ
のコロナ放電極を適ちな支持枠に固定して用いても ま
た−木の長いコロナ伝送線路を形成せしめて用いてもよ
い。As the corona electrode system used for non-emission III, a two-electrode system consisting of two types of independent electrodes, the corona discharge electrode and the counter electrode, which are directly opposed to each other across a gas passage, may be used. A three-electrode system in which a third electrode is further insulated nearby may be used, and the corona radiation pole used in the present invention may be linear, φ square wire, barbed wire, or rod with protrusions.・Strip shape ◆Strip shape with protrusions, etc. Any suitable shape/structure aφ material may be used, but! As mentioned above, the more active the corona radiation occurs, the more vigorous the discharge chemical action will be, so it is generally preferable. Furthermore, this corona discharge electrode may be used by being fixed to a suitable support frame, or may be used by forming a long wooden corona transmission line.
本発明の電極構成としてE2二電極系を用いるとさは、
その対向電極としてL記の様なコロナ放電極を用いても
よく、また根状・金網状Φ円筒状等の曲率半径の大きな
非コロナ゛電極を用いてもよい、また三゛電極系を用い
る時は対向電極として上記の様な非コロナ゛IIt極を
用いるのが好適であり、第三電極としてはコロナ放゛督
江極、非コロナ電極のいずれを用いるtも出来る。When the E2 two-electrode system is used as the electrode configuration of the present invention,
As the counter electrode, a corona discharge electrode as shown in L may be used, or a non-corona electrode with a large radius of curvature, such as a root-like, wire-mesh, Φ cylindrical shape, etc., may be used, or a three-electrode system may be used. In some cases, it is preferable to use a non-corona II electrode as described above as the counter electrode, and either a corona radiation director electrode or a non-corona electrode can be used as the third electrode.
二電極系の使用にあたっては該コロナ放電極と対向電極
間に直接該極短パルス高電圧を印加してもよいが、予め
両電極間に加えるべきパルス高電圧と同極性の補助高電
圧(以下バイアス高゛ct圧とよぶ)を加えておき、こ
れに屯ねて該J4i短パルス高電圧を結合コンデンサー
を介して印加すればその波間値電圧を該バイアス高゛市
圧の分だけ低減出来てJ4i短パルス高1江圧を発生す
るための極短高圧パルス電源を安価に出来 好適である
。When using a two-electrode system, the ultra-short pulsed high voltage may be applied directly between the corona discharge electrode and the counter electrode, but in advance, an auxiliary high voltage (hereinafter referred to as If a high bias voltage (called ct pressure) is added and then the J4i short pulse high voltage is applied via a coupling capacitor, the wave-to-wave value voltage can be reduced by the amount of the bias high voltage. The J4i short pulse is suitable for generating an extremely short high voltage pulse power supply at a low cost.
一ミ屯極系の使用にあたっては、−I−記バイアス高電
圧を該:tS王゛市電極該対向電極の間に前者の後者に
対する極性が該コロナ放電極の該パルス高電圧における
極性と同じになる様にして印加しておき、そのヒで該コ
ロナ故−11fJ4iと該第三電極の間に直接または結
合コンデンサーを介して該パルス高電圧を印加する。When using a one-way polar system, apply the bias high voltage as described above between the two opposite electrodes, such that the polarity of the former with respect to the latter is the same as the polarity of the corona discharge electrode at the pulsed high voltage. Then, the pulsed high voltage is applied directly or via a coupling capacitor between the corona force -11fJ4i and the third electrode.
X’、 ’+1極系および三電極系において使用する上
記バイアス高電圧は直流高電圧を用いてもよいが、該検
知パルス高電圧よりも幅の広いパルス高電圧(以下バイ
アス・パルス高′−セ圧とよぶ)を用いるとバイアス直
流高゛屯圧を用いる場合と異り、ガス通路空間を横切っ
て流れるイオン電流を大幅に低緘出来、脱硝・脱硫等の
ガス浄化に要する消費電力を箸しく節減できる。The bias high voltage used in the Unlike the case of using bias DC high pressure, the use of ion current flowing across the gas passage space can be significantly reduced, reducing the power consumption required for gas purification such as denitrification and desulfurization. You can save money.
1:記−−を極系および三電極系において該対向電極を
Jlコロナ゛+1を極とする場合、極短パルス高′心圧
を印加する際の1偵コロナ放電極の極性は正・負いずれ
であってもよいが、IEのパルス昏コロナはストリーマ
−状、こ伸びて該コロナ放電極と相手電極間のガス空間
を橋絡するので、晩硝・lll[等のガス浄化反応を生
起せしめるもとになる化学的活性種が空間全体に生成さ
れ 比較約手さな装2容積、ないし短かい滞留時間内に
この反応を完了出来、設備を小型化する事が出来る。し
たがって本発明をガスの脱硝自脱硫等のガス浄化のみの
目的で巾独に実施するには正パルス・コロナ放電を用い
た方が設備費を安く出来る。特に502のSO3への酸
化速度は負のパルス−コロナでは極めて遅いので、正の
パルス・コロナを用いる必要がある。1: In the polar system and three-electrode system, when the counter electrode is Jl corona +1 as the pole, the polarity of the first corona discharge electrode when applying ultra-short pulse high heart pressure is positive or negative. Either method may be used, but the pulsed corona of IE is streamer-like and extends to bridge the gas space between the corona discharge electrode and the other electrode, causing gas purification reactions such as night nitric acid and lll [etc. The chemically active species responsible for the reaction are generated throughout the space, and the reaction can be completed within a relatively small volume of 2 volumes or a short residence time, allowing the equipment to be miniaturized. Therefore, in order to carry out the present invention solely for the purpose of gas purification such as gas denitrification and self-desulfurization, it is better to use positive pulse corona discharge to reduce equipment costs. In particular, the rate of oxidation of 502 to SO3 is extremely slow with a negative pulse corona, so it is necessary to use a positive pulse corona.
しかし本発明のコロナ電極系を電気集塵装置として兼用
し、該コロナ放電極をその放1!極、該対向電極をその
集塵極とし、排ガスの脱’j’l−脱硫等のガス浄化と
同時に集塵を行なうtもiIr能で、その場合には該コ
ロナ放電極にその極性を負として極短パルス高’1il
Eを印加し、負のパルス・コロナ放電発生させるのが好
適である。何故ならば、IFパルス・コロナ放電を用い
る時は、に述の如く放電が二ロナ放′Ilt極と9!塵
極間の間隙をストリーマ−状に橋絡して間隙空間全体に
正e負イオンを成牛ずるので、’F1極性イオンのみの
射突を必要とするダスト粒子の荷電が行なえず、集塵作
用が失われるからである。これに対して、負のパルス・
コaす放電を用いると放電はコロナ放電極近傍に局限さ
れ。However, the corona electrode system of the present invention can also be used as an electrostatic precipitator, and the corona discharge electrode can be used as an electric precipitator. It is also possible to collect dust at the same time as gas purification such as de-sulfurization of exhaust gas by using the opposite electrode as its dust collection electrode, and in that case, the corona discharge electrode is used as its dust collection electrode. As ultra-short pulse height '1il
It is preferable to apply E to generate a negative pulsed corona discharge. This is because, when using IF pulse corona discharge, the discharge has two rona radiation poles and 9! Since the gap between the dust electrodes is bridged in the form of a streamer and positive and negative ions are distributed throughout the gap space, the dust particles cannot be charged, which would require the bombardment of only F1 polar ions, and the dust collection This is because the effect is lost. In contrast, the negative pulse
When a core discharge is used, the discharge is localized near the corona discharge electrode.
この領域のみでIE負イオンを形成するが、それ以外の
領域では負イオン流のみが存在するので、ダストの荷電
中集塵が有効に行なわれ得る。この場合本発明を通常の
放電極と集塵極より成る二電極式の電気集塵装置を兼用
せしめて実施する時は、コロナ電極系の電極構成は!二
記二′It極系となり1両電極間に予め該コロナ放゛I
眩極を負とする直流高゛准圧をバイアス直流高電圧とし
て印加し、これに東ねて結合コンデンサーを介して該極
短パルス高電圧を該放電極を負とする極性で印加すると
よい、また本発明はコロナ放電極@集塵極に加えて該コ
ロナ放電極の近傍に非コロナ電極ないしコロナ電極より
成る第三電極を設けた三電極式の電気集塵装置としても
実施でき、この場合は該第三電極と該集塵極の間に前者
を負とする直流高電圧を印加し、該放電極と第二電極の
間に前者を負とする極性をもって該極短パルス高電圧を
印加する。IE negative ions are formed only in this region, but only negative ion flow exists in other regions, so that dust can be effectively collected during charging. In this case, when the present invention is carried out using a two-electrode electrostatic precipitator consisting of a normal discharge electrode and a dust collecting electrode, the electrode configuration of the corona electrode system must be changed! 2 It becomes a polar system, and the corona radiation I
It is preferable to apply a DC high quasi-voltage that makes the dazzling pole negative as a bias DC high voltage, and to this, apply the extremely short pulse high voltage through a coupling capacitor with a polarity that makes the discharge electrode negative. The present invention can also be implemented as a three-electrode type electrostatic precipitator in which a third electrode consisting of a non-corona electrode or a corona electrode is provided in the vicinity of the corona discharge electrode in addition to the corona discharge electrode @ collection electrode. A DC high voltage is applied between the third electrode and the dust collection electrode with the former being negative, and the extremely short pulse high voltage is applied between the discharge electrode and the second electrode with the former being negative. do.
本発明で使用するJ4i短パルス高電圧は、コロナ電極
系を長い伝送線路(以下コロナ伝送線路とよぶ)として
構成すれば、その、Fを進行波として伝播しつつ強力な
コロナ放電をその全長にわたって発生し、該J4i短パ
ルス高電圧の保有するエネルギーを最も有効にコロナ放
電の形成、したがって脱硝・脱硫等のガス浄化反応に利
用するπができる。この場合パルス電圧の伝播速度はほ
ぼ光速COにましいので、パルス電圧の巾がTの時、そ
の幾何学的な長さはLp=CoTになるので、終端開放
のコロナ伝送線路の場合その長さLoが(+/2)LP
と回等もしくはこれよりも長いことLO≧(1/2)L
p (2)がパルス電圧が進行波と
してのふるまいを見せるための条件であり1反対にL6
c((+/2) L Pの時はコロナ電極系は准極間
容駿とコロナ放電の等価並列抵抗より成る所の集中定数
負荷となる。The J4i short pulse high voltage used in the present invention can be used by configuring the corona electrode system as a long transmission line (hereinafter referred to as a corona transmission line), and a strong corona discharge can be generated over the entire length while propagating F as a traveling wave. The energy possessed by the J4i short pulse high voltage can be used most effectively for the formation of corona discharge, and therefore for gas purification reactions such as denitrification and desulfurization. In this case, the propagation speed of the pulse voltage is approximately the speed of light CO, so when the width of the pulse voltage is T, its geometric length is Lp = CoT, so in the case of an open-ended corona transmission line, its length is SaLo is (+/2) LP
and times or longer LO≧(1/2)L
p (2) is the condition for the pulse voltage to behave as a traveling wave, and on the contrary, L6
When c((+/2) L P, the corona electrode system becomes a lumped constant load consisting of the quasi-electrode capacitance and the equivalent parallel resistance of the corona discharge.
この進行波を用いる本発明の実施様v+(以ド進行波型
とよぶ)を該T′、電極系のコロナ電極系ないし二電極
式電気集塵装置で実施するにあたっては、長い線状の該
コロナ放′・を極を、一対の並行な接地せる板状の対向
′電極(ないし集#?1Ji)の間にジグザグ状に線間
隔はぼ5ないし30cmをもって絶縁配設するのが好適
で。When carrying out the embodiment v+ (hereinafter referred to as the traveling wave type) of the present invention using this traveling wave with the T' electrode system, a corona electrode system or a two-electrode electrostatic precipitator, it is necessary to use a long linear wave. It is preferable to insulate the corona radiation poles between a pair of parallel grounded plate-like opposing electrodes (or electrodes) in a zigzag pattern with a line spacing of about 5 to 30 cm.
この場合ケいに向い合った一対の接地対向’ilt極(
ないし集塵J4i)とその中間に配設された一本の長い
コロナ孜゛−ト極が組になって並夕曜の1つのコロナ伝
送線路を構成する。この場合該コロナ放電極は大地より
絶縁せる適ちな支持枠に、これより絶縁して取り付ける
のが好適である。In this case, a pair of grounded opposing 'ilt poles (
The dust collector J4i) and one long corona top pole disposed in the middle form a set of one long corona transmission line. In this case, the corona discharge electrode is preferably mounted on a suitable support frame that is insulated from the ground.
また該進行波型を三゛1電極系のコロナ電極系または三
電極式1程気集塵装置で実施するにあたっては、該コロ
ナ放′屯極あるいは該第モ電極の少なくとも一方を、〃
いに白さ合った一対の一行な接地せる板状の対向電極(
ないし集y!I極)の中間にジグザグ状に、SA第E電
極とコロナ放電極間の間隔的2ないしloCmをもって
絶縁配設するのが好適で、この場合には該コロナ放′1
1を極と該第三電極および該コロナ放電極と両対向電極
(または集塵極)とがそれぞれ並列の三つ(ないし四つ
)のコロナ伝送線路を形成する。この場合第五電極をす
のこ形として支持枠を兼ねさせ、すのこの相隣る+ij
(114tの中間を走るごとく蛇行して該支持枠より
絶縁の1−該コロナ放電極をジグザグ状に配設するのが
好適であコロナ伝送線路l−をに記の極短パルス高電圧
が進行波として進行し、その途中においてコロナ放′1
杖を行う時は、それに伴うエネルギー損失のため該極短
パルス高電圧の波高部分が次第に欠損して行き、成る距
jlIaイTした後は完全に波高部が失われて、もはや
コロナ放電を生ずる能力が消失する。この距離は条件に
よって1なるが、負パルス電圧の場合約300m1強力
なストリーマ−状コロナ放’Iftを発生するエネルギ
ー消耗の力しい正パルス電圧の場合約3m=10m程度
である。ところで波高部が消失した後も該極短パルス晶
型JIτは尚充分なエネルギーを保有しており、これを
41効に活用するため何等かの方法でその波高部を再び
持ちJ−ばて(以ドこれをパルスピーキングと略称する
)コロナ開始電圧fIl′i以ヒとし、パルス、Oi電
圧保有エネルギーの大部分をコロナ放電のエネルギーに
転換してやることが、凝方式の電力効率を高め、回転コ
ス上を下げるLで極めて+Sである。パルスピーキング
を実施するための一つの方法はコロナ伝送線路のサーシ
ンイピーダンス
zo=Jr7て (3)をド流に
行くほど大きくしてやると良く、そのためにはコロナ伝
送線路単位長当りのインダクタンスLを下流に行くほど
大きくするか、コロナ伝送線路中位長当りの線路間静゛
心′N品CをF魔に行くほど小びくしてやれば良い、こ
れを木発す1において峠も簡単に実施する力I犬は長い
コロナ放電線の途中にいくつかのインダクタ/スフよ(
以)”ピーキング・コイルと省略する)を挿入し、その
インダクタンス値を下流に行くほど大きくすると共に、
コロナυ、送線路の終端を開放すること(この時Zoは
無限大となり、a行波は全反射する)である、またコロ
ナ放電線をいくつかの放’it線を並列JIL統して構
成し その並列線数を途中のいくつかの場所で減じて遂
に一本とした!;で線路終端を開放してもよく、この吟
はヒ記のCがその度に誠少してZoがLシtする。ある
いはコロナ放電線をうすい帯状の導体で作って対向゛電
極に並行に配置、その鋭い周縁部でコロナ放゛セを発生
させる様にし、かつそのliを入力端から終端に向って
逐次狭くして行って対向電極に対する静心容!1) C
を減じ、終端で+r+をゼロとするとJ(に開放端とし
てもよい、以ドこの様なコロナ放′電極をピーキング故
心棒と呼ぶことにする。以!二の他パルスビーキ/グは
j!i ”+な方法でパルスの111を圧縮して小さく
すること(これをパルス圧縮という)によっても行うこ
とが出火、本発明のコロナ伝送線路において、パルス圧
縮を適用してパルスピーキングを実施してもよいことは
云うまでもない。In addition, when implementing the traveling wave type with a three-electrode corona electrode system or a three-electrode type one-electrode air dust collector, at least one of the corona radiation pole or the first electrode is
A pair of plate-shaped counter electrodes (
A collection of stories! It is preferable to insulate the SA E electrode and the corona discharge electrode with a spacing of 2 to loCm in the middle of the corona discharge electrode in a zigzag pattern.
The third electrode, the corona discharge electrode, and both opposing electrodes (or dust collecting electrodes) form three (or four) parallel corona transmission lines. In this case, the fifth electrode is made into a gridiron shape and also serves as a support frame, and the +ij
(It is preferable to arrange the corona discharge electrodes 1-1 insulated from the support frame in a zigzag pattern, meandering as if running in the middle of the 114t, and the ultra-short pulse high voltage described in Proceeds as a wave, and on the way, corona radiation '1
When performing a cane, the wave height portion of the extremely short pulse high voltage is gradually lost due to the energy loss associated with it, and after reaching the distance, the wave height portion is completely lost and corona discharge no longer occurs. Abilities disappear. This distance is 1 depending on the conditions, but it is about 300 m in the case of a negative pulse voltage and about 3 m = 10 m in the case of a positive pulse voltage that consumes energy that generates a strong streamer-like corona radiation Ift. By the way, even after the wave height disappears, the extremely short pulse crystal type JIτ still retains sufficient energy, and in order to utilize this for the 41 effect, it is necessary to use some method to regain the wave height (JIτ). (Hereinafter, this is abbreviated as pulse peaking) By increasing the corona starting voltage fIl'i and converting most of the energy possessed by the pulse and Oi voltages into corona discharge energy, the power efficiency of the condensing method is increased and the rotation cost is reduced. L that lowers the top is extremely +S. One way to implement pulse peaking is to increase the surging impedance of the corona transmission line, zo=Jr7 (3), as it goes toward the current.To do this, the inductance L per unit length of the corona transmission line is Either increase the line-to-line quietness per medium length of the corona transmission line, or make it smaller as the line-to-line quietness per medium length of the corona transmission line approaches F. In the middle of the long corona discharge wire, there are several inductors/sufu.
(abbreviated as "peaking coil") and increase its inductance value as it goes downstream,
The corona υ is to open the end of the transmission line (at this time, Zo becomes infinite and the a-line wave is totally reflected), and the corona discharge line is constructed by integrating several radiation lines in parallel JIL. The number of parallel wires was reduced at several points along the way, and it was finally reduced to one! You can also open the end of the line with ;, and in this case, each time C in the above is set, Zo is set to L. Alternatively, the corona discharge wire is made of a thin strip-shaped conductor and placed in parallel with the opposing electrode, so that the corona discharge is generated at its sharp edge, and the li is gradually narrowed from the input end to the terminal end. Go and perform electrostatic response to the counter electrode! 1) C
If +r+ is set to zero at the end, then J( may be used as an open end. From now on, such a corona emitting electrode will be called a peaking centrifugal rod. Hereafter, the other pulse beak/g is j!i This can also be done by compressing the 111 of the pulse in a positive way (this is called pulse compression).In the corona transmission line of the present invention, even if pulse peaking is performed by applying pulse compression, Needless to say, it's a good thing.
脱硝・脱硫象のガス浄化に要する時間は印加する極短パ
ルス高電圧の周波数fpにほぼ反比例するので。The time required for gas purification in the denitrification/desulfurization event is approximately inversely proportional to the frequency fp of the applied ultrashort pulse high voltage.
f2の値を高くする程、′A21を小型化でさる0本5
el!Ifのχ施にあたっては実用hfpを50Hz以
ト、好ましくは250Hz以Hに選定するのがよい。The higher the value of f2, the smaller the A21 becomes.
El! When applying If to χ, it is preferable to select a practical hfp of 50 Hz or higher, preferably 250 Hz or higher.
この様な極度に巾の短い極短パルス高電圧を発生する為
の高圧極短パルス電源としては、適当な如何なるものを
利用しても良いが、一般にエネルギー蓄積要素(パルス
波形成形要素ともよぶ)としてコンデンサー、同軸ケー
ブルあるいは複数個のコンデンサーとインダクタンスを
梯F型に接続したLC梯−f−型回路等の容埴性エネル
ギー蓄JA安、Kを用い、これに直波高屯圧をもって充
゛心し、ついでこれを固定火花ギヤー・プ。Any suitable high-voltage ultra-short pulse power source may be used to generate such extremely short-width ultra-short pulse high voltage, but generally an energy storage element (also called a pulse waveform shaping element) is used. A capacitive energy storage such as a capacitor, a coaxial cable, or an LC ladder F-type circuit in which multiple capacitors and inductances are connected in a ladder F-type circuit is used as a capacitor, and this is charged with a direct wave high pressure. Then, fix this to the spark gear.
回転火花ギャップ あるいは水よりイラト口7等の高電
スイッチ7I;了をもって瞬時に負荷である較発明のコ
ロナ電極系の両電極間に直接又は結合コンデンサーを介
して放1tシて該極短パルス高゛心圧を形成する形式の
もの(容’j Jb JIS ’rjと称する)を用い
るのが好適である。しかしエネルギーXi Ja 6.
1(としてインダクタンスを利用し、そのコイルにFめ
IrI流゛lπ流を流しておいて その本論を、X++
eMスイ−7千、Kfc瞬時に開放、このn’r +
Jイノダクタンスll14端に現れるパルス高′准圧を
未発I5+の負桑に直接ヌは結合コンデンサーを介して
印加する形式のもの(インダクタンス蓄積型と称する)
を用いても良い、*:Il蓄積型高11:極Nパルスを
源でIM定火花ギヤ、プを用いる時は、コンデンサー等
の容j評性エネルギー蓄積り、ドの充1耽i程における
電圧が、ギャップの火花゛電圧を越えた時、少/Eギャ
ップを自爆せしめるrlllll型火花ギャップを用い
てもよいが5例えば「火花上極の他トリガー′心棒を4
1する三点・lヒスイ、チを用いると、所°々の時−1
1、にトリガー電極にトリガmmパルス電圧をtj、え
ることにより火花を発生せしめてスイッチn;川を発現
させることが出来る。この様な外部トリガー型1/4定
火花スイツチはまたトリガmmレーザービームを所要の
時・1.りに火花′・を極(照射することでも構成でき
、その1lII対の瞬間に火/Cを発)1せしめうる、
高速スイッチ末子としてこの様な外部トリガー型固定火
花スイッチ、回転火花スイッチ、水漏サイラトロン等を
用い、」−記容是性エネルギー蓄績要素を直波高電圧で
なく交流高゛屯圧をもって半波整流器を介して充電し、
該交流高電圧が充電を完了ののちゼロ電圧(h付近をと
る瞬間、ないしは極圧反転して該を波整流器がブロック
している半周期内にのみ該高速スイッチ未f−をオノせ
しめる様にする時は、この瞬間の1rt源から負荷への
突入電流の発生を防止できると共に、交流充電固有゛の
利点として充電損失を大幅に減少でき、高圧極短パルス
電源の電力効率を大幅に向1;できる。A rotating spark gap or a high current switch 7I such as a water outlet 7; It is preferable to use a type that forms cardiac pressure (referred to as volume 'j Jb JIS 'rj). But energy Xi Ja 6.
1 (Use inductance as
eM Sui-7,000, Kfc instant release, this n'r +
A type in which the pulse high quasi-pressure appearing at the J inductance ll14 end is applied directly to the negative mulberry of the ungenerated I5+ via a coupling capacitor (referred to as an inductance storage type).
*: Il accumulation type high 11: When using an IM constant spark gear with a pole N pulse as a source, the capacitive energy of a capacitor etc. is accumulated, and during the charging process of It is also possible to use a rllllll type spark gap that causes the low/E gap to self-destruct when the voltage exceeds the spark voltage of the gap.
If you use three points that make 1, l jade and chi, -1 at various times
1. By applying a trigger mm pulse voltage tj to the trigger electrode, a spark can be generated and the switch n; river can be expressed. Such an external trigger type 1/4 constant spark switch also triggers the mm laser beam at the required time. It is possible to make a spark '· into a pole (it can also be formed by irradiating it, emitting fire/C at the moment of the pair),
By using such an external trigger type fixed spark switch, rotating spark switch, water leakage thyratron, etc. as the terminal of a high-speed switch, it is possible to convert the energy storage element into a half-wave rectifier by using an AC high voltage rather than a direct wave high voltage. charge via
The high-speed switch is turned on only at the moment when the AC high voltage reaches zero voltage (near h) after charging is completed, or during the half cycle when the extreme pressure is reversed and the wave rectifier blocks it. When doing so, it is possible to prevent the generation of rush current from the 1rt source to the load at this moment, and as an inherent advantage of AC charging, charging loss can be greatly reduced, and the power efficiency of high voltage ultra-short pulse power sources can be greatly improved. ;can.
次に本発明の極短パルス高電圧をコロナ伝送線路でない
通常のコロナ′1眩極系に印加するに際しては、該コロ
ナ電極系が電極間静電容績とコロナ損失に伴う並列高抵
抗よりなる集中定数負荷としてふるまい、この容ニーと
i−6圧極短パルスTL源の静電置場、そのインダクタ
ンス分、及びスイッチ電子及び、tA電鯨とコロナ71
を種糸をla t(するフィーダー回路のイノダクタン
スによって、5X1周波のしCI!!成振動が発生し、
火花電圧が大幅に低下する。Next, when applying the ultrashort pulse high voltage of the present invention to an ordinary corona '1 dazzling pole system that is not a corona transmission line, it is necessary to consider that the corona electrode system is composed of a concentrated parallel high resistance due to interelectrode electrostatic capacity and corona loss. It behaves as a constant load, and this capacity knee, the electrostatic field of the i-6 voltage ultra-short pulse TL source, its inductance, the switch electronics, the tA electric whale and the corona 71
Due to the inductance of the feeder circuit, a 5X1 frequency CI!! vibration is generated,
Spark voltage drops significantly.
そこでこの連成振動発生を防いで火花電圧をヒシトさせ
、安定に式(1)のEpoよりも高いEpをガス間隙間
に実現するには、パルス電源とコロナ電極系の間にパル
ス電圧の幾何′7長と回等又はそれ以ヒの長さをもった
長い市川同軸ケーブル等の伝送線路を挿入し、−41パ
ルス・電圧を直行波にしてこの線路上を伝播せしめた1
−1その終端でコロナ電極系に印加するようにして、電
源側と負荷側の回路重相〃干渉を分離するとよい、以ド
この様な伝送線路を分離用伝送線路とよぶことにする。Therefore, in order to prevent this coupled oscillation from occurring, reduce the spark voltage, and stably achieve Ep higher than Epo in equation (1) in the intergas gap, it is necessary to apply a pulse voltage geometry between the pulse power source and the corona electrode system. A long transmission line, such as an Ichikawa coaxial cable, with a length of '7' or more is inserted, and -41 pulses/voltages are made into orthogonal waves and propagated on this line.
-1 It is preferable to separate the circuit multiphase interference on the power supply side and the load side by applying the voltage to the corona electrode system at its terminal end.Hereinafter, such a transmission line will be referred to as a separation transmission line.
この分離用伝送線路は本発明に用いるコロナ゛1し種糸
が集中定数負荷であるとき上記連成転動をおこすのを防
止し、極短パルス高電圧波がそのままの形で負荷に加わ
る様にするために必須のtl^であって、かかる分離用
伝送線路を用いることも本発明の一つの4V徴をなす、
この場合、容lジ性エネルギー晶桔要よとしてパルス波
形成形用コンデンサーを用いる時は、その充電電圧はス
イッチ電子を介して該分離用伝送線路の入力サージイン
ピーダンス(純抵抗分よりなる)に放電し、その時に生
ずるCR−M9波形が直行波として速度v=x7J丁で
で伝送線路上を伝播する。したがって分離1]的を達
するには線路の長さLsはパルスの巾をT(ns)とす
ると。This separation transmission line prevents the above-mentioned coupled rolling when the corona yarn used in the present invention is a lumped constant load, and allows the extremely short pulse high voltage wave to be applied to the load as it is. The use of such a separation transmission line is also one of the 4V characteristics of the present invention.
In this case, when a pulse waveform shaping capacitor is used as a capacitive energy crystal, its charging voltage is discharged to the input surge impedance (consisting of pure resistance) of the isolation transmission line via switch electrons. The CR-M9 waveform generated at that time propagates as a direct wave on the transmission line at a speed v=x7J. Therefore, separation 1] To achieve the target, the line length Ls is the pulse width T (ns).
Ls≧VT (4)とする必′澗
がある。いまかかる分離用伝送線路として高圧同軸ケー
ブルを用いることとし、そのLでの直行波伝播速度V(
1’)(nt V= 0.2 wins トすると
、T=500nsの時には Ls≧100m、 T=
1000nsの時には Ls≧200mとする必要があ
る。There is a requirement that Ls≧VT (4). We will now use a high-voltage coaxial cable as the separation transmission line, and the orthogonal wave propagation velocity V (
1') (nt V= 0.2 wins, when T=500ns, Ls≧100m, T=
When the time is 1000 ns, it is necessary to satisfy Ls≧200 m.
[作用]
本発明の#″IIj:をなす式(1)のEpoよりも高
い高Iff界Epを短時間乍らコロナ電極系の電極間に
形成する時はコロナ放電に41って発生した電子が−f
均自山行程内に強力に加速されて著しく高い運動のエネ
ルギーをW f’Jし、ガス中に含まれる02.H2O
ff:の分子と衝突の↑二、脱硫・1悦硝等のガス浄化
反応を引き起こすもとになるOHプラナル、0,03.
励起状態の酸7(;および02イ才)等の化学的活性種
を大I・1に成牛させ、その強力な酸化作用によって例
えばNOはN。[Function] When a high If field Ep higher than Epo of formula (1) with #″IIj: of the present invention is formed between the electrodes of the corona electrode system for a short time, 41 electrons generated in the corona discharge is -f
The 02.02. H2O
ff: Collisions with molecules of ↑2, OH planal, which causes gas purification reactions such as desulfurization and 1, 0,03.
Chemically active species such as excited acid 7 (;
2 、SO2はS03.水銀ノに気は(^1体の酸化物
に直ちに酸化され、適当な吸収剤の水溶液で容易にガス
から除去できる。またtめガス中に適当な添加剤1例え
ばNoやSO2の場合アンモニアガス、また水銀)に気
の場合塩化水素ガス等を添加する吟は1−2強力なエネ
ルギーを右する′1tcr−の放電化学的作用で例えば
NO2の大部分を分解し、SO2はNH3と結合せしめ
て固体の硫安微粒tに転化固定、また水銀蒸気はその固
体のII! J化合物に転化[/、I定することが出来
るので、ガスからNOx 、SO2)水銀蒸気等の汚染
物質を完全に除去することが可能となる。すなわち本発
明に同右の極めて高い;脱硝・脱硫等のガス浄化効果の
)、Ii本内的作用機構、本発明がはじめて一平均口由
行程内で、今迄到底不nf能なレベルまで電Pを加速し
てそのエネルギーを暑しくしHせしめ、これによって従
来の壁を超えて脱硝−脱硫反応を含むガスb化反応や放
電化学的反応の速度と収率を飛躍的に向ヒせしめ得たこ
とにあるのである。2, SO2 is S03. Mercury is immediately oxidized to its oxide (^1) and can be easily removed from the gas with an aqueous solution of a suitable absorbent.Additives such as ammonia gas in the case of NO or SO2 can also be added to the gas. Adding hydrogen chloride gas, etc. to air (mercury, mercury) decomposes most of the NO2, for example, and combines SO2 with NH3 due to the discharge chemical action of '1tcr-, which provides 1-2 strong energy. It is converted into solid ammonium sulfate fine particles and fixed, and mercury vapor is converted into solid ammonium sulfate particles. Since it can be converted into a J compound, it is possible to completely remove pollutants such as NOx, SO2) and mercury vapor from the gas. In other words, the present invention has extremely high gas purification effects such as denitrification and desulfurization, and the internal mechanism of action. By accelerating the energy and making it hotter, we were able to go beyond the conventional barriers and dramatically improve the speed and yield of gas conversion reactions and discharge chemical reactions, including denitrification and desulfurization reactions. There is a particular reason.
[実施例]
第11aは未発IIによるガス浄化装置を特に排ガス1
説硝・脱硫装置として利用せるものの一実施例の縦断面
図、第2図はその横断面図を示す、lはNOx 、S。[Example] Part 11a is a gas purification device using unreleased II, especially for exhaust gas 1.
A vertical cross-sectional view of an embodiment of a device that can be used as a nitrification/desulfurization device, and FIG. 2 is a cross-sectional view thereof. l is NOx, S.
2)含むガスの人口2.11脱硫後のガスの出[13、
ホッパー4.ダスト排出口5を有する接J′I!!され
た金属より成るケーシングである。その内部に等間隔で
接地せる垂直下行板状対向電極群6,6゛が配設されて
おり、ケーシング及び該対向電極群の中間に絶縁配設さ
れ矩形状金属支持枠群7に支持張架された線状のコロナ
放電極群
は木モビーム91−に固定された支持シー子により、L
方においてはI/j管!1を貫通する金属支柱12によ
り支持されて、大地より絶縁されている。該支柱12の
一つは切替スイッチ13を介し、本例の図では更に塞流
イノダクタンス14を経て出力電圧vbのバイアス直I
々高圧電源15の正極性出力端子と接続され、更に結合
コンデンサー16.高圧同軸ケーブル17を介して極短
高圧パルス′IIt源18の正の出力端−Fに接続され
ている。このパルス電源18の発生する極短パルス高′
准圧は、そのパルスの上値巾Tpが500ns以ドでそ
の波高値Vpが充分に大きく、−上記バイアス電圧vb
と’T’霞e ルイ・波高(/l1ti圧(Vp+Vb
)が式(1)テ”yえられるEpoよりも充分大きいE
pをtえて本発明の・ρ件を充分に描記せしめるもので
ある。また7に例にあたっては1咳コロナ放゛電極群8
と対向電極群6.6′より成るコロナ電極系は集中定数
回路を形成しており、したがって該高圧同軸ケーブル1
7はすでに述へた分離川伝送線路の役目も果している。2) Population of gas included 2.11 Output of gas after desulfurization [13,
Hopper 4. Contact J'I with dust outlet 5! ! The casing is made of polished metal. A group of vertically descending plate-shaped counter electrodes 6, 6'' which are grounded at equal intervals are disposed inside the casing, and an insulating structure is provided between the casing and the counter electrode group, and supported by a rectangular metal support frame group 7. The linear corona discharge electrode group that has been
On the other hand, I/J tube! It is supported by a metal support 12 that penetrates through 1 and is insulated from the ground. One of the pillars 12 is connected to the bias direct current I of the output voltage vb via a changeover switch 13 and, in this example, via an occlusion inductance 14.
are connected to the positive output terminals of the high-voltage power supply 15, and further connected to the coupling capacitor 16. It is connected via a high-voltage coaxial cable 17 to the positive output terminal -F of an extremely short high-voltage pulse 'IIt source 18. Extremely short pulse height' generated by this pulse power source 18
The quasi-voltage has a pulse upper width Tp of 500 ns or more, a sufficiently large peak value Vp, and - the above bias voltage vb.
and 'T' haze Louis wave height (/l1ti pressure (Vp+Vb
) is sufficiently larger than Epo obtained by equation (1).
By adding p, the ρ condition of the present invention can be fully described. In addition, for example 7, 1 cough corona radiation electrode group 8
The corona electrode system consisting of the counter electrode group 6.6' forms a lumped constant circuit, and therefore the high voltage coaxial cable 1
Line 7 also serves as the separated river transmission line mentioned above.
すなわち該同軸ケーブル17の長さLsは式(4)を満
たす補充分長くとっである。いま切替スイッチ13を左
に投入すると、バイアス直流高圧゛心源15が切り離さ
れ、J4i短1“、6圧パルス’Itt源18の出力電
圧が結合コンデンサー16を介さずに直接コロナ放電極
群7と対向′電極群6゜6″の間に印加される。20は
アンモニア容器で、注入パイプ21を介してアンモニア
ガスがノズル22より人目ダスト23内に吹き込まれる
。NOx、SO2を含むガスは入口2より進入、ノズル
22より吹き込まれたNOx 、502の合計せるもの
と化学的に当r遥のアンモニアガスを混入ののち、コロ
ナ放電極群7と対向電極jT 6 、6°の間のガス通
路19をF方に流れ、出++ 3に至り、これより硫安
微粒子除去用の適当な集塵装置へと導かれ、硫安微粒子
を除去せるのちスタックへと排出される。上記極短パル
ス高電圧の印加によってコロナ放’+ll J4i i
aより対向電極群6.6°に向ってガス通路19を橋
絡する強力なストリーマ−状の正コロナbJl電が発生
し、その強力な放電化学作用によっ−(、NOxはアン
モニアの存在下にその大部分がN2とN20に分解し、
SO2は酸化されて303に酸化されたのち、NH3と
化合して硫安の固体粒子となる。その一部は下方のホッ
パー4に落下してここに堆積し、ダスト排出[15より
外部に排出される。残りの微虐硫安粒子はガスに同搬さ
れてガス出口3に至り 外部に導かれる。That is, the length Ls of the coaxial cable 17 is increased by an amount that satisfies equation (4). If the changeover switch 13 is now turned to the left, the bias DC high voltage core source 15 is disconnected, and the output voltage of the J4i short 1, 6-voltage pulse 'Itt source 18 is directly applied to the corona discharge electrode group 7 without going through the coupling capacitor 16. and the opposite electrode group 6°6″. 20 is an ammonia container, and ammonia gas is blown into the dust 23 from a nozzle 22 through an injection pipe 21. The gas containing NOx and SO2 enters from the inlet 2, and after mixing with the total amount of NOx and 502 blown in from the nozzle 22 and ammonia gas, which is chemically equivalent, the gas contains the corona discharge electrode group 7 and the counter electrode jT 6. , 6°, flows in the F direction through the gas passage 19, reaching outlet ++ 3, from which it is guided to a suitable dust collector for removing ammonium sulfate fine particles, and after removing the ammonium sulfate fine particles, it is discharged to the stack. . By applying the above-mentioned extremely short pulse high voltage, the corona is released '+ll J4i i
A strong streamer-shaped positive corona bJl electric current bridging the gas passage 19 is generated from a toward the opposing electrode group 6.6°, and due to its strong discharge chemical action, NOx is generated in the presence of ammonia. Most of it decomposes into N2 and N20,
SO2 is oxidized to 303, and then combines with NH3 to form solid particles of ammonium sulfate. A part of it falls into the hopper 4 below and accumulates there, and is discharged to the outside through the dust discharge [15]. The remaining fine ammonium sulfate particles are carried along with the gas, reach the gas outlet 3, and are guided outside.
該高圧同軸ケーブル17は全長L5Qmですでに述へた
分離川伝送線路の役目をかねており、その1−でのパル
ス電圧の伝播速度は0.25ins、 パルス+I+
50 。The high-voltage coaxial cable 17 has a total length of L5Qm and serves as the aforementioned separate transmission line, and the propagation speed of the pulse voltage at 1- is 0.25ins, pulse +I+
50.
ns、したがって分離川伝送線路としての式(4)の条
件を満たす、その結果7本例におけるコロナ゛電極系は
III 500 n sのパルス電圧に対しては容−1
性の集中定数負荷であるにも拘らず、ケーブルにを伝播
して来たJ4i′JXjパルス高電圧がほぼそのままの
波形でコロナ放電Jl!マ8と対向1tiJ4iJ!’
f6.6°の間に印加される0次に反射されてケーブル
171−を回−極性のパルス’lF!:l+−としてパ
ルス’Ili源へと戻り、以ト多を反射を訝り返す。ns, and therefore satisfies the condition of equation (4) as a separate river transmission line.As a result, the corona electrode system in this example has a capacity of -1 for a pulse voltage of III 500 ns.
Despite being a lumped constant load, the J4i'JXj pulse high voltage propagating to the cable causes a corona discharge with almost the same waveform. 1tiJ4iJ facing Ma8! '
A pulse of polarity 'lF! applied during f6.6° is reflected to the zeroth order and rotates through the cable 171-. :l+- returns to the pulse 'Ili source, and repeats the reflection again.
<Ij L該J4I短パルス高電圧の急峻なtl−り部
分は高い高周波成分を含むので容ψ性集中定数負荷であ
るコロナ電極系から反射されるrll 容埴分がほぼ’
pikRとして働く、シたがってこの部分のみ極性反転
し1反射正パルス波はそのケ1;り部分のみにヒゲ状の
負の極めて短いパルス部分を含んだものとなる。24は
電荷漏洩用品種、IAでケーブルの心線に直魔電簡が蓄
積するのを防Iトする。<Ij L Since the steep tl-reflection portion of the J4I short pulse high voltage contains high high frequency components, the rll volume reflected from the corona electrode system, which is a capacitive lumped constant load, is approximately '.
It acts as pikR, and therefore only this portion has its polarity reversed, and one reflected positive pulse wave contains an extremely short whisker-like negative pulse portion only in that portion. 24 is a type for charge leakage, and IA prevents direct mail from accumulating on the core wire of the cable.
本例で7/モニアを1)人する代りにす1向・r:L極
6゜6′ノ1−力から吸収液として水、Na0H−Na
2C03・CaOH−CaCO3等の木1fl液ないし
?用水を供給し、これを6.6°の表面に沿って面ヒを
流ドせしめて液膜を作り、NO2,SO3等の生成酸化
物をこのトに吸収せしめてもよく、この時は極めて高い
ガス浄化効果が達成できます。In this example, 7/Monia is 1) replaced with 1 direction/r: L pole 6° 6' no 1-force, water and Na0H-Na are used as the absorbing liquid.
Isn't there a 1 fl liquid of wood such as 2C03/CaOH-CaCO3? It is also possible to supply water and allow it to flow along the 6.6° surface to form a liquid film, which absorbs generated oxides such as NO2 and SO3. A high gas purification effect can be achieved.
第31,4は第11’4及び第214の実施例において
コロナ電極系をJ*#!ケーノングを夜ねたQ’i 1
r+の円筒状灯向屯極25とその軸−ヒに絶縁張架され
た一本の線状コロナ放電極8のみをもって構成した1本
発明による小型排ガス脱硝・脱fi装置の縦断面図であ
る1図における2より17に至る番号の要素の名称と機
部は第1図、第2[−における同一番号のe稟のそれと
同じであり、更に本[fflにおいてはパルス゛(耽椋
18、7ンモこ子容器20、同t1人パイプ21.注入
ノズル22は省略して画かれていない、アンモニアガス
を添加ののちガス人「12より導入されたNOx 、S
O2を含む排ガスはケーシングを兼ねた円筒状対向電極
25の内部のガス通路19をヒシを中にコロナ放電Ji
i8より25に向けて生ずる正のパルス状のストリーブ
−・コロナ放電の権力な放電化学作用で脱硝・脱硫反応
を完了し、ガス出o 13より外部に排出される。この
場合にもアンモニア注入の代りに円筒状対向電極25の
内壁上にNO2,5031反応生成物の吸収液の液膜を
作り、この液膜にこれら反応生成物を吸収せしめてもよ
いことは云うまでもない。In the 31st and 4th embodiments, the corona electrode system is J*#! in the 11th and 214th embodiments. Q'i who slept at Kenong 1
1 is a longitudinal cross-sectional view of a compact exhaust gas denitrification/defi-fi device according to the present invention, which is configured with only an r+ cylindrical lamp pole 25 and a single linear corona discharge electrode 8 insulated over its axis. The names and machine parts of the elements numbered 2 through 17 in Figure 1 are the same as those of the elements with the same numbers in Figures 1 and 2. The ammonia gas container 20, the same pipe 21, and the injection nozzle 22 (not shown) are filled with NOx, S introduced from the gas pipe 12 after adding ammonia gas.
The exhaust gas containing O2 is discharged through the gas passage 19 inside the cylindrical counter electrode 25, which also serves as a casing, through a corona discharge.
The denitrification and desulfurization reactions are completed by the powerful discharge chemistry of the positive pulse-like streb-corona discharge that occurs from i8 to i25, and the gas is discharged to the outside from the gas outlet o13. In this case as well, instead of injecting ammonia, a liquid film of an absorption liquid of NO2, 5031 reaction products may be formed on the inner wall of the cylindrical counter electrode 25, and these reaction products may be absorbed by this liquid film. Not even.
:fS4図は第1図、第2図の実施例において支持枠7
を取り除さ、線状のコロナ放電極群8をF方では上部支
持力1’26に絶縁支持されたF:出水f支持導体27
にI/J定し、下刃ではド部支持碍子10に絶縁支持さ
れたド部水f支持導体28に絶縁物29を介して内定張
架して構成した本発明の一実施例である。:fS4 figure shows the support frame 7 in the embodiments of FIGS. 1 and 2.
was removed, and the linear corona discharge electrode group 8 was insulated and supported on the F side by an upper support force of 1'26.
This is an embodiment of the present invention in which the lower blade is constructed by internally tensioning the dome water f support conductor 28 which is insulated and supported by the dome support insulator 10 via an insulator 29.
IAにおける他の番号の要素の名称と機能は、第1図お
よび第2図の回一番号の要素のそれと同じであり。The names and functions of other numbered elements in the IA are the same as those of the numbered elements in FIGS. 1 and 2.
また第1図、第2図におけるこれ以外のすべてのffJ
(7を除く)は本例においても存在するが省略してあり
画かれていない、第1図、第2図がコロナ電極系を集中
定数回路として使用しているのに対して、本例では17
にりがより急峻で111のより短い正の極短パルス晶型
ハニを1[のバイアス直流高電圧に重ねて、あるいは弔
にそのままで印加使用し、該極短パルス高電圧を進行波
として用いる所に特徴がある。すなhち切替スイッチ1
3を介して支柱12よりケーシングl内に侵入した極短
パルス高電圧の波頭はF部木平支持導体27を介して長
さ約6mのすべての線状コロナ放電極群8に分配され、
矢印30の方向に下方に進行する。そしてその間に吋向
電極J16,6°に向って強力なストリーマ−状の正コ
ロナ放電を生じ、その際急激にエネルギーを失って波高
部が欠損するため、約3mJ行するとコロナ発生能力を
失う、しかし更にama行すると絶縁物29で支持され
た開放状態の下端部に至り、ここで該パルス高電圧は同
一極性に全反射され、1人波と反射波が重なって波高値
が約2倍に持ちヒがり。Also, all other ffJs in Figures 1 and 2
(except for 7) are present in this example as well, but are omitted and not depicted.While Figures 1 and 2 use the corona electrode system as a lumped constant circuit, in this example 17
A positive ultra-short pulse crystal type honey with a steeper slope and a shorter length of 111 is superimposed on a bias DC high voltage of 1, or used as it is, and the ultra-short pulse high voltage is used as a traveling wave. The place has its own characteristics. In other words, selector switch 1
The wave front of the ultra-short pulse high voltage that penetrated into the casing l from the column 12 through the support conductor 27 of the F part is distributed to all the linear corona discharge electrode groups 8 with a length of approximately 6 m.
Proceed downward in the direction of arrow 30. During that time, a strong streamer-like positive corona discharge is generated toward the backward electrode J16, 6°, and at that time, the energy is rapidly lost and the wave height is lost, so the corona generation ability is lost after about 3 mJ. However, further ama travels to the lower end of the open state supported by the insulator 29, where the pulsed high voltage is totally reflected with the same polarity, and the single wave and the reflected wave overlap, and the peak value approximately doubles. Hold on.
ピーキングを生ずる。その結果再びパルス発生能力を回
収し1反射波はL一方に向って直行しつつ約3mはどの
開催力なストリーマ−状の正コロナ放電を生ずる。Causes peaking. As a result, the pulse generation ability is recovered again, and one reflected wave travels straight toward the L side, while generating a streamer-like positive corona discharge with a force of about 3 m.
その結果全長6mの各コロナ放’it極がその全体に渡
って強力な正コロナ放′心を生じて有効に脱硝・脱硫作
用を行なうこととなる。As a result, each corona emitting pole with a total length of 6 m generates a strong positive corona emitting center over its entire length, and effectively performs denitrification and desulfurization.
この様に化パルス高電圧を進行波として用いる場合は、
iFコロナ放゛市による波高部の減衰が著しいので。When using a pulsed high voltage as a traveling wave in this way,
The attenuation of the wave height due to iF corona release is significant.
縛端を開放としてピーキングを併用することが不Ir[
欠である。それでもコロナ伝送線路を余り長くすること
はσ味がなく、高々全長は6〜10m程度におさえない
とコロナ放′i′IIvjの中間部にコロナ放電の発生
しない部分が生ずる。したがって大jtのガスを処理す
るには コロナ7耽極系の並列を楡数を増す他はなく、
場合によりケーシングlを1−力に9 L+してこの部
分に同じN4潰のコロナ電極系をE部水モ支持導体27
を共通として対称状に反転配置仕るものを配設し、滞留
時間を長(する必要を生ずる。勿論この場合には碍管1
1をケーシングlの側壁に設けねばならない、また本例
でバイアス直流高圧准源の出力電圧とVj短高圧パルス
’If源の出力゛電圧を負極性とすると、各コロナ放′
It線8の長さは6mであり、また負パルス電圧の線上
での伝播中のコロナ放電に伴なう減衰ははるかに少ない
ので。It is difficult to open the bound end and use peaking together.
It is lacking. Even so, it is not beneficial to make the corona transmission line too long, and unless the total length is kept to about 6 to 10 m at most, there will be a portion in the middle of the corona radiation where no corona discharge will occur. Therefore, in order to process a large amount of gas, there is no choice but to increase the number of parallel 7-polarity systems.
If necessary, apply 9 L+ to the casing L to 1-force and connect the same N4 crushed corona electrode system to this part of the water support conductor 27 in the E section.
It becomes necessary to arrange the insulators in a symmetrical inverted arrangement with a common structure, and to lengthen the residence time.Of course, in this case,
1 must be provided on the side wall of the casing l, and in this example, if the output voltage of the bias DC high voltage source and the output voltage of the Vj short high voltage pulse 'If source are negative polarities, each corona radiation
Since the length of the It line 8 is 6 m, and the attenuation associated with the corona discharge during the propagation of the negative pulse voltage on the line is much less.
コロナ電極系は集中定数回路として働く、そこで使用す
る高II三ケーブル17(図に示されていない)を充分
長くして分離用伝送線路とする必要がある。この時放゛
市極群8にはバイアス直流高電圧に重ね極短パルス、H
’7i゛市圧がそのままの波形で印加され、脱硝―脱硫
を行なうと共に、排ガス中に含まれたダスト及び生成硫
安粒子を荷重してこれを電気集塵作用で対向7Ii極群
6゜6゛1.に捕集する。またスイッチ13を左に投入
すると負の極短パルス高電圧が直接コロナ電極系に印加
され 負コロナ放電を生成するのみならず、該コロナ゛
電極系の′電極間静電容Vを充電してII′Il嵐電界
を形成、やはり電気集塵作用を生ずる。(jjl、この
場合、コロナ放電極近傍のコロナ放電域から負イオンが
対向電極に向って移動、負イオン電流を生ずることによ
り、」;記?を極間静電容すに貯えられた電荷が放電さ
れてコロナ放電極8の電圧はCR減衰を示すので鋸南状
波となり、その頂部に急峻な極短パルス電圧の重なった
ものとなる。またケーブル17を短くしたり省略すると
コロナ放電極の電圧波形はに−i鋸南状波に、その波頭
部ですでに述べた速成振動による高周波減衰振動の重な
ったものとなる。The corona electrode system works as a lumped constant circuit, and the three high-II cables 17 (not shown) used there must be sufficiently long to serve as a separation transmission line. At this time, the broadcast pole group 8 has an extremely short pulse superimposed on the bias DC high voltage, H
'7i' city pressure is applied in the same waveform to perform denitrification and desulfurization, and at the same time, the dust contained in the exhaust gas and generated ammonium sulfate particles are loaded and collected by electrostatic precipitate action to the opposite 7Ii pole group 6°6' 1. to be collected. When the switch 13 is turned to the left, a negative extremely short pulse high voltage is directly applied to the corona electrode system, which not only generates a negative corona discharge but also charges the interelectrode capacitance V of the corona electrode system. 'Il forms a storm electric field, which also causes electrostatic precipitation. (jjl, In this case, negative ions move from the corona discharge region near the corona discharge electrode toward the counter electrode, producing a negative ion current, and the charge stored in the interelectrode capacitance is discharged.) As a result, the voltage at the corona discharge electrode 8 exhibits CR attenuation, resulting in a sawtooth wave with a steep ultra-short pulse voltage superimposed on the top.Furthermore, if the cable 17 is shortened or omitted, the voltage waveform of the corona discharge electrode will change. The Hani-i sawtooth wave is superimposed on the high-frequency damped oscillation due to the fast-forming oscillation mentioned above at the top of the wave.
第5図は負の極短パルス高電圧を用い、その全長LOが
式(2)の条件を満足する様な長い一本の線状コロナ放
電極8を相対する接地対向電極群6,6°の中間にジグ
ザグ状に張架し、かつ終端を開放としてコロナ伝送線路
とし、パルス電圧を進行波として伝播させつつ負コロナ
放電を行わしめる方式の本発明による排ガス脱硝・脱硫
装置の従断面図で1本例ではこの装置が電気集塵装置を
兼ねている0図においてケーシングl内に接地配設され
た垂直対向電極群6,6°は!I!序極を兼ねており、
絶縁された金属支持枠7に碍管3゜下部絶縁物29.E
部絶縁物32を介して張架固定された線状コロナ故電極
群8は、交り:に下部接続導線を兼ねたピーキング川コ
イル33.1一部接続導線を兼ねたピーキング用コイル
34で接続されて、ジグザグ状の長い終端開放のコロナ
伝送線路35を形成すると共に゛電気集塵装置の放it
極を兼ねている。FIG. 5 shows a group of grounded opposing electrodes 6, 6° facing each other with a long linear corona discharge electrode 8 whose total length LO satisfies the condition of equation (2) using a negative extremely short pulsed high voltage. This is a cross-sectional view of the exhaust gas denitrification/desulfurization equipment according to the present invention, which is a corona transmission line stretched in a zigzag shape in the middle, and has an open end to form a corona transmission line, and a negative corona discharge is performed while a pulse voltage is propagated as a traveling wave. In this example, this device also serves as an electrostatic precipitator.In Figure 0, a group of vertically opposed electrodes 6,6° are grounded inside the casing l! I! It also serves as the beginning,
A 3° insulator tube lower insulator 29 is attached to an insulated metal support frame 7. E
The linear corona late electrode group 8, which is suspended and fixed via an insulator 32, is connected at the intersection by a peaking coil 33.1 which also serves as a lower connection conductor, and a peaking coil 34 which also serves as a partial connection conductor. A long zigzag-shaped corona transmission line 35 with an open end is formed, and the discharge of the electrostatic precipitator is
It also serves as a pole.
そして各対向電極間に多数並夕晴に配設されたコロナ伝
送線路群35は入力端36のL方でこれらと接続された
分配用共通導線37.碍管38を介してvJ件スイッチ
13に接続され1本例の図では寒流イノダクタンス14
を介してバイアス直流高圧電源15の負の出力端fに接
続されるとともに、結合コンデンサー16、高圧同軸ケ
ーブル17を介して、1′4には示されていない高圧極
短パルス電源18の負の出力端りに接続されている。こ
れによりコロナ電送線路35には常時負の直流バイアス
高電圧が印加され、これに帆ねて負のJ4i短パルス高
電圧が碍管38をへて進行波としてケーシングlの内部
に進入、共通導体37を介して分配されたのち各コロナ
伝送線路35の入力端36に印加され、35のLを矢印
39の方向にジグザグ状に進行しつつ負コロナ放電を全
長にわたって発生、その放電化学作用で予めアンモニア
を添加ののち人口2よりケーシングl内に進入せるNO
x 、SO2を含む排ガスの脱硝と脱流を行う、またこ
の時負コロナ放電で生じた負イオンがガス中に浮遊した
ダストに射突してこれを倍力に負に荷電し、そのためダ
ストはクーロン力によってガスから分離し、対向電極を
かねた集J!!J4i群6.6°の表面に捕集される。A large number of corona transmission line groups 35 are arranged in parallel between the opposing electrodes, and a distribution common conducting line 37 is connected to the corona transmission line group 35 on the L side of the input end 36. In this example, the cold current inductance 14 is connected to the vJ switch 13 via the insulator pipe 38.
is connected to the negative output terminal f of the bias DC high-voltage power supply 15 via the coupling capacitor 16 and the high-voltage coaxial cable 17, and is connected to the negative output terminal f of the high-voltage ultra-short pulse power supply 18 (not shown at 1'4). Connected to the output end. As a result, a negative DC bias high voltage is constantly applied to the corona transmission line 35, and a negative J4i short pulse high voltage passes through the insulator tube 38 and enters the inside of the casing l as a traveling wave, and the common conductor 37 is applied to the input end 36 of each corona transmission line 35, and a negative corona discharge is generated along the entire length of the line 35 in a zigzag manner in the direction of the arrow 39. After adding NO, enter into the casing l from population 2.
x, the exhaust gas containing SO2 is denitrified and deflowed, and at this time, the negative ions generated by the negative corona discharge collide with the dust suspended in the gas and negatively charge it as a booster, so that the dust Separated from gas by Coulomb force and serves as a counter electrode J! ! Collected on the surface of J4i group 6.6°.
この際502がSO3に酸化され、更にNH3と結合し
て生じた硫安微粒子も同様に電気集塵作用により6,6
°の表面に捕集される。したがって該’11!極群6,
6゛に槌打装2ffi40により機械的#すをテえるこ
とにより捕集されたダスト層は下方に落下し、ホッパー
4内に受納される。この場合硫安粒子はその粒径が極め
て細かく、コロナ放゛−セ極群8にも堆積し、コロナ放
電を抑制する傾向があるので別の槌打装置41により、
8の支持枠7を槌打してこれを除去する。NOx 、S
O2およびダス上を除去された清浄ガスは直接スタック
へと導かれる。負極性の進行波パルス高電圧は正極性の
それに比べて電極間をMs絡する様な長いストリーマ−
状のコロナ放電を発生せず、コロナ放電はコロナ放’i
f!極の近傍領域に限定される。したがってガス通路は
コロナ放電領域から対向’1ttJ4+に向って魔れる
中極性の負イオ/のみに満され、市のストリーマ−・コ
ロナの様にガス間隙全体が粒子電荷を除電する作用をも
ったi■:負lJ4極性イオンで満たされることが少な
い、その結果負コロナ放電ではガス通路のほぼ全域でダ
スト粒子への負イオン射突による荷゛−でがnf能とな
り、 ’+1f気集塵作用が発現する。At this time, 502 is oxidized to SO3, and ammonium sulfate fine particles generated by combining with NH3 are also 6,6
Collected on the surface of °. Therefore, the '11! pole group 6,
The dust layer collected by applying a mechanical punch with a hammer device 2ffi40 at 6' falls downward and is received in the hopper 4. In this case, the ammonium sulfate particles have an extremely fine particle size and tend to accumulate on the corona discharge electrode group 8, suppressing the corona discharge, so a separate hammering device 41 is used to
The support frame 7 of 8 is hammered and removed. NOx, S
The O2 and clean gas removed over the dust are led directly to the stack. Compared to positive polarity traveling wave pulse high voltage, negative polarity traveling wave pulse high voltage has a long streamer that connects between the electrodes.
corona discharge does not occur, and corona discharge is
f! limited to the region near the poles. Therefore, the gas passage is filled only with medium-polarity negative ions flowing from the corona discharge region toward the opposite '1ttJ4+, and the entire gas gap has the effect of eliminating particle charges, like the streamer corona in the city. ■: Negative lJ4 is rarely filled with polar ions.As a result, in negative corona discharge, the load caused by negative ion bombardment of dust particles becomes nf in almost the entire gas passage, and '+1f air dust collection effect occurs. manifest.
すなわち1本発明による脱硝・脱硫装置をして電気集塵
装置を兼ねしめるためには負の441短パルス高電圧を
用いることが不nr欠の条件である。しがし1.述の如
く負コロナがコロナ放電域の近傍域のみに局限されるの
で (りその領域内でしか脱硝・脱硫が行われず、空間
の利用効率が、督いので大きなスペース、長い滞留時間
が必要となる。(2)またコロナの局在に伴う分だけ。That is, in order for the denitrification/desulfurization apparatus according to the present invention to also serve as an electrostatic precipitator, it is essential to use a negative 441 short pulse high voltage. Shigashi 1. As mentioned above, since the negative corona is localized only in the vicinity of the corona discharge area, denitrification and desulfurization are performed only within that area, and the space utilization efficiency is high, so a large space and long residence time are required. (2) Also, the amount due to the localization of the corona.
コロナ放電極?Ii位長当りの工2ルギー消費が少く
コロナ放゛1ヒに伴う極短パルス高電圧の波高部の欠損
が1「パルスに比へて格段に少くなる。換謹するとコロ
ナ伝送線路j、のコロナ放電成牛Mf能な有効長が長く
なる。Corona discharge electrode? Less energy consumption per Ii length
The loss of the wave height of ultra-short pulse high voltage due to corona discharge is much smaller than that of one pulse.In other words, the effective length of the corona transmission line J, which is capable of corona discharge Mf, is longer. Become.
しかしく1)、(2)の特性は脱硝・脱硫を大容積の゛
屯気集J1!装置内で行なう場合にはむしろ好都合であ
る、勿論この場合終端を開放してピーキングを行う必要
があることはj[の極短パルス高准圧を用いる場合と同
じである。However, the characteristics of 1) and (2) are that the large-volume tank air collection J1 can perform denitrification and desulfurization! It is rather convenient to perform the peaking in an apparatus; of course, in this case, it is necessary to open the terminal end and perform peaking, as is the case when using the extremely short pulse high quasi-pressure of j[.
本例で9J Flスイ;・チ13を左に投入すると負の
バイアス直流高圧電源15が切りはなされ負の極短パル
ス高電圧が直接ケーブル17から分配用共通導体37を
介して各コロ′す伝送線路35に印加され、そのFを進
行波パルス高電圧として伝播する。この場合パルス高゛
1π圧の波高値を充分高くしておくと強力な負コロナ放
電を発生して脱硝・脱硫作用を発揮する。またすでに述
へた理由でコロナ放電極8の電圧はCRM衰による負の
鋸南状l[ll電圧の波頭部に急峻なパルス電圧、又は
高−波の減衰振動(ケーブルI7を短くするか、とり除
いた場合)が東なったものとなり、電極間のガス通路に
直流゛直昇成分があられれて、ダストと生成硫安粒子の
Cけ気集塵が行われる0本例において下部のピーキング
コイル33のインダクタンスf4よりもE部のピーキン
グコイル34のインダクタンス値の方が大となっており
、これによって挿入点での伝送線路のサージインピーダ
ンスを順次にF−ばてパルス電圧のピーキングが行われ
る。その結果伝播中のコロナ放電によりパルス波高部が
次第に失われ、コロナ放゛宅が弱まるのを防+)−する
ことが出来る。この様なピーキングは以ドに示す様な別
の方法でも実行できる。In this example, when the 9J Fl switch 13 is turned on to the left, the negative bias DC high voltage power supply 15 is disconnected, and the negative extremely short pulse high voltage is directly applied to each roller from the cable 17 via the distribution common conductor 37. It is applied to the transmission line 35, and the F is propagated as a traveling wave pulse high voltage. In this case, if the peak value of the pulse height (1π pressure) is made sufficiently high, a strong negative corona discharge will be generated and the denitrification and desulfurization effects will be exhibited. In addition, for the reasons already mentioned, the voltage of the corona discharge electrode 8 is caused by CRM decay, resulting in a negative sawtooth shape l[ll voltage with a steep pulse voltage at the top of the wave, or a high-wave damped oscillation (by shortening the cable I7, In this example, the lower peaking coil The inductance value of the peaking coil 34 in the E part is larger than the inductance f4 of the pulse voltage 33, and thereby the surge impedance of the transmission line at the insertion point is successively F-distributed to perform peaking of the pulse voltage. As a result, the pulse height part is gradually lost due to the corona discharge during propagation, and it is possible to prevent the corona discharge from weakening. Such peaking can also be performed in other ways as shown below.
すなわち第6図(a)は第5図の実施例においてコロナ
伝送線路35を複数個の並列接続せる線状コロナ放’、
lf棒8のグループ(以下段とよぶ)を、更に直列!t
t続して形成し、その並列コロナ放電極致をlIm′i
序減少して伝送線路のサージインピーダンスをヒHする
ことによりパルス電圧のピーキングを行ったものである
0本例では第−rtの線状コロナ放′1を極群42が金
属技持枠7に]−11定せる1−下の絶縁物32.29
に絶縁支持された1−ド水f支持導体43.44に張架
固定せる3本の線状コロナ放電極8の並列接続されたの
から成り、第2段45は同様の上下の木Y支持導体43
°、44′に張架せる2本の並列接続せる線状コロナ放
電極8° 第3f々46はヒトで絶縁物32.29に張
架固定せる1本の線状コロナ放電極8”より成り、それ
ぞれ下端と1、端で接続導線33’、34°により水f
支持導体44と44゛、及び43°とコロナ放電極8″
の#:、端が接続されることにより42,45.46の
各段が直列接続されて1人力嬬36より終端47に向っ
て3段階にサージイアピータンスが1−硅する終端開放
のコロナ伝送線路35を形成している。これによりコロ
ナ放電によって波高部を欠損した直行波パルス電圧の充
分なピーキングが行われ、該コロナ伝送線路の全長にわ
たり均一かつ旺盛な負コロナ放電があられれる。同図に
おける1−2以外の番号の要素の名称と機能は第1図。That is, FIG. 6(a) shows a linear corona radiation line in which a plurality of corona transmission lines 35 are connected in parallel in the embodiment of FIG.
LF rod 8 groups (hereinafter referred to as stages) are further connected in series! t
t continuously, and its parallel corona discharge contact is lIm'i
The peaking of the pulse voltage is achieved by decreasing the surge impedance of the transmission line. ]-11 determine 1-lower insulator 32.29
The second stage 45 consists of three linear corona discharge electrodes 8 connected in parallel and fixed in tension on a first water support conductor 43 and 44 insulated and supported by the same upper and lower wooden supports Conductor 43
°, 44', two parallel-connected linear corona discharge electrodes 8° The third f46 consists of one linear corona discharge electrode 8'', which is stretched and fixed to an insulator 32.29 by a person. , water f by connecting conductors 33' and 34° at the lower and 1 ends, respectively.
Support conductors 44 and 44゛, and 43° and corona discharge electrode 8''
#: By connecting the ends, each stage of 42, 45, and 46 is connected in series, and the surge impedance increases from 36 to the end 47 in three stages. A transmission line 35 is formed. As a result, sufficient peaking of the orthogonal wave pulse voltage with the wave height portion missing due to the corona discharge is performed, and a uniform and vigorous negative corona discharge is generated over the entire length of the corona transmission line. The names and functions of elements numbered other than 1-2 in the figure are shown in FIG.
第2因、第514の同一番号の要素のそれと同じである
。ただしアンモニアの容3120.注入パイプ2!。The second factor is the same as that of the 514th element with the same number. However, the content of ammonia is 3120. Injection pipe 2! .
汀人ノズル22.!/]sスイッチ13につながる塞咬
イ7グクダンス14.バイアス直流高圧電源15.結合
コ/デノサー16.高圧同軸ケーブル17.高圧極短パ
ルス電源18は省略されて本図には画かれていない。Tanjin nozzle 22. ! /] s switch 13 connects to the occlusion 7 guk dance 14. Bias DC high voltage power supply 15. Binding Co/Denocer16. High voltage coaxial cable 17. The high-voltage ultra-short pulse power supply 18 is omitted and is not depicted in this figure.
第6図(b)は第6図(a)において菩列線状コロナ放
電極数を逐次減じてピーキングを行う代りにコロナ放電
極8a、8a’のIllをヒ方からド方に向けて減する
ことにより、これらの対向電極6.6°に対する静心1
乍j−を減じ、サージイアピータンスを連続的にド方に
向けて高めてピーキングを行ったもので、本例の方式は
特に+1°の極短パルス高電圧の印加時にそのピーキン
グを筒中に行う方υ、として適している。この様なコロ
ナ放電極8a 、8a”をピーキノグー放電極という
。Fig. 6(b) shows that instead of performing peaking by successively reducing the number of linear corona discharge electrodes in Fig. 6(a), Ill of the corona discharge electrodes 8a and 8a' is reduced from the H direction to the D direction. By doing this, the static center 1 with respect to these opposing electrodes 6.6°
However, peaking is performed by reducing j- and continuously increasing the surge impedance in the direction of do.The method in this example is particularly effective when applying a +1° ultra-short pulse high voltage. It is suitable for those who do υ. Such corona discharge electrodes 8a and 8a'' are called peak discharge electrodes.
IAにおける8a、8a’以外の番号のfCJの名称及
び機能は第6図(a)の同一番号の要素のそれと同じで
あり、更に[4においては寒流インダクタンス14.I
Eのバイアス直流高圧電源15.正の高圧極短パルス電
源18及び高圧同軸ケーブル17が省略されて画かれて
おらない。The names and functions of fCJs with numbers other than 8a and 8a' in IA are the same as those of the elements with the same numbers in FIG. I
E bias DC high voltage power supply 15. The positive high-voltage ultra-short pulse power supply 18 and the high-voltage coaxial cable 17 are omitted and not shown.
第7I4は本発す1のいま−っの実施例の縦断面図でコ
ロナ放電極8と非コロナ第三電極47及びこれらの両側
の一セ4の対向11i極6.6゛をもって圧電極式二ロ
ナ′屯極系を構成し、かつこれを長いコロナ伝送線路3
5として構成し、排ガスの脱硝・脱&L#果^を行う様
にした装置である0図において中間に前向支柱48゛を
イ「する非コロナ第3電極47を鞭ねた金属支持枠7の
相隣るル直金属社n4B 、48°、48”の中間に、
線状コロナ放電極8.8°がこれと?行に、これより絶
縁されて配設され、支持枠7のヒトの木F支持導体27
.28をHAす6&lI!′?31 、49 、5 o
及rJ27ニ固定されたF部絶縁物32によって張架固
定され、かつ接続導線33°によって直列接続されて一
本の長い終端開放の線状コロナ放′R極を形成し、それ
ぞれの両側の一対の非コロナ第三電極4B−48′ 、
4B’−48”及び一対の対向電極6.6°との間に4
個の部分コロナ伝送線路を形成し、これらが並列接続さ
れた一つのコロナ伝送線路35を形成している。金属支
持枠7は支柱12 、導158.スイッチ51.:li
f&(7ダクタンス14を介してバイアス直tIL高圧
′、It源15の負の出力端−fに接続されており、そ
の負のバイアス直ti高電圧は二連切替スイッチ52.
導1i53.M洩用高抵抗54を介してコロナ放電極8
にも印加されている。いま絶縁された。陽圧極短パルス
電源18から導体外皮55が絶縁された高圧同軸ケーブ
ル17の心線56と外皮55,4線53.二連の切替ス
イッチ52および導線57.58を介して供給された極
短パルス高電圧は1分配用共通導体37及び金属支柱1
2を介して長いコaす放′it極8の入力端36と金属
支!1枠7の左1一端59間に前者を負とする極性で印
加され1次いで8−48.8−48°、8−6.8−6
°からなる並列コロナ伝送線路、次いで8″−48′、
8’−48″。No. 7I4 is a vertical cross-sectional view of the present embodiment of No. 1 of the present invention, and is a piezo electrode type two with a corona discharge electrode 8, a non-corona third electrode 47, and opposing 11i poles 6.6゜ of one set 4 on both sides. A long corona transmission line 3
5, which is a device configured to denitrify and denitrate exhaust gas. In the middle of the adjacent Le Chokinzoku n4B, 48°, 48",
Is this the linear corona discharge electrode 8.8°? The human tree F support conductor 27 of the support frame 7 is arranged in a row and insulated from this.
.. 28 HA 6&lI! ′? 31, 49, 5 o
and rJ27 are stretched and fixed by the fixed F part insulator 32, and are connected in series by the connecting conductor 33° to form one long linear corona radiation R pole with an open end, and one pair on each side. non-corona third electrode 4B-48',
4B'-48" and a pair of opposing electrodes 6.6°
These partial corona transmission lines are connected in parallel to form one corona transmission line 35. The metal support frame 7 has pillars 12, leads 158. Switch 51. :li
The bias direct tIL high voltage' is connected to the negative output terminal -f of the It source 15 through the ductance 14, and the negative bias direct ti high voltage is connected to the dual selector switch 52.
Guide 1i53. Corona discharge electrode 8 via high resistance 54 for M leakage
is also applied. Now isolated. The core wire 56 and outer sheath 55 of the high voltage coaxial cable 17 with the conductor outer sheath 55 insulated from the positive voltage ultra-short pulse power supply 18, the four wires 53. The ultra-short pulse high voltage supplied via the double changeover switch 52 and the conductor wires 57 and 58 is connected to the common conductor 37 for distribution and the metal support 1.
2 through the long core a'it pole 8 input end 36 and metal support! A polarity is applied between one end 59 of the left side of one frame 7 with the former being negative, and then 8-48.8-48°, 8-6.8-6
parallel corona transmission lines consisting of 8″-48′,
8'-48''.
8°−6,8°−6°からなる終端開放のシ列コロナ伝
送線路を進行波パルス高電圧として伝播し、その間に1
ミとして8より48.48’、また8″より48°、4
8”に向って強力な負コロナ放′市を行い、排ガスの脱
硫・脱硝を行う、またこの際生じた負イオンはガス通路
にバイアス直IIL高圧電1Gi15の作用で形成され
ている直流電界の作用で対向電極6.6°へと駆動され
。A traveling wave pulse is propagated as a high voltage through an open-ended serial corona transmission line consisting of 8°-6, 8°-6°, and 1
48.48' from 8 as MI, and 48° from 8'', 4
A strong negative corona is released toward the 8" to desulfurize and denitrify the exhaust gas. The negative ions generated at this time are released in the direct current electric field formed by the action of the bias direct IIL high voltage electric 1Gi15 in the gas passage. The action drives the opposing electrode to 6.6°.
この間に排ガス中のダスト及びlト或硫安粒子に射突し
てこれを負にR−Iftし、クーロン力の作用で集塵極
をかねた対向電Mi6,6°上に分離捕集する。この方
式の特徴は非コロナ第3電極47を用いているため、こ
れとコロナ放’rtt極8.8°との距離を充分小さく
選定でき、高圧極短パルス電源の出力パルス市圧の値を
比較的低くしても両電極間に本発明のIMagl・18
2硫のための電界イ1条件を満足する高い電界を容易に
形成でさるシ、・、にある、勿論この場合負コロナの=
一部はコロナ放電極8.8° より対向電極6,6°に
向ってもa展し、/ヘイ7ス直fQ高圧を源15の出力
電圧を充分高くしておくと、コロナ放電極8.8′と対
向電極6,6°との間のガス通路19においても脱硝・
脱硫反応が行なわれる。尚スイッチ51を投入したまま
二連切替スイッチ52を右に投入すると、高圧極短パル
ス電源18よリケーブル17を介して供給される極短パ
ルス高電圧は結合フンデノサ−60’、60を介して導
線57.58に印加されるので、該高圧極短パルス電源
18は絶縁の必要がなくなり、また高圧同軸ケーブル1
7の外皮55も接地することが出来る。スイッチ5!を
オフするとメ曳イ7ス直流高電圧がコロナ放電極8.8
゛と非コロナ第三1ぜ極にかからなくなり、182硝番
脱硫作用は存続するが、’flt!:気集塵作用は消失
する。During this time, the dust and ammonium sulfate particles in the exhaust gas are bombarded with a negative R-Ift, and are separated and collected on the counter electrode Mi6.6°, which also serves as a dust collection electrode, by the action of Coulomb force. The feature of this method is that the non-corona third electrode 47 is used, so the distance between this and the corona radiation 'rtt pole 8.8° can be selected to be sufficiently small, and the value of the output pulse voltage of the high-voltage ultra-short pulse power supply can be IMagl 18 of the present invention between both electrodes even if it is relatively low.
The electric field for disulfuric acid can easily form a high electric field that satisfies the condition 1. In this case, of course, the negative corona =
A part of the corona discharge electrode 8.8° also expands toward the opposite electrode 6,6°, and if the output voltage of the source 15 is made high enough, the Also in the gas passage 19 between .8' and the counter electrode 6, 6°,
A desulfurization reaction takes place. If the dual selector switch 52 is turned on to the right while the switch 51 is left on, the ultra-short pulse high voltage supplied from the high-voltage ultra-short pulse power supply 18 via the re-cable 17 is transferred via the combined fundenosars 60' and 60. Since the voltage is applied to the conductors 57 and 58, the high voltage ultra-short pulse power source 18 does not require insulation, and the high voltage coaxial cable 1
The outer skin 55 of No. 7 can also be grounded. Switch 5! When the switch is turned off, the direct current high voltage is applied to the corona discharge electrode 8.8.
'flt!' and the non-corona third phase is no longer affected, and the 182 nitrate desulfurization effect continues, but 'flt! : Air dust collection effect disappears.
第8図は本発明のいま一つの実施例の従断面図で。FIG. 8 is a cross-sectional view of another embodiment of the present invention.
第71;4において非コロナ第三電極47の代りに線状
コロナ放電極61,61°、61”より成るコロナ第三
電極62を」−Fの水モ支持導体27.28に固定張架
して用い、61−61’、61’−61+の中間に線状
のコロナ放゛1を極8.8゛を1方においては−に部水
モ支持導体27を貫通する&J管31,31’、下方に
おいては下部水平支持導体28に固定された絶縁物29
.29°により張架して絶縁配設したものである。8゜
8°の1一端は分配用J(通導体37に接に&5れ碍管
38.4線57.−、ilj切替スイッチ52を介して
絶縁された高圧極短パルス電源18のIFの出力端−f
−に接続された高圧同軸ケーブル17の心線56に接続
されている。また1一部木モ支持導体27はその右端に
おいて金属支柱12.4線5B、スイッチ51.5QN
jjインダクタンス14を介してバイアス直流高圧電源
15の11.の出力端子と接続され、9!に二連切替ス
イッチ52を介してト記高圧同軸ケーブル17の絶縁さ
れた導体外皮55にIft続されている。したがって線
状コロナ放′1liJ48.8゛には常時は高抵抗54
を介して、線状コロナ第三電極61,61°、61”と
同様に、接地対向’iti極6.6°に対してiEのバ
イアス直流高電圧が印加されており、これに東ねて極短
パルス高電圧が8,8°を61.61’、61′″に対
して1[極性とする如き極性をもってコロナ放7It極
8,8゛に印加される。この場合には極短パルス高゛屯
圧の急峻な波頭部が1−からドに向って伝播する過程で
まず61.61’から8に向って、また6 1 ’、6
1“から8′に向って負のストリーマー状コロナ放電が
生じ、これに誘発されて8から61.61’ 及び6,
6°に向って、また8°から61’、61”及び6,6
゛に向って強力な正のストリーマ−状コロナ放電が生じ
て両コロナ放電極間及びコロナ放′電極8,8° と対
向電極6.6゛間のガス通路19を橋絡し、排ガスの脱
硝・脱硫を行なう、この場合8.8°の長さは約6mで
1下端がピーキング作用のある開放端となっているので
、すでに述べた理由で正コロナ放電に伴なう極短パルス
高電圧波高部の著しい欠損にも拘らず、はぼamの全長
にわたって均一な正負コロナ放電を生ずる1本例の様に
第三電極をもコロナ放’I!極とする時の利点は、(1
)第三電極61.61 ’、61”からの先駆負コロナ
放電による放電化学的脱硝・脱硫作用が加わること、(
2)このストリーマ−状先駆負コロナ放主による衝突’
il!離と光電離作用によりtめ両コロナ電極間及びガ
ス通路19に?ff Fが生成され、そのトコロナ放電
極8,8°近傍まで伸展した負コロナストリーマ−は、
8,8°の前面に強力な電子空間電/+r’、v界を生
ずるので、次の瞬間8.8゛から正するI[のストリー
マ−コロナ放電が極めて安定かつ弾力となり、脱硝・脱
硫作用がより有効に発揮されるという、−ムにある。−
二連切替スイッチ52を右に倒せば高圧極短パルス電源
18を絶縁する必要がなくなることは第7図の実施例と
同様であり、またスイッチ51をオフするとI[のバイ
アス直流高電圧が8.8’。In No. 71; 4, instead of the non-corona third electrode 47, a corona third electrode 62 consisting of a linear corona discharge electrode 61, 61°, 61" is fixed and stretched on the water moth support conductor 27.28 of "-F. 61-61', 61'-61+, a linear corona radiation 1 is placed between the poles 8.8' on one side and the &J tubes 31, 31' passing through the water support conductor 27. , below is an insulator 29 fixed to the lower horizontal support conductor 28
.. It is strung at an angle of 29 degrees and provided with insulation. One end of 8° 8° is the output terminal of the IF of the high voltage ultra-short pulse power supply 18 which is in contact with the conductor 37 and insulated pipe 38.4 wire 57. -f
- is connected to the core wire 56 of the high voltage coaxial cable 17 connected to. In addition, the 1st wooden support conductor 27 has a metal support 12.4 wire 5B and a switch 51.5QN at its right end.
11 of the bias DC high voltage power supply 15 via the inductance 14. It is connected to the output terminal of 9! It is connected to the insulated conductor sheath 55 of the high-voltage coaxial cable 17 via a dual changeover switch 52. Therefore, the linear corona radiation '1liJ48.8' always has a high resistance of 54
Similarly to the linear corona third electrodes 61, 61°, 61'', a bias DC high voltage of iE is applied to the ground facing pole 6.6°. A very short pulsed high voltage is applied to the corona emitter 7It pole 8,8' with a polarity such that 8,8° is 1 [polarity to 61.61', 61'''. In this case, in the process of propagating the steep wave front of the extremely short pulse high pressure from 1- to D, it first propagates from 61.61' to 8, and then from 61' to 61' to 6.
A negative streamer-like corona discharge occurs from 1" to 8', and is induced by this from 8 to 61.61' and 6,
towards 6° and from 8° 61', 61" and 6,6
A strong positive streamer-like corona discharge is generated in the direction of the corona discharge electrode, bridging the gas passage 19 between the corona discharge electrodes 8, 8° and the counter electrode 6.6, thereby denitrifying the exhaust gas.・Desulfurization is carried out. In this case, the length of 8.8° is approximately 6 m, and the lower end is an open end with a peaking effect, so for the reasons already mentioned, the extremely short pulse high voltage associated with positive corona discharge Despite the significant loss of the wave height, uniform positive and negative corona discharge is generated over the entire length of the tube.As shown in this example, the third electrode is also used for corona discharge! The advantage of using it as a pole is (1
) Addition of discharge chemical denitrification and desulfurization action by the pioneer negative corona discharge from the third electrodes 61, 61', 61'', (
2) Collision by this streamer-like precursor negative corona emitter'
Il! Between the two corona electrodes and the gas passage 19 due to separation and photoionization? The negative corona streamer that generated ff F and extended to the vicinity of the corona discharge electrode 8.8 degrees is
Since a strong electron space electric field /+r',v field is generated in front of 8.8°, the streamer corona discharge of I[, which corrects from 8.8° at the next moment, becomes extremely stable and elastic, resulting in denitrification and desulfurization effects. The goal is to be able to demonstrate more effectively. −
If the dual selector switch 52 is turned to the right, there is no need to insulate the high voltage ultra-short pulse power supply 18, as in the embodiment shown in FIG. .8'.
61.61’、61“に印加されなくなるのでガス通路
に直流バイアス電界がなくなり、極短パルス高電圧印加
峙における8、8゛から6.6”へのIEのストリーマ
−コロナ放111の進展が弱まり、脱硝・脱硫効果が減
するが、集塵効果があられれる。Since no voltage is applied to 61.61' and 61", there is no direct current bias electric field in the gas passage, and the IE streamer-corona emission 111 progresses from 8.8" to 6.6" when ultra-short pulse high voltage is applied. The denitrification and desulfurization effects will be weakened, but the dust collection effect will be reduced.
第9図は対向電極「1体もコロナ放電極とした二電極式
のコロナ電極系をもって本発明をχ施せるものの一例で
ある1図において63.64はそれぞれ矩形断面を右す
る素va2本より成る所の二重らせん電極で、それぞれ
上下端においてケーシング1の天井65に固定された二
重らせん溝を右する支持碍子66.67、木fビーム9
に[#定された二[有]らせん溝をイイする支持碍/−
68、69のらせん溝にねじ込まれて絶縁張架されてい
る。そして63.64の二本の素線70−71゜72−
73は下端において接続導線74.75によす1iいに
接続されており、これにより63.64は直列接続され
て一つの終端開放のコロナ伝送線路を形成している。そ
してその入力端79は導線76 、77 、6!J′i
?78を介して高圧同軸ケーブル17の心線56及び接
地された導体外皮55に接続され、これによって高I[
極短パルス電源18に接続されている。いまト記入力端
79に印加された極短パルス(5電圧は進行波として二
重らせん電極63の二本のJ線70.71に沿って下方
に伝播し 次いで74.75を介して二重らせん電極6
4の下端に移り、そのJ線72.73に沿って下方に伝
播し、その開放終#jA80に至り、ここで全長q4さ
れてピーキングが行われる。この間に63の素線70,
71及び64のJ:線72.73の全体に沿って両方の
2を;線から相F−素線に向って強力な負のストリーマ
−状コロナ放電と、lJ4素線間をJ4絡する強力な1
1のストリーマ−状コロナ放′Iftを発生し、アンモ
ニアガスを添加のに2人(12より導入された排ガスの
脱硝と脱硫を行う、浄化されたガスは出I+3より集塵
装置を介して硫安ダス上を除去のうえスター、夕へと排
出される。40.40°は7r井6にとりつけた槌打装
置で。Figure 9 shows an example of a system in which the present invention can be applied to a two-electrode type corona electrode system in which one electrode is a corona discharge electrode. Support insulators 66, 67, wooden f-beams 9, which are fixed to the ceiling 65 of the casing 1 at the upper and lower ends, respectively, have double helix electrodes at the double helix electrodes.
[#Support with two defined helical grooves/-
It is screwed into the spiral grooves 68 and 69 and is insulated. And 63.64 two strands 70-71°72-
73 are connected at their lower ends to connecting conductors 74.75, so that 63.64 are connected in series to form one open-ended corona transmission line. And its input end 79 is connected to conductors 76, 77, 6! J′i
? 78 to the core wire 56 of the high voltage coaxial cable 17 and the grounded conductor sheath 55, thereby providing a high I[
It is connected to an extremely short pulse power source 18. The extremely short pulse (5 voltage) applied to the input terminal 79 at this moment propagates downward along the two J lines 70.71 of the double helix electrode 63 as a traveling wave, and then passes through the double helix electrode 74.75. Spiral electrode 6
4, propagates downward along the J lines 72 and 73, and reaches its open end #jA80, where the total length is increased to q4 and peaking is performed. During this time, 63 strands 70,
J of 71 and 64: both 2 along the whole of line 72. Na1
Two people are required to generate a streamer-like corona discharge (Ift) and add ammonia gas (denitrification and desulfurization of the exhaust gas introduced from No. 12 is carried out. The purified gas is passed through a dust collector from output No. After removing the top of the dust, it is discharged into the star and evening.40.40° is a hammering device attached to 7r well 6.
−・πらせん電極の素線ヒに付着堆積する硫安ダス上を
槌打衝やによって下方のホッパー4に落下せしめ、排出
■5より外部に排出する0本例の特徴は画素tとも線状
コロナJIl[i極たる′―東らせん゛電極を使用した
ことで、すでに述べた如き負コロナと1コロナの協同的
相乗作用によって脱硝・脱硫効果を高め、更に電極の空
間装荷率を向!−でき、かつ多数本の電極を容易に取す
イ1けうるという構造1−の利点が大きい。- The ammonium sulfate dust deposited on the strands of the π helical electrode is dropped into the hopper 4 below by hammer blow, and is discharged to the outside from the discharge section 5.The feature of this example is that the pixel t also has a linear corona. By using the JIl [i-pole'-east helix electrode, the denitrification and desulfurization effects are enhanced by the cooperative synergistic action of the negative corona and the single corona as described above, and the space loading rate of the electrode is also improved! Structure 1 has a great advantage in that it is possible to easily remove a large number of electrodes.
第1θ図(a)は本発明に利用する極めて巾の短いパル
ス高1!圧を発生する為の高圧パルス電源の一回路方式
を示す0図において81は低圧主電源で)l圧変圧器8
2の一次側に接続されて交番F’1を圧を供給し、その
二次側に波高値150KVの交流高電圧を発生、これが
t波整IIL憲83.保護抵抗84.塞魔インダクタン
ス85を介してタンクコンデンサー86を負の!50K
Vに充電する。この場合はタンクコンデンサー86は全
流電ロミによりゼロ電圧からピーク゛屯圧迄充′屯され
るので、充′市に伴う回路損失は交流充電特有の極めて
小さなflにII−る、この充電半周期の期間内には、
該タンクコンデンサ−86の−・端と、高圧同軸ケーブ
ル17の一端に接続された固定火花電極87.88に介
在する回転火花スイッチ89の大地から絶縁された回転
−t90に90度の角度をもって固定された回転火花電
極91.92,93.94はいづれも87.813から
充分の離隔距離をもって遠ざかっており、この部分に火
花が発生することはない、すなわちこの回転火花スイッ
チ89は、90度の角度をもって配置され互いに導通せ
る4個の火花電極91〜94を有する大地から絶縁され
た回転子90と、これを上記二次側交流高電圧の周波数
に同期して回転させる電動機で、丁度整流器83が導d
状態にある半周期には回転火花電極91〜94が[M定
火花電極87.88から離隔しており。Figure 1θ (a) shows an extremely short pulse height of 1! which is used in the present invention. In figure 0, which shows a circuit system of a high-voltage pulse power supply for generating voltage, 81 is a low-voltage main power supply) l-voltage transformer 8
It is connected to the primary side of 2 and supplies pressure to the alternating box F'1, and generates an AC high voltage with a peak value of 150 KV on the secondary side, which is the t-wave rectifier IIL condition 83. Protective resistance 84. Negative tank capacitor 86 via blocking inductance 85! 50K
Charge to V. In this case, the tank capacitor 86 is charged from zero voltage to the peak pressure due to the total current flow, so the circuit loss due to charging is due to the extremely small fl characteristic of AC charging, which occurs during this half-cycle of charging. Within the period of
A rotary spark switch 89 interposed between the - end of the tank capacitor 86 and a fixed spark electrode 87. The rotating spark electrodes 91, 92, 93, 94 are all separated from 87, 813 by a sufficient distance, and no spark is generated in these areas. The rotor 90 is insulated from the earth and has four spark electrodes 91 to 94 arranged at angles and conductive to each other, and a motor rotates the rotor 90 in synchronization with the frequency of the secondary AC high voltage. is the guide d
During the half cycle in the state, the rotating spark electrodes 91 to 94 are separated from the constant spark electrodes 87 and 88.
次に交番り電圧の次の半サイクル、したがって昇圧変圧
器82の二次側交1%電圧の極性が反転し、整流器83
力<a+tU−状1gになった゛に周期の期間内に二対
の回転火花ii極91−93.92−94のいづれか=
一対が順次に【/lIl人定電極87.88に接近して
火花を発生させる様に位相調整器95の作用で供kA電
圧の位相、したがって1回転位相を制御された同期*0
機96より成る。いま回転火花スイー、チ89が火花に
よりオンすると、夕/クコンデンサー86の充TL電圧
が同軸ケーブル17のサージイノピーダンスZ、(純抵
抗R)を通じて放電、そのCR放?I!波形が負の極短
パルス高電圧の進行波として右方に伝播し、結合コンデ
ンサー16を介して本発明による排ガス脱硝自脱&1E
9i7297内に入り、千め負の直流バイアス高圧電!
!A15により寒流コンデンサー14を介して負のバイ
アス直流高電圧を印加されている所のジグザグ状の長い
線状コロナ放電極より成るコロナ伝送線路35に印加さ
れ、脱硝・脱輪・集塵作用を行う。Then, during the next half cycle of the alternating voltage, the polarity of the secondary AC 1% voltage of the step-up transformer 82 is reversed and the rectifier 83
If the force becomes 1g in the form of a+tU-, then within the period of the period, either of the two pairs of rotating sparks ii poles 91-93, 92-94 =
Synchronization in which the phase of the supplied kA voltage, and therefore the phase of one rotation, is controlled by the action of the phase adjuster 95 so that the pair sequentially approaches the constant electrode 87.88 and generates a spark *0
Consists of 96 machines. Now, when the rotating spark switch 89 is turned on by a spark, the charged TL voltage of the capacitor 86 is discharged through the surge inopedance Z, (pure resistance R) of the coaxial cable 17, and its CR emission? I! The waveform propagates to the right as a traveling wave of extremely short pulse high voltage with a negative waveform, and the exhaust gas is denitrified by the present invention via the coupling capacitor 16.
Enter the 9i7297 and use a thousand negative DC bias high voltage electricity!
! A15 applies a negative bias direct current high voltage through the cold current capacitor 14 to the corona transmission line 35, which consists of a long zigzag linear corona discharge electrode, and performs denitrification, wheel removal, and dust collection. .
第1θ図(b)は第10図(a)の例で、低圧交流r′
1u源81が商用周波交流1rt源98と逆並列接続の
サイリスター99.100の直列接続回路から成り、が
つ゛ト波整IQ器83の代りに余波整流器101を用い
た、(発IIに使用すべき極短パルス高圧電源の例の回
路方式を示し、他のすべてのffJはサイリスター99
.lOOの制御信号部102を除いて第10図(a)と
同様である0本例では交流主電圧に同期してそのt波毎
の適当な位相時点で交ifにサイリスター99,100
に制御信号部102から制御信号を供給し、これを・q
通せしめる。制御信号部102からは更に導線!03を
介して別の制御信号が位相調整器95に送られ、これに
より同期電動機96の回転位相を制御して、サイリスタ
ー99,100がオン状態にある時は回転火花スイー2
チ89の固定火花゛電極87.88と回転火花電極91
〜94が充分離隔していて火花を発生せず、サイリスタ
ー99.100がオフ状iムの時にのみF2火花゛1を
極が近接して火花を発生する様にしている。Figure 1θ (b) is an example of Figure 10 (a), where the low pressure alternating current r'
The 1u source 81 consists of a series connection circuit of a commercial frequency AC 1rt source 98 and a thyristor 99. The circuit system of an example of an extremely short pulse high voltage power supply is shown, and all other ffJs are thyristor 99.
.. 10(a) except for the control signal section 102 of lOO. In this example, the thyristors 99, 100 are synchronized with the AC main voltage at an appropriate phase point of each T-wave.
A control signal is supplied from the control signal section 102 to q
Let it pass. More conductors from the control signal section 102! Another control signal is sent via 03 to a phase adjuster 95, which controls the rotational phase of the synchronous motor 96 so that when the thyristors 99, 100 are in the on state, the rotational spark switch 2
fixed spark electrodes 87 and 88 of circuit 89 and rotating spark electrode 91
- 94 are sufficiently separated so that they do not generate sparks, and the F2 spark 1 is brought close to generate sparks only when thyristors 99 and 100 are in the off state.
第11図は第10図(a)、(b)のコロナ伝送線路3
5と対向電極6.6°の間に生ずる電圧Vの波形を示す
もので、Eは時間を示す、゛重圧波形は負のバイアス直
流高電圧Vdに負の極短パルス高電圧が周期的に信書し
たものとなる。したがって(Vd+Vp)が両電極間の
ガス通路に加わる電圧のピークf1となり、パルス市源
の出力電圧をVdの分だけ減らすことが出来て経済的と
なる。この場合負の極短パルス晶型If:により発生し
た負イオンは、負のバイアス直流高電圧により対向電極
6.6°へと駆動されるので、排ガス中のダストや脱硫
により生じた硫安ダス上を負イオンの射突で荷電する。Figure 11 shows the corona transmission line 3 in Figures 10 (a) and (b).
5 and the counter electrode 6.6°, where E indicates time. ``The heavy pressure waveform is a negative bias DC high voltage Vd and a negative extremely short pulse high voltage periodically. It will be a letter. Therefore, (Vd+Vp) becomes the peak f1 of the voltage applied to the gas passage between the two electrodes, and the output voltage of the pulse source can be reduced by Vd, which is economical. In this case, the negative ions generated by the negative ultra-short pulse crystal type If: are driven toward the opposite electrode at 6.6° by the negative bias DC high voltage, so that the negative ions generated by the negative ultrashort pulse crystal type If: is charged by the bombardment of negative ions.
そしてに記バイアス直瀉高電圧によりガス通路に直流゛
電界が存在するので、この*荷を帯びた粒子−を対向電
極6,6°に駆動・捕集するという電気集塵作用があら
れれる。しかし4Jk序を[1的とせず弔に排ガスの脱
硝・脱硫のみを目的とする場合、特に1Fの極短パルス
高電圧を用いる場合(この場合装置合間を大幅に縮小出
来る)にはバイアス直流高電圧を常時コロナ放電極に印
加しておくと、イオ/が直流電界により移動してイオン
電流が流れ、これに伴ってかなりのエネルギー損失を生
ずるので好ましくないこともある。この場合にはバイア
ス高電圧として直魔゛市圧の代りに形成の容易な111
の広いバイアス・パルス、tk・収用を用いると、イオ
ン電流による電力損失を大幅に低減できて好都合である
。Since a direct current electric field is present in the gas passage due to the bias direct voltage described above, an electrostatic precipitating action is performed in which the charged particles are driven and collected by the opposing electrodes 6 and 6°. However, when the purpose is only to denitrify and desulfurize the exhaust gas without using the 4Jk order, especially when using a 1F ultra-short pulse high voltage (in this case, the equipment interval can be significantly reduced), the bias DC If a voltage is constantly applied to the corona discharge electrode, the ions will be moved by the DC electric field and an ionic current will flow, which may be undesirable because it will cause considerable energy loss. In this case, 111, which is easy to form, can be used instead of the direct voltage as the bias high voltage.
It is advantageous to use a wide bias pulse of tk and expropriation to significantly reduce power loss due to ion current.
第12図は本発明に用いるためのこの様なバイアス・パ
ルス高1tC圧を併用した高圧極短パルス゛taの一例
である。104は高圧極短パルス電源で低圧「電源81
、シl用変圧器821両波整tQ器101.減R抵抗8
4、木繊インダクタンス85.結合コンデンサーを兼ね
たパルス波形成形用コンデンサー105.i&Il洩抵
抗106、及び固定火花電極107と接地された回転r
891にとりつけられた4個の回転火花電極91,92
.93.94.その駆動用同期電動器96.その位相調
整器95及びその制御信号部108が図示の如く結線、
配設されたものより成る。また109はバイアス・パル
ス高電圧を発生するための高圧バイアス−パルス′屯源
で、低圧商用周波数電源110.昇圧変圧器111、両
波整流器112.減衰抵抗113.寒流インダクタンス
114.タンクコンデンサー115.サイリスタースイ
ッチ本ml−116,これと逆並列に接続された!l’
!魔塁118.スイッチ素子ttSの制御信号部10B
、共振用インダクタンス117.整流器118と直列の
小さな保護インダクタンス119.残留電圧リセット用
サイリスタースイッチ120.その制御信号部108,
120の保護抵抗121.切替スイッチ122及びl
23 、 讐圧用パルス変圧fi124.小さな保護イ
ンダクタンス125.高圧導線12B、127.128
及び接地4MA129.出力端子130゜131が図示
の如く結線、配設されたものより成る。FIG. 12 is an example of a high-voltage ultra-short pulse (ta) using such a bias pulse height of 1tC pressure for use in the present invention. 104 is a high-voltage ultra-short pulse power supply, and low-voltage "power supply 81"
, transformer 821 for both wave rectifier tQ transformer 101 . Reduced R resistance 8
4. Wood fiber inductance 85. Pulse waveform shaping capacitor 105, which also serves as a coupling capacitor. i&Il leakage resistor 106, and fixed spark electrode 107 and grounded rotating r
Four rotating spark electrodes 91, 92 attached to 891
.. 93.94. The driving synchronous motor 96. The phase adjuster 95 and the control signal section 108 are connected as shown in the figure.
Consists of arranged items. Further, 109 is a high voltage bias pulse source for generating a high voltage bias pulse, and a low voltage commercial frequency power source 110. Step-up transformer 111, double-wave rectifier 112. Damping resistance 113. Cold current inductance 114. Tank condenser 115. Thyristor switch book ml-116, connected in anti-parallel with this! l'
! Magic base 118. Control signal section 10B of switch element ttS
, resonance inductance 117. A small protective inductance 119 in series with the rectifier 118. Thyristor switch for residual voltage reset 120. The control signal section 108,
120 protective resistors 121. Changeover switch 122 and l
23. Pulse transformation fi124 for internal pressure. Small protective inductance 125. High voltage conductor 12B, 127.128
and grounding 4MA129. The output terminals 130 and 131 are connected and arranged as shown in the figure.
高n’、J4i篤パルス電源104の出力端子132,
133は分敲用伝送線路を兼ねたケーブル17の入力端
で。High n', output terminal 132 of J4i pulse power supply 104,
133 is the input end of cable 17 which also serves as a transmission line for shunting.
その心線56と・4体外皮55に接続され、ケーブル1
7の出力端では心1Q56は脱硝・1脱硫装置97のコ
ロナ放電極JT 8に、また導体外皮55は接地された
対向電極群6.6°に接続されている。またバイアス会
パルス高IIミ’IIt源109の出力端f−130、
131はそれぞれ高圧極短パルス?It源104の出力
端子132.133に図の如く接続されている。いま切
替スイッチ122.123が図示の如く投入されている
時はパルス変圧器124は切り離されている。先づ低圧
り電源81の出力、電圧がゼロ値付近の値をとる時その
信号が導線!34を介して制御信号部108に伝えられ
、ここからトリガー用關御信号が4線135を介してサ
イリスター116の制御グリッドにILえられ、!16
がオンする。これにより充分に大きな静1電容S★Co
を有するタンクコンデンサー115の1Fの直流高電圧
がインダクタンス値りの共振用インダクタンス117.
導線126及び127.保護インダクタンス125.出
力端子−130,132及び4線!29.出力端一/−
131及び133を介し、更にケーブル17を介して脱
硝番脱硫装置97のコロナ放電極群8と対向電極群6゜
6°の間に印加され、その電極間静電容暖C1をコンデ
ンサー115の充電電圧■0のほぼ2倍近くの埴土Vp
oまで117のLとCIとの過渡振動によって共振充電
する。<ItLCoン)CIとしである0次に同じくL
とCIの11!4f!I振動によってCIの電圧VpO
がノー振イ/ダクタンス117.整tILlllB、保
護インダクタンス119を介してタンクコンデンサー1
15のCOに向って放電し、この−周期の過程でコロナ
放電極群8と対向電極群6.6°の間にその巾がLとC
Iで定まるIIの広いピーク値Vpoの正のバイアスパ
ルス高電圧が印加される。但しIni路損失のため常に
端F130.131間には直流小道圧Vrが残留し、こ
れを放置すると、これが累植してLとCIによる過渡振
動自体が起きなくなるので −周期の終りに108から
トリガー信号が導線136を介してリセット用サイリス
タースイッチ120にリーえられてこれをオンし、残留
電圧が小さな保護抵抗121 、及び該サイリスク−1
20を介して放電する。この場合切替スイッチ122.
123をそれぞれ反対方向に投入すると、このリセット
用サイリスタースイッチ120がすjり離され。The core wire 56 is connected to the outer skin 55 of the cable 1.
At the output end of 7, the core 1Q56 is connected to the corona discharge electrode JT 8 of the denitration/desulfurization device 97, and the conductor sheath 55 is connected to the grounded counter electrode group 6.6°. In addition, the output terminal f-130 of the bias pulse high II Mi'IIt source 109,
Is each 131 a high-voltage ultra-short pulse? It is connected to output terminals 132 and 133 of the It source 104 as shown. When the changeover switches 122 and 123 are turned on as shown, the pulse transformer 124 is disconnected. First, when the output voltage of the low voltage power supply 81 takes a value near zero, that signal is a conductor! 34 to the control signal unit 108, from which a trigger control signal is sent to the control grid of the thyristor 116 via the 4-wire 135, and! 16
turns on. This allows for a sufficiently large electrostatic capacitance S★Co
The 1F DC high voltage of the tank capacitor 115 having a resonance inductance 117. is equal to the inductance value.
Conductive wires 126 and 127. Protective inductance 125. Output terminals - 130, 132 and 4 wires! 29. Output end 1/-
131 and 133 and further via the cable 17 between the corona discharge electrode group 8 and the counter electrode group 6° 6° of the denitrification and desulfurization device 97, and the interelectrode electrostatic capacity C1 is applied to the charging voltage of the capacitor 115. ■Hanido Vp nearly twice that of 0
Resonant charging is performed by the transient vibration of L and CI of 117 up to o. <ItLCon) CI and 0th order also L
and CI's 11!4f! Voltage VpO of CI due to I vibration
But no vibration/ductance 117. tank capacitor 1 via protective inductance 119
15, and in the course of this cycle, its width is L and C between the corona discharge electrode group 8 and the counter electrode group 6.6°.
A positive bias pulse high voltage with a wide peak value Vpo of II determined by I is applied. However, due to the Ini path loss, the DC path pressure Vr always remains between the ends F130 and 131, and if this is left unattended, it will accumulate and the transient vibration itself due to L and CI will not occur, so - From 108 at the end of the cycle A trigger signal is passed to the reset thyristor switch 120 via the conductor 136 to turn it on, and the protective resistor 121 with a small residual voltage and the thyristor switch 120 are connected to each other.
20. In this case, the changeover switch 122.
123 in opposite directions, this reset thyristor switch 120 is released.
パルス変圧器124が接続され、上記バイアスーパルス
高電圧の)4圧が行なわれると共に該残留電圧Vrはパ
ルス変圧器124の二次/8線を介して放電されるが、
パルス変圧器の損失が加わる。さて上記バイアス・パル
ス高電圧がそのピークイめVpoに達した時、lO8か
らの信号で制御された位相調g器95でその回転位相を
ljl Wせる回転式火花スイッチ89のスリップリ/
グ137を介して接地された回転子4体90 f:に9
0の回転角をもって配置された回転火花電極91〜94
のいづれかが固定火花i極107に接近して火花を生じ
、結合コンデンサーを兼ねた静7I!容憂Cのパルス波
形成形用コンデンサー105の充電電圧を、該回転火花
スイッチ891分別用伝送線路を兼ねた高圧同軸ケーブ
ル17のサージインピーダンスZo(=R)を通して放
電し、その際のCR放電で生じたIllの極めて1υい
ピーク値Vpの1[の極短パルス高電圧が進行波として
ケーブル17L:を右に伝播し、かかる急峻なパルスを
通さないインダクタンス125の阻ロニ作用でト記バイ
アスパルス高電圧のピーク(4V p oに第13図に
示す川tこt埴してコロナ放電極群8と対向7It極群
6.6°間に印加され、(Vpo+Vp)によるピーク
電界Epがガス間隙に形成され有効な脱硝・脱硫作用を
著しく高い電力効率をもって達成する。The pulse transformer 124 is connected, and the above-mentioned bias-pulse high voltage) is applied, and the residual voltage Vr is discharged through the secondary/8 wire of the pulse transformer 124.
Pulse transformer losses are added. Now, when the bias pulse high voltage reaches its peak Vpo, the phase adjuster 95 controlled by the signal from lO8 adjusts the rotational phase of the rotary spark switch 89 to ljlW.
Four rotors 90 f: 9
Rotating spark electrodes 91 to 94 arranged with a rotation angle of 0
One of them approaches the fixed spark i pole 107 and generates a spark, and the static 7I which also serves as a coupling capacitor! The charging voltage of the pulse waveform shaping capacitor 105 of the agonizing C is discharged through the surge impedance Zo (=R) of the high voltage coaxial cable 17 which also serves as a transmission line for separating the rotary spark switch 891, and the CR discharge generated at that time is The extremely short pulse high voltage of 1[ with an extremely 1υ peak value Vp of Ill propagates to the right through the cable 17L as a traveling wave, and due to the blocking effect of the inductance 125 that does not allow such steep pulses to pass, the bias pulse height is reduced. The voltage peak (4 V po as shown in Figure 13) is applied between the corona discharge electrode group 8 and the opposing electrode group 6.6 degrees, and a peak electric field Ep due to (Vpo + Vp) is applied to the gas gap. It is formed and achieves effective denitrification and desulfurization effects with extremely high power efficiency.
:iS 14図(a)は本発明に用いるための極短パル
ス高電圧を発生する為の高圧極短パルス電源のいま一つ
の回路方式を示す0図において6より106に至る要素
の名称と機能は第10図(a)、(b)における同一番
号の要素のそれと同じである。しかし本例ではパルス成
形用の容礒性エネルギー貯蓄要素としてコンデンサー8
6の代りに高圧同軸ケーブル17自身を使用してコスト
低緘をはかっており、その入力端138で心線16と導
体外皮15の間の静電6發を正の高電圧に充電されtタ
ンクコンデンサー86から減衰用小抵抗139.塞泣イ
ンダクタンス140,141を介して充電する0次に該
高圧同軸ケーブル17の心線側出力g142に導線14
3を介して同軸火花スイッチ89が接続されており、こ
れがオンすると同軸ケーブル17の充’1を電圧が[口
の短かい矩形波の正の進行波パルス高電圧として結合コ
ンデンサー16−を介して正のバイアス直流高圧電源1
5によりJi−えられている正のバイアス直流高tし圧
に取得して1税硝・脱硫装2’197のコロナ放電極1
18と対向電極!?6,6°の間に印加され、脱硝脱硫
反応を行う、!、Q科スイッチ13を左に役人すると固
定火花電極144,145が11爆型の固定火花スイッ
チ147を構成し抵抗139と同軸ケーブル17の静電
容r−で定まる時定数でケちhる17の充電電圧が該火
花スイッチ147の火花電圧をこえる度にここで火花が
発生し、極短パルス高電圧が97の電極間に供給され脱
硝脱硫反応が行なわれる。この極短パルス高電圧は反射
されて逆方向に戻るが寒流インダクタンス140.14
1の阻1ト作用でそれ以1−電源内部に進入することな
く反射され、以下多千反射をくり返しつつ減衰する。:iS Figure 14 (a) shows the names and functions of elements 6 to 106 in Figure 0, which shows another circuit system of a high-voltage ultra-short pulse power supply for generating ultra-short pulse high voltage used in the present invention. are the same as those of the elements with the same numbers in FIGS. 10(a) and 10(b). However, in this example, the capacitor 8 is used as a capacitive energy storage element for pulse shaping.
The high-voltage coaxial cable 17 itself is used instead of the high-voltage coaxial cable 17 to reduce costs, and the electrostatic charge between the core wire 16 and the conductor sheath 15 is charged to a positive high voltage at the input end 138 of the t-tank. From the capacitor 86 to the small damping resistor 139. The conductor 14 is connected to the core side output g142 of the high-voltage coaxial cable 17 which is charged via the inductances 140 and 141.
A coaxial spark switch 89 is connected through 3, and when it is turned on, the voltage of the coaxial cable 17 is changed to a short rectangular positive traveling wave pulse high voltage via the coupling capacitor 16-. Positive bias DC high voltage power supply 1
5, the positive bias DC high pressure obtained by Ji-5 is obtained and the corona discharge electrode 1 of the nitrification/desulfurization equipment 2'197
18 and the counter electrode! ? It is applied between 6 and 6 degrees to perform the denitrification and desulfurization reaction! , when the Q switch 13 is turned to the left, the fixed spark electrodes 144 and 145 constitute a 11-type fixed spark switch 147, and the time constant determined by the resistor 139 and the capacitance r- of the coaxial cable 17 is used. Every time the charging voltage exceeds the spark voltage of the spark switch 147, a spark is generated, and an extremely short pulse high voltage is supplied between the electrodes 97 to carry out the denitrification and desulfurization reaction. This extremely short pulse high voltage is reflected and returns in the opposite direction, but the cold current inductance is 140.14
Due to the blocking action of 1, the light is reflected without entering the inside of the power supply, and thereafter it is attenuated by repeating thousands of reflections.
本例では容V性エネルギー蓄JA要素として高I]:同
軸ケーブル17を用いているが、その代りに第14図(
b)に示す様に86a、86a’・・・とインダクタン
ス140a、14θa′・・・を梯子型に接続して成る
。In this example, a high I] coaxial cable 17 is used as the capacitive energy storage JA element, but instead of that, the
As shown in b), inductances 86a, 86a', . . . and inductances 140a, 14θa', . . . are connected in a ladder shape.
LC梯子型エネルギーJJa22J l 7 aを用い
ることも出来る。LC ladder type energy JJa22J l7a can also be used.
第15図は本発明に使用すべき高圧極短パルス電源のい
ま一つの回路方式を・Rすもので、第12図における接
地回転火花スイッチの代りに固定火花電極107及び接
地の6f動式固定火花電極146よりなる自爆型固定式
火花スイッチ147を用いたものである。出力′ll正
圧oの正の直流高圧電源14Bと出力電圧−vbの負の
バイアス直流高圧電源15により減に抵抗84、寒流イ
ンダクタンス140および14を介して結合コンデンサ
ーを兼ねたパルス波形成形用コンデンサー105が図示
の極性でVo+Vbの電圧に充電される。その充St圧
が火花スイッチ147の火7E発生電圧をこえると自爆
的に火花Ml極107,146の間に火花が発生し、該
コンデンサー105の電力の端子149の電位は瞬時に
大地電位となり、他方の端子150は−(V O+ V
b ) トナ!J 、 t ”l’ ニー V b
ノ/< イアス直流高電圧を′Lえられている脱硝脱硫
反応のコロナ伝送線路35に対して−Voの電圧が加わ
る1次の瞬間コンデンサー105が電源148と15に
より105の静電容積と84の抵抗で定まる時定数で1
1fび充電されて元の状fEに復し、火花スイッチ14
7が14びオンし以Fこの動作がつづく、この過程で−
vOは1−記時定数でCR減衰し、そのCR減会電Fに
波形が、所′〃の極1υパルス+1’5 ’+’ti圧
となる。この場合火花電極107.146の消耗に伴い
両者の間隔が変化し、これに起因して火花スイッチ!4
7の火花iff圧がl: )L L、パルス電圧の1−
シtとその周波数低ドを生ずるので分圧器151.15
2により火花電圧を検出のトこれを火花゛重圧制御装置
153に人力し、火Iと電圧が−・オ、°となる様に火
花゛電極146を把持した操作部154を1一方に制御
駆動し、火花間隔をコントロールして火花°重圧を−・
定に保つ様にする。Fig. 15 shows another circuit system of the high-voltage ultra-short pulse power supply to be used in the present invention, in which a fixed spark electrode 107 is used instead of the grounded rotating spark switch in Fig. 12, and a 6f dynamic fixed grounding A self-destructive fixed spark switch 147 consisting of a spark electrode 146 is used. A pulse waveform shaping capacitor which also serves as a coupling capacitor is connected via a resistor 84 and cold current inductances 140 and 14 to a positive DC high-voltage power supply 14B with an output voltage of positive voltage o and a negative bias DC high-voltage power supply 15 with an output voltage of -vb. 105 is charged to a voltage of Vo+Vb with the polarity shown. When the charged St pressure exceeds the spark 7E generation voltage of the spark switch 147, a spark is generated between the spark Ml poles 107 and 146 in a self-destructive manner, and the potential of the power terminal 149 of the capacitor 105 instantly becomes the ground potential. The other terminal 150 is -(V O+ V
b) Tona! J, t “l” knee V b
ノ/< IAS The voltage of -Vo is applied to the corona transmission line 35 for the denitrification and desulfurization reaction, which is supplied with a DC high voltage. 1 with a time constant determined by the resistance of
The spark switch 14 is charged again by 1f and returns to its original state fE.
7 turns on 14 times and this operation continues, and in this process -
vO undergoes CR attenuation with the time constant 1-, and the waveform of the CR reduction current F becomes the predetermined pole 1υ pulse +1'5'+'ti pressure. In this case, as the spark electrodes 107 and 146 wear out, the distance between them changes, and this causes the spark switch! 4
The spark if pressure of 7 is l: )L L, the pulse voltage is 1-
The voltage divider 151.15
The spark voltage is detected by 2, and this is manually input to the spark pressure control device 153, and the operating unit 154 holding the spark electrode 146 is controlled and driven in one direction so that the spark I and the voltage are -, O, °. and control the spark interval to reduce the spark pressure.
Make sure to keep it constant.
本発明によるガス浄化装置を実際の排ガス浄化プロセス
に使用するには、多種多様の使用fffF′E、がある
。第16t4の(a)〜(e)はそのいくつかの例を小
すものである。斜線を施した部分155が本発明による
ガス浄化装置ある。同図(a)は1「のパルス高上I[
を用いた本装置155を排ガスダクトの途中に設居し、
その1.流側ダクト156の内の排ガス中たとえばアン
モニア等のJ当な添加剤を注入するめの容器20 、
+!’人y2x、汀入ノズル22より成る添加剤注入装
置157を1没けだものである。同図(b)は更にその
1−流側に横ガスを冷却して温度を下げ脱硝脱硫1のガ
ス浄化効率を向トせしめるためのガス冷却塔1511を
、また下流側に硫安等の生成量粒子を捕集するためのバ
グフィルタ−、スクラッへ−1ないしNO2)SO2等
の水溶性のガス状反応生成物を水・NaOH水溶液−N
a2cO3水溶液あるいは石灰乳等の吸収剤で除去する
ためのスフラッパー等、a当な後処理装置159を設け
たもので160はスタックである。同図(e)は三個の
!I序室161.162,163より成る電気集塵装置
164の1:流側集塵室161と、入[1ダクト156
内に未発明によるガス浄化装置155,155’を設け
たもので 155.155°にはそれぞれ正の極1リパ
ルス高電圧を用いて短い滞留時間内に脱硝脱硫等のガス
浄化反にを完了し、&&安等の生成微粒子を排ガス中の
ダストとJl−に集塵室162,163で電気集塵する
ものである。同図(d)は閲(C)ですべての集塵室t
at〜163に負の極短パルス高電圧を負の直流バイア
ス高電圧に東ねて用い1本発明によるガス浄化と電気集
塵装置r1体の負パルス荷電による集塵とを併わせ行う
ものである。同[14(e)は従宋の湿式スフラッパ一
方式による排ガス脱硫装置、バグフィルター1゛屯気集
涛1装置等の適当な前処理装置165のあとに本発す1
によるガス浄化装7155をとりつけたものである。When using the gas purification apparatus according to the present invention in an actual exhaust gas purification process, there are various uses fffF'E. 16th t4 (a) to (e) are small examples of some of the examples. A hatched portion 155 is the gas purification device according to the present invention. The figure (a) shows a pulse height of 1" above I [
This device 155 using the above is installed in the middle of the exhaust gas duct,
Part 1. a container 20 for injecting a suitable additive, such as ammonia, into the exhaust gas in the flow-side duct 156;
+! ``Person y2x is the one who immersed the additive injection device 157 consisting of the inlet nozzle 22.'' The figure (b) further shows a gas cooling tower 1511 on the 1-stream side to cool the horizontal gas to lower the temperature and improve the gas purification efficiency of denitrification and desulfurization 1, and on the downstream side to produce ammonium sulfate, etc. Water-soluble gaseous reaction products such as bag filters and scraps for collecting particles (1 to NO2) and SO2 to water/NaOH aqueous solution-N
A suitable post-processing device 159 such as a flapper for removal with an a2cO3 aqueous solution or an absorbent such as milk of lime is provided, and 160 is a stack. Figure (e) shows three! 1 of the electrostatic precipitator 164 consisting of the I forward chamber 161, 162, 163: the downstream dust collection chamber 161, the inlet [1 duct 156
Gas purification devices 155 and 155' according to an uninvented method are installed in the 155 and 155 degrees, and gas purification processes such as denitrification and desulfurization are completed within a short residence time using the positive pole and one repulse high voltage at 155 and 155 degrees, respectively. , && Yasu, etc. are electrostatically collected into dust and Jl- in the exhaust gas in dust collection chambers 162 and 163. In the same figure (d), all dust collection chambers t are inspected (C).
A negative extremely short pulse high voltage is applied to at~163 as a negative direct current bias high voltage to perform both gas purification according to the present invention and dust collection by negative pulse charging of the electrostatic precipitator R1. be. 14(e) is a wet-type flue gas desulfurization device using one type of wet fluttering flapper of the Congregation Song Dynasty, a bag filter 1, a tonne air collection 1 device, etc.
It is equipped with a gas purification system 7155.
尚本発明はたとえば集塵用円筒型バグフィルタ−内部に
線状コロナ放電極を設けた如き加電式バグフィルタ−に
おいて2.膿線状コロナ放電極に極短パルス晶型ハ:を
直接ないし結合コンデンサーを介しバイアス直流高゛重
圧に玉ねて印加することによりχ施してもよいことも云
うまでもない。The present invention is applicable to, for example, a cylindrical dust-collecting bag filter in which a linear corona discharge electrode is provided inside the electrostatic bag filter. It goes without saying that χ may also be applied by applying an extremely short pulse crystal type C to the corona discharge electrode directly or via a coupling capacitor to a bias DC high pressure.
【発り1の効果]
本発明は触媒、スフラッパー、電子ビーム等設備費、運
転費が高く保守の面倒な装置を用いることなく、χ全に
乾式で極短パルス高電圧によるコロナ放電の放電化学作
用によって排ガスの脱硝と脱硫を同時に11つ有効に行
う、したがって装置の腐蝕もなく、保守も容易で設備費
、運転費共に安い、また巾に脱硝、脱硫のみでなく、負
コロナ放電の利用により排ガス中のダストの電気集塵も
同じ装置内で行うことが出来るので、好適である。[Effects of Initiation 1] The present invention eliminates the need for equipment such as catalysts, flappers, electron beams, etc., which have high equipment costs and operating costs and is troublesome to maintain. It effectively denitrates and desulfurizes the exhaust gas at the same time by chemical action, so there is no corrosion of the equipment, easy maintenance, and low equipment and operating costs.In addition to denitrification and desulfurization, it also uses negative corona discharge. This is suitable because electrostatic collection of dust in exhaust gas can also be performed within the same device.
第1図は本発明による排ガス脱硝+1脱硫装置の−・実
施例の%断面図、第21)4はその横断面図である。1
li3[り、第4図、第5図、第6図(a)、第6図(
b)。
第7 [,4、第8図、および第91司、はそれぞれ本
発明の1Nっだ−じ施例の縦断面図を示す、第tOI;
4(a)、第1014(b)はそれぞれ本発明に用いる
高圧極短パルス、v源の異なった回路方式を示し、第1
1図はこれらの電源で得られる゛重圧波形を示す、第1
2図は本発明に用いる高圧J4I′ruノ′ルス’1l
tlのいま−・つの回路方式を小し 第131yjはこ
れにより得られる゛重圧波形を小す、第14図(a)お
よび第15図はそれぞれ本発明に用いる別の高圧極短パ
ルス電源の異なった回路方式を示す、第tald(b)
はLC梯f−やエネルギー蓄積費、モノ回路図を示す、
第16図(a)、:tS16図(b)、第16図(c)
、:A16図(d)、および第161:’2(e)は本
発明によるガス浄化装置をプロセスの78統内に設置し
て使用する場合のそれぞれWなった設置・使用形態を示
す。
+)4における主要要素の名称を記すと下記の通りであ
る。
l・・・・・・・・・・・・・・・・・・・・・・・・
ケーゾング2・・・・・・・・・・・・・・・・・・・
・・・・・ガス人口3・・・・・・・・・・・φ・・・
・・・・・・・・・ガス出口4・・・・・・・・・・・
・・・・・・・・・・・・・ホッパー5・・・・・・・
・・・・・・・・・・・・・・・・・ダスト排出[+6
.8゛・・・・・・・・・・・・・・・・・・・・・・
対向電極ないし集塵極8.8゛・・・・・・・・・・・
・・・・・・・・・・・コロナ放電極8a、8a’・・
・・・・・・・・・・・・・・・・・・ピーキング故7
If極13.51,122.123・・・・・・・・・
・・・切替スイッチ15・・・・・・・・・・・・・・
・・・・・・・・・・バイアスil’j流高圧電源16
、[10,80°、105 ・・・・・・・・・・・
・結合コンデンサー17・・・・・・・・・・・・・・
・・・・・・・・・・ケーブル+7a・・・・・・・・
・・・・・・・・・・・・・・LC梯−f型エネルギー
苓植ffJさ
18・・・・・・・・・・・・・・・・・・・・・・・
・ル゛11バー極短パルス電源13・・・・・・・・・
・・・・・・・・・・・・・・・ガス通路22・・・・
・・・・・・・・・・・・・・・・・・・・7ノモニア
ガス注入口23.158・・・・・・・・・・・・・・
・・・・・・入目ダクト33.34 ・・・・・・・・
・・・・・・・・・・・・ピーキングコイル35・・・
・・・・・・・・・・・・・・・・・・・・・コロナ伝
送線路40.41・・・・・・・・・・・・・・・・・
・・・槌打装置48.48’ 、48−・・・・・・・
・・・・・・・・屯直導体柱第三電極52・・・・・・
・・・・・・・・・・・・・・・・・・二吐切科スイッ
チ[fl、81’Jl−・・・・・・・・・・・・・・
・線状コロナ放7I!極としての第三電極
81、目0・・・・・・・・・・・・・・・・・・・・
低圧交流−E ’iIt源82)II+・・・・・・・
・・・・・・・・・・・・・4圧変圧器83.118・
・・・・・・・・・・・・・・・・・・・半波整tlL
器85・・・・・・・・・・・・・・・・・・・・・・
・・寒流イ/ダクタンス8JHa、I][la’ 、+
15.10.目1 ・・夕/クコンデンサ89・・・・
・・・・・・・・・・・・・・・・・・・・[I71転
火花スイッチ95・・・・・・・・・・・・・・・・・
・・・・・・・位相調整器96・・・・・・・・・・・
・・・・・・・・・・・・・回期電動器99.100.
116.120・・・・・・・・・・サイリスタlot
、+12・・・・・・・・・・・・・・・・・・両波整
流器+02・・・・・・・・・・・・・・・・・・・・
・・制’Jl信号部1!7・・・・・・・・・・・・・
・・・・・・・・・共振インダクタンス!24・・・・
・・・・・・・・・・・・・・・・・・パルス変圧器1
40.141.140a、140a゛・・” ・・・・
インダクタンス147・・・・・・・・・・・・・・・
・・・・・・・自爆型【M定式火花スイッチ148・・
・・・・・・・・・・・・・・・・・・・・高圧直流゛
屯源151.152・・・・・・・・・・・・・・・・
・・分圧抵抗+53・・・・・・・・・・・・・・・・
・・・・・・火花電圧制御部154・・・・・・・・・
・・・・・・・・・・・・・操作部155.155′・
・・・・・・・・・・・・・・・・・ガス浄化装置+5
7・・・・・・・・・・・・・・・・・・・・・・添加
剤注入装置+511・・・・・・・・・・・・・・・・
・・・・・・ガス冷却塔+59・・・・・・・・・・・
・・・・・・・・・・・後処理装置180・・・・・・
一番−・・・−・9・・・・・スタックle 1.16
2.183・・・・・・・・・・・・・・!l!塵室1
fi4・・・・・・・・・・・・・・・・・・・・・・
電気集塵!A 21165・・・・・・・・・・・・・
・・・・・・・・・前処理装置以1−
+3−−−− tη看スイソ手
(4〜−−1艦−イ79−クタ;ス
+’l −−−一 息圧爪軸ゲーフ1し+8−−−一本
庄奥ン雉〕ぐルスtJ、1(1−−−電力・ス五了各
zo−−yンt=yZt、 2+−−−?−支入/
ぐイア: 22−−−fit:tblX=$25−−
−−R’l+l汁藺電柚
23−−−・へロタ゛クト
4Q−−一濤J静2丁’fJL
63.6ゲー二皇ら仕ん電1士
65−−−−一ケーンシ7天群
h)
一一郭
211!!!
4g、+g: 4g’−−−登Jl、tA社+q、5o
−−−−−4$’を
引−−−−’−’−−tルリスイフ斗
51−−−−−−一・二1切ダスイ°ソ+55−−−−
−−一耘6A軸ケ=71−4を参P)Jls&−−−−
−−−4工I(k撃
(、Q、60’−−−−m−[なコンテ−ノブ−g+、
6+’、6+”−−−7章跋コ0すL電桐i1(この才
zt社
5デー−−−−−−一鬼上鳩
62−−−−−−−−コロナオニ電1主qO−−−−−
−−−−FiJtta+
+5q−−−−−−−−スt−tyav>fニ
ー’、’q”t ) −−−−’ #i大賛制せq5−
−−−−−−−、tt#j!l¥z″%−−−−−−−
一目期flh成
Q’?−−−−−−−一成桶・賊扶茗1qg −−−−
−−−−fHyp、匙及邸夫1主電、源。
qj 100,11&−−−ブイリスターIo+、11
z−−−−−/r7Mu邊に;to+−一−−−−X圧
ネジ夫豆ノぐルスを源+o5 −−−−−一創り台コシ
テ゛ノサーIOら一一一−−−−;為;(゛訃撞亀1o
7−−−−−−−の定火花を址
+og−−−−−−−%l1llT!!1Pto’j−
−−−−−一中、l広1.篤五・)でもスを珈(ハ′A
アスリぐルス高丘傷3脚、)118−−−−−−一斐良
工′
口へ一−−−−−J)%1インク・フタシス+1’l−
−−−−−−スXムインク゛クタシスオ 1λ 已
l55.+5r’−−−−賎hH−nlhAB*15&
−−−−−−一 八〇り゛クト+57−−−−−−
−51L1#ノニt、x、’x115B −−−−−−
一方°゛ス;予%P工1+5R−−−−−−一復A埋落
1
16o−−−−−−−スタック
165−−−−−−−一佑春裡S蛋
(e)
(d)
手続補正書(自発)
昭和61年8月27日
1!許庁長官 殿
1、事件の表示 昭和61年特許願第134475号
2)発明の名称 極短パルス高電圧加電式ガス浄化装
置3゜補+Eをする者
事件との関係 特許出願人
/l 、 t+li正の対象
「明細書」の[持3’F3+1求の範囲」の欄5、補正
の内容
「明細書」の「特許請求の範囲」の(■の全文を別紙−
4−−一−−−4.7どボア〉\
特許請求の範囲
(1)オ、48酸化物、硫ゲf酸化物Tのガス状lり染
物質を含む浄化すべきガスを導入するためのガス入目と
、浄化後のガスを排出するためのガス出口を備えたケー
シング内のガス通路に、少なくとも一個をコロナ放“上
極、少なくとも他の一個を1偵コロナ放電極と対向した
対向電極として相II:に、絶縁の−1−配設せる二個
縁」―の独ヴな電極より成るコロナ電極系を設け、該コ
ロナ電極と他の−L極との間にパルスl+の極めて短い
極短パルス高゛屯圧を印加するための容早性エネルギー
蓄積′AI素、その充′七用゛It!′源及び放電用高
速スイッチ酋未より成る高圧極5Uパルス電源を設けた
所のガス浄化装置において、該lY、′i圧極1uパル
ス電源の出力J4+短パルス高電圧が、該コロナ放゛心
棒と該対向゛電極間の距層的モ均゛心界強度の時間的ピ
ーク(AEpを、相対ガス密度dのもとで臨界伯E p
o = 8 d (kV/am)以1.たらしめる
如き波、77iイfimpを右することを特徴とする所
のガス浄化装置。
r2)特+tt l17求(’) D 囲(1) +w
記a (’) 装置1: h ’r’ で、l、、A
J4i短パルス高゛屯Jf:の′l’、 (7III+
が’fl以下であることを特徴とする所のガス浄化装置
。
(3)特許請求の範囲(1)および(2)のいづれかに
記載のJA21において、該容量性エネルギー蓄桔要素
がコンデンサーであることを特徴とする所のガス浄化装
置。
(4)特許請求の範囲(1)および(2)のいづれかに
記載の装置において、該容量性エネルギー;v7積要素
が高圧同軸ケーブルであることを特徴とする所のガス浄
化装置。
(5)特許請求の範囲(1)および(2)のいづれかに
記載の?i乙において、該容品性エネルギー?!i積要
素がそれぞれ複数個のコンデンサーとインダクタンスの
LC梯子型接続回路であることを特徴とする所のガス浄
化装置。
(6)特許請求の範囲(1)より(5)までのいづれか
に記載の装置において、該放′−せ用高速スイッチ要素
が回転火花スイッチであることを特徴とする所のガス浄
化装置。
(7)特許請求の範囲(1)より(5)までのいづれか
に記載の装置において、該放電用高速スイッチ′j2素
が固定式火花スイッチであることを特徴とする所のガス
浄化装置。
(8)特許請求の範囲(’l)より(7)までのいづれ
かに記載の装置において、該コロナ電極系がコロナ放電
極と対向電極のみから成る二゛電極系であり、該他の電
極が対向″−を極であることを特徴とする所のガス浄化
装置。
(9)特許請求の範囲(8)に記載の装けにおいて、該
対向’+を極が非コロナ電極であることを特徴とする所
のガス浄化装置。
(10)特許請求の範囲(8)に記載の装置において、
該対向?!を極がコロナ放電を行なうコロナ放電極であ
ることを特徴とする所のガス浄化装置。
(Iり特許請求の範囲(1)より(7)までのいづれか
に記載の装置において、該コロナ1せ種糸がコロナ放電
極、対向電極の他、該コロナ放電極の近傍に両電極より
絶縁されて配設せる第三電極を有する=電極系であるこ
とを特徴とする所のガス浄化装置。
(!2)特許請求の範囲(11)に記載の装置において
、該第三電極と該対向?tt極の間に直流高電圧を印加
するための直流高圧電源を有し、かつ該極短パルス高電
圧を該コロナ放電極と該他の電極としての該第三電極の
間に印加することを特徴とする所のガス浄化装置。
(13)特許請求の範囲(II) 、 (+2)のい
づれかに記載の装置において、該第三電極が非コロナ電
極であることを特徴とする所のガス浄化装置。
(14)4¥許請求の範囲(11) 、 (+2)のい
づれかに記載の装置において、該第三電極がコロナ電極
を行なうコロナ放電極であることを特徴とする所のガス
浄化装賢。
(15)特許請求の範囲(1)より(14)までのいづ
れかに記載の装置において、該コロナ放71tJ4iと
該他の電極との間に予めバイアス高電圧を印加するため
のバイアス高圧電源を設け、該バイアス高電圧に毛ねで
これと同極性の該極短パルス高電圧を結合コンデンサー
を介してlJ4 電極間に印加することを特徴とする所
のガス浄化装置。
(16)特許請求の範囲(15)に記載の装置において
、該バイアス高圧゛IIi源が直流高圧電源であること
を特徴とする所のガス浄化装置。
(17)特許X+を求の範囲(15)に記載の装置にお
いて、該バイアス高圧電源が該極短パルス高電圧の半値
【11よりも充分に長い111を有するバイアス用パル
ス高電圧を発生する所のバイアス・パルス高圧電源であ
ることを特徴とする所のガス浄化装置。
(18)特許請求の範囲(1)より(17)までのいづ
れかに記載の装置において、該コロナ電極系として該コ
ロナ放’4B4.該対向電極、該他の電極の中の少なく
とも一つの長さが少なくともそのにを伝播する該J4k
fパルス高′心圧の幾何学的長さの半分以上であり、か
つその続端が開放されている様なコロナ伝送線路を用い
ることを特徴とする所のガスrtr化装置。
(19)特許請求の範囲(18)に記載の装置において
、該コロナ伝送線路を構成する少なくとも−・つの長ざ
の長い電極の少なくとも一つ以」−の中間点においてピ
ーキ/グ用コイルを挿入することを特徴とする所のガス
浄化装置。
(2)特許請求の範囲(18)に記載の装置において、
該コロナ伝送線路の全長を複数個の部分線路に分かち、
そのド流端の部分線路を除く部分線路が複数個のコロナ
放電極の並列接続せるものより成り、かつその並列接続
のコロナ放電極数が−I−,波端よりF流端に向って逐
次減少する如きものであることを特徴とする所のガス浄
化装置。
(2)特許請求の範囲(1)より(18)までのいづれ
かに記載の装置において、該コロナ放電極が帯状でかつ
入力端から終端に向ってその巾を減する如きピーキング
用コロナ電極であることを特徴とする所の浄化装置。
(2)特許請求の範囲(1)より(20)までのいづれ
かに記載の装置において、該コロナ放電極が断面が円形
の線状コロナ放電極であることを特徴とする所のガス浄
化装置。
(23)特許ニー1求の範囲(1)より(2G)までの
いづれかに記載の装置において、該コロナ放電極が断面
が多角形の線状コロナ放電極であることを4[とする所
のガス浄化装置。
(2)特許請求の範囲(1)より(20)までのいづれ
かに記載の装置において、#コロナ放ffi極が断面が
星形の線状コロナ放電極であることを特徴とする所のガ
ス浄化!装置。
(25)特許請求のRIJll(1)より(20)まで
のいづれかに記載の装置において、該コロナ放電極がス
トリップ状の線状コロナ放電極であることを特徴とする
所のガスn−化装置。
(2)特許請求の範囲(1)より(20)までのいづれ
かに記載の装置において、該コロナ放?ItJ4iが突
起(・1 &Q状コロナ放電極であることを特徴とする
所のガス浄化装置。
(27)特、;乍jli求の範囲(1)より(20)ま
でのいづれかに記載の装置において、該コロナ放電極が
突起付棒状コロナ放゛電極であることを特徴とする所の
ガス浄化装置。
(2)特許請求の範囲(1)より(20)までのいづれ
かに記載の装置において、該コロナ放電極が突起付スト
リップ状コロナ放電極であることを特徴とする所のガス
浄化装置。
(2)特許請求の範囲(1)より(28)までのいづれ
かに記載の装置において、該極短高圧パルス電源と該コ
ロナ電極系とを高圧同軸ケーブルによって接続し、かつ
Ii#同軸ケーブルの長さを少なくともその一ヒで伝播
する該極短パルス高電圧の幾何学的長さ以Fとして、こ
れに分離用伝送線路の作用を附与したことを特徴とする
所のガス浄化!A ;!1 m
(30)特許請求の範囲(1)より(9)までおよび(
11)より(23)までのいづれかに記載の装置におい
て、該コロナ放、tJ*および該対向電極がそれぞれ電
気集塵装置における放ffi極および集塵極であり、該
ケーシングがその下方に捕集粒子を受納するためのホッ
パーと。
これを外部に排出するための排出口を有し、排ガスの浄
化に加えてガス中の微粒子の電気集塵を行なうことを特
徴とする所のガス浄化装置。
(31)特許請求の範囲(1)より(30)までのいづ
れかに記載の装置において、該コロナ放電極、対向電極
の中少なくとも御名に機械的衝撃を与えるための槌打装
置を設けたことを特徴とする所のガス浄化装置。
(32)特許請求の範囲(1)より(31)までのいづ
れかに記載の装置において、該コロナ’1ttJSi系
を電気集塵装置のケーシング内に配、没したことを特徴
とする所のガス浄化装置。
(33)特許請求の範囲(1)より(32)までのいづ
れかに記載の装置において、該対向tJ4iないし集塵
極表面に液膜を形成する手段を具備したことを特徴とす
る所のガス浄化装置。
(34)特許請求の範囲(1)より(33)までのいづ
れかに記載の装置において、該浄化すべきガスに予め反
応促進用添加剤を添加するための添加剤注入装置を備え
たことを特徴とする所のガス浄化装置。
(35)特許j+7求の範囲(34)に記載の装置にお
いて、該添加剤注入装置がアンモニア注入装置であるこ
とを特徴とする所のガス浄化装置。
(38)特許請求の範囲(1)より(35)までのいづ
れかに記載の装置において、該浄化すべきガスに予め前
処理を施すためのガス前処理装置を備えたことを特徴と
する所のガス浄化装置。
(37)特許請求の範囲(36)に記載の装置において
、該ガス前処理装置がガス冷却塔であることを特徴とす
る所のガス浄化装置。
(38)特許請求の範囲(1)より(37)までのいづ
れかに記載の装置において、浄化後のガスを更に後処理
するためのガス後処理装置を備えたことを特徴とする所
のガス浄化装置。
(33)特許請求の範囲(38)に記載の装置において
、該ガス後処理装置が反応後のガスを吸収するためのガ
ス吸収装置であることを特徴とする所のガス浄化装置。
(40)特許請求の範囲(38)に記載の装置において
、該ガス後処理装置が集塵装置であることを特徴とする
所のガスb化装置。Fig. 1 is a cross-sectional view of a -% embodiment of the exhaust gas denitrification +1 desulfurization apparatus according to the present invention, and Fig. 21) 4 is a cross-sectional view thereof. 1
li3 [ri, Fig. 4, Fig. 5, Fig. 6 (a), Fig. 6 (
b). 7th [, 4, 8, and 91] respectively show longitudinal cross-sectional views of the 1N-dad embodiment of the present invention, tOI;
4(a) and 1014(b) respectively show different circuit systems of the high-voltage ultra-short pulse and v source used in the present invention.
Figure 1 shows the pressure waveforms obtained with these power supplies.
Figure 2 shows the high-pressure J4I'ru Nor'1l used in the present invention.
The current circuit system of tl is reduced, and No. 131yj is used to reduce the heavy pressure waveform obtained by this. Figs. Part (b) shows the circuit system
shows the LC ladder f-, energy storage cost, mono circuit diagram,
Figure 16(a), :tS16(b), Figure 16(c)
, :A16 (d) and No. 161:'2 (e) respectively show the installation and use configurations W when the gas purification apparatus according to the present invention is installed and used in the 78th process unit. +) The names of the main elements in 4 are as follows. l・・・・・・・・・・・・・・・・・・・・・・・・
Kezong 2・・・・・・・・・・・・・・・・・・
・・・・・・Gas population 3・・・・・・・・・φ・・・
・・・・・・・・・Gas outlet 4・・・・・・・・・・・・
・・・・・・・・・・・・Hopper 5・・・・・・・
・・・・・・・・・・・・・・・・Dust discharge [+6
.. 8゛・・・・・・・・・・・・・・・・・・・・・
Counter electrode or dust collecting electrode 8.8゛・・・・・・・・・・・・
......Corona discharge electrodes 8a, 8a'...
・・・・・・・・・・・・・・・Peaking failure 7
If pole 13.51, 122.123...
・・・Selector switch 15・・・・・・・・・・・・・・・
・・・・・・・・・Bias il'j style high voltage power supply 16
, [10,80°, 105 ・・・・・・・・・・・・
・Coupling capacitor 17・・・・・・・・・・・・・・・
・・・・・・・・・Cable +7a・・・・・・・・・
・・・・・・・・・・・・・・・LC Kada-f type energy reishi ffJsa18・・・・・・・・・・・・・・・・・・・・・
・Rules 11 bar ultra-short pulse power supply 13...
...... Gas passage 22...
・・・・・・・・・・・・・・・・・・・・・7 Nomonia gas inlet 23.158・・・・・・・・・・・・・・・
・・・・・・Inlet duct 33.34 ・・・・・・・・・
・・・・・・・・・Peaking coil 35...
・・・・・・・・・・・・・・・・・・Corona transmission line 40.41・・・・・・・・・・・・・・・・・・
... Hammering device 48.48', 48-...
......Ton straight conductor column third electrode 52...
・・・・・・・・・・・・・・・・・・ Double discharge switch [fl, 81'Jl-・・・・・・・・・・・・
・Linear Corona Radiation 7I! Third electrode 81 as a pole, eye 0...
Low voltage AC-E 'iIt source 82) II+...
・・・・・・・・・・・・4 voltage transformer 83.118・
・・・・・・・・・・・・・・・・・・ Half wave straightening tlL
Vessel 85・・・・・・・・・・・・・・・・・・・・・
・・Cold current I/ductance 8JHa, I] [la', +
15.10. Eye 1...Evening/Ku capacitor 89...
・・・・・・・・・・・・・・・・・・・・・ [I71 Rolling spark switch 95・・・・・・・・・・・・・・・・・・
......Phase adjuster 96...
・・・・・・・・・・・・Recycle electric motor 99.100.
116.120・・・・・・・・・Thyristor lot
,+12・・・・・・・・・・・・・・・Double wave rectifier+02・・・・・・・・・・・・・・・・・・
・・System Jl signal section 1!7・・・・・・・・・・・・・・・
・・・・・・Resonance inductance! 24...
・・・・・・・・・・・・・・・・・・Pulse transformer 1
40.141.140a, 140a゛..."...
Inductance 147・・・・・・・・・・・・・・・
......Self-destruct type [M formula spark switch 148...
・・・・・・・・・・・・・・・・・・High voltage direct current source 151.152・・・・・・・・・・・・・・・・・・
・・Voltage dividing resistance +53・・・・・・・・・・・・・・・・
...Spark voltage control section 154...
・・・・・・・・・・・・・Operation section 155.155'・
・・・・・・・・・・・・・・・・・・Gas purification device +5
7・・・・・・・・・・・・・・・・・・・・・Additive injection device +511・・・・・・・・・・・・・・・・
・・・・・・Gas cooling tower +59・・・・・・・・・・・・
......Post-processing device 180...
Ichiban-・・・-・9・・・・Stack le 1.16
2.183・・・・・・・・・・・・! l! Dust chamber 1
fi4・・・・・・・・・・・・・・・・・・・・・
Electric dust collection! A 21165・・・・・・・・・・・・
・・・・・・・・・Pre-treatment device 1- +3----- 1 + 8 --- Ipponjo Okun Pheasant〕Gurusu tJ, 1 (1 --- Electric power / Sugoryo each zo -- yn t = yZt, 2 + ---?- Payment /
Guia: 22---fit:tblX=$25---
--R'l + l soup raidenyu 23 --- Herotact 4Q -- Ichito J Shizuka 2-cho'fJL 63.6 Ge Niou et al. Shiden 1shi 65 --- One Kenshi 7 Tengun h ) 11 Guo 211! ! ! 4g, +g: 4g'---Noboru Jl, tA company +q, 5o
−−−−−4$'minus−−−'−'−−t Luli Swift 51−−−−−1.21 cut dasui°so+55−−−−
---See Ichito 6A axis case = 71-4 P) Jls &---
---4 engineering I (k attack (, Q, 60'----m-[conte-knob-g+,
6+', 6+'' ---Chapter 7 Inco 0su L Den Kiri i1 (This talented zt company 5 day --- Ikki Kamigai Hato 62 --- Corona Oni Den 1 main qO- ------
------FiJtta+
+5q----------st-tyav>f knee','q"t) ----'#i great support q5-
--------, tt#j! l\z″%------
Ichimoku flh Sei Q'? −−−−−−−Issei Oke/Bokufumei 1 qg −−−−
-----fHyp, Saoki Teio 1 main power, source. qj 100, 11 &---Builister Io+, 11
z−−−−−/r7Mu side; to +−1−−−− (1o
7−−−−−− constant spark +og−−−−−−%l1llT! ! 1Pto'j-
------1. Atsushigo・)But Su wo (Ha'A
Asurigurusu Takaoka wound 3 legs,) 118--------Ryoko Ichi' mouth to one-----J)% 1 ink phtasis + 1'l-
--------S +5r'---- 賎hH-nlhAB*15&
−−−−−−−1 80 licts +57−−−−−−
-51L1#Noni t, x,'x115B --------
On the other hand, °゛ space; Preparation % P work 1 + 5R - - - - - A buried 1 16 o - - - - - - Stack 165 - - - - - - - Kazuyuki Harusai S ( e ) ( d ) Procedural amendment (voluntary) August 27, 1986 1! Director General of the License Agency 1. Indication of the case: Patent Application No. 134475 of 1985 2) Title of the invention: Person who makes ultra-short pulse high-voltage gas purification device 3° supplement +E Relationship with the case: Patent applicant/l, t+li Correct target ``Specification'', column 5 of ``Claims'' of ``Description'', contents of amendment (■) in ``Specification''
4--1--4.7 Bore〉\ Claims (1) E. For introducing the gas to be purified containing the gaseous dyeing substance of 48 oxide, sulfur f oxide T In the gas passage in the casing, which is equipped with a gas inlet and a gas outlet for discharging purified gas, at least one corona discharge electrode is provided as an upper electrode, and at least the other one is an opposite corona discharge electrode as opposed to the first corona discharge electrode. As an electrode, a corona electrode system consisting of two isolated electrodes with an insulated -1- edge is provided in Phase II: between the corona electrode and the other -L pole, a pulse l+ extremely Rapid energy storage 'AI' element for applying short ultra-short pulses of high pressure, its charging 'It'! In a gas purification device equipped with a high voltage pole 5U pulse power source consisting of a source and a high speed discharge switch, the output J4 + short pulse high voltage of the pressure pole 1U pulse power supply is applied to the corona radiation shaft. The temporal peak (AEp) of the horizontal uniform field strength between the electrodes and the opposing electrodes is defined as the critical ratio Ep
o = 8 d (kV/am) or less 1. This is a gas purification device that is characterized by a 77i fimp. r2) special +tt l17 search (') D enclosure (1) +w
Note a (') Device 1: h 'r', l,,A
J4i short pulse height Jf:'l', (7III+
1. A gas purification device for a place, characterized in that: 'fl' or less. (3) A gas purification device according to JA21 according to any one of claims (1) and (2), characterized in that the capacitive energy storage element is a condenser. (4) A gas purification device according to any one of claims (1) and (2), characterized in that the capacitive energy v7 product element is a high voltage coaxial cable. (5) Any of claims (1) and (2)? i In B, is the acceptable energy? ! A gas purification device characterized in that each i-product element is an LC ladder type connection circuit of a plurality of capacitors and inductances. (6) A gas purification device according to any one of claims (1) to (5), characterized in that the high-speed release switch element is a rotary spark switch. (7) A gas purification device according to any one of claims (1) to (5), characterized in that the high-speed discharge switch 'j2 is a fixed spark switch. (8) In the device according to any one of claims ('l) to (7), the corona electrode system is a two-electrode system consisting only of a corona discharge electrode and a counter electrode, and the other electrode is A gas purification device characterized in that the opposing ``-'' pole is a pole. (9) The arrangement according to claim (8), characterized in that the opposing ``+'' pole is a non-corona electrode. (10) In the device according to claim (8),
The opposite? ! A gas purification device characterized in that the electrode is a corona discharge electrode that performs corona discharge. (I) In the device according to any one of claims (1) to (7), the corona 1 separator thread is provided in the vicinity of the corona discharge electrode, in addition to the counter electrode, and insulated from both electrodes. A gas purifying device characterized in that it is an electrode system, and has a third electrode disposed in the opposite direction. (!2) In the device according to claim (11), the third electrode and the opposing ?It has a DC high voltage power supply for applying a DC high voltage between the ?tt electrodes, and applies the extremely short pulse high voltage between the corona discharge electrode and the third electrode as the other electrode. (13) A gas purification device characterized in that the third electrode is a non-corona electrode in the device according to any one of claims (II) and (+2). Purification device. (14) Gas purification device according to any one of claims (11) and (+2), characterized in that the third electrode is a corona discharge electrode serving as a corona electrode. (15) In the device according to any one of claims (1) to (14), a bias high voltage for previously applying a bias high voltage between the corona radiation 71tJ4i and the other electrode. A gas purification device characterized in that a power source is provided, and the extremely short pulse high voltage of the same polarity as the bias high voltage is applied between the lJ4 electrodes via a coupling capacitor. (16) Patent The gas purifying device according to claim (15), wherein the bias high voltage source is a DC high voltage power source. (17) The device according to claim (15) seeking patent X+ In the apparatus, the bias high voltage power source is a bias pulse high voltage power source that generates a bias pulse high voltage having a voltage 111 that is sufficiently longer than the half value 111 of the extremely short pulse high voltage. Gas purification device. (18) In the device according to any one of claims (1) to (17), the corona electrode system includes at least one of the corona emitter, the counter electrode, and the other electrodes. The J4k whose one length propagates at least that
A gas RTR system characterized by using a corona transmission line having a geometric length of more than half of the geometric length of the f-pulse high' cardiac pressure and having an open end. (19) In the device according to claim (18), a peaking/regulating coil is inserted at a midpoint between at least one of the long electrodes constituting the corona transmission line. A gas purification device for a place characterized by: (2) In the device according to claim (18),
dividing the entire length of the corona transmission line into a plurality of partial lines,
The partial line excluding the partial line at the wave end consists of a plurality of corona discharge electrodes connected in parallel, and the number of corona discharge electrodes connected in parallel is -I-, sequentially from the wave end toward the F flow end. A gas purification device characterized in that it reduces the amount of gas. (2) In the device according to any one of claims (1) to (18), the corona discharge electrode is a peaking corona electrode that is strip-shaped and whose width decreases from the input end to the terminal end. A purification device for a place characterized by: (2) A gas purification device according to any one of claims (1) to (20), wherein the corona discharge electrode is a linear corona discharge electrode with a circular cross section. (23) In the device according to any one of Patent Needs (1) to (2G), the corona discharge electrode is a linear corona discharge electrode with a polygonal cross section. Gas purification equipment. (2) In the apparatus according to any one of claims (1) to (20), the #corona discharge ffi pole is a linear corona discharge electrode with a star-shaped cross section, for gas purification. ! Device. (25) A gas n-conversion device according to any one of claims RIJll (1) to (20), wherein the corona discharge electrode is a strip-shaped linear corona discharge electrode. . (2) In the device according to any one of claims (1) to (20), the corona emitting device? A gas purification device characterized in that ItJ4i is a protrusion (・1 &Q-shaped corona discharge electrode. (27) Particularly,; , a gas purification device characterized in that the corona discharge electrode is a rod-shaped corona discharge electrode with a protrusion. (2) In the device according to any one of claims (1) to (20), A gas purification device characterized in that the corona discharge electrode is a strip-shaped corona discharge electrode with projections. (2) In the device according to any one of claims (1) to (28), the extremely short A high-voltage pulse power source and the corona electrode system are connected by a high-voltage coaxial cable, and the length of the Ii# coaxial cable is defined as the geometric length F of the ultra-short pulse high voltage propagated through at least one of the cables. Gas purification characterized in that the action of a transmission line for separation is imparted to !A ;!1 m (30) Claims (1) to (9) and (
In the device according to any one of 11) to (23), the corona emission, tJ*, and the counter electrode are respectively the emission ffi electrode and the dust collection electrode in an electrostatic precipitator, and the casing collects the dust below. With a hopper for receiving particles. 1. A gas purification device having an exhaust port for discharging the exhaust gas to the outside, and in addition to purifying the exhaust gas, it also performs electrostatic precipitation of fine particles in the gas. (31) The device according to any one of claims (1) to (30) is provided with a hammering device for applying a mechanical impact to at least the name of the corona discharge electrode and the counter electrode. Features of gas purification equipment. (32) In the apparatus according to any one of claims (1) to (31), the corona '1ttJSi system is arranged and submerged in a casing of an electrostatic precipitator for gas purification. Device. (33) The gas purification device according to any one of claims (1) to (32), characterized in that the device is provided with means for forming a liquid film on the surface of the opposing tJ4i or dust collecting electrode. Device. (34) The apparatus according to any one of claims (1) to (33), further comprising an additive injection device for adding a reaction accelerating additive to the gas to be purified in advance. Gas purification equipment for places where (35) A gas purification device according to scope (34) of Patent J+7, characterized in that the additive injection device is an ammonia injection device. (38) The apparatus according to any one of claims (1) to (35), characterized in that it is equipped with a gas pretreatment device for pretreating the gas to be purified. Gas purification equipment. (37) The gas purification device according to claim (36), wherein the gas pretreatment device is a gas cooling tower. (38) The apparatus according to any one of claims (1) to (37), characterized in that it is equipped with a gas post-processing device for further post-processing the purified gas. Device. (33) A gas purification device according to claim (38), characterized in that the gas post-treatment device is a gas absorption device for absorbing gas after reaction. (40) The gas b converting device according to claim (38), wherein the gas post-processing device is a dust collector.
Claims (1)
む浄化すべきガスを導入するためのガス入口と、浄化後
のガスを排出するためのガス出口を備えたケーシング内
のガス通路に、少なくとも一個をコロナ放電極、少なく
とも他の一個を該コロナ放電極と対向した対向電極とし
て相互に絶縁の上配設せる二個以上の独立な電極より成
るコロナ電極系を設け、該コロナ電極と他の電極との間
にパルス巾の極めて短い極短パルス高電圧を印加するた
めの容量性エネルギー蓄積要素、その充電用電源及び放
電用高速スイッチ要素より成る高圧極短パルス電源を設
けた所のガス浄化装置において、該高圧極短パルス電源
の出力極短パルス高電圧が、該コロナ放電極と該対向電
極間の距離的平均電界強度の時間的ピーク値Epを、相
対ガス密度dのもとで臨界値Ep0=8d(kV/cm
)以上たらしめる如き波高値Vpを有することを特徴と
する所のガス浄化装置。 (2)特許請求の範囲(1)に記載の装置において、該
極短パルス高電圧の半値巾が1(us)以下であること
を特徴とする所のガス浄化装置。 (3)特許請求の範囲(1)および(2)のいづれかに
記載の装置において、該容量性エネルギー蓄積要素がコ
ンデンサーであることを特徴とする所のガス浄化装置。 (4)特許請求の範囲(1)および(2)のいづれかに
記載の装置において、該容量性エネルギー蓄積要素が高
圧同軸ケーブルであることを特徴とする所のガス浄化装
置。 (5)特許請求の範囲(1)および(2)のいづれかに
記載の装置において、該容量性エネルギー蓄積要素がそ
れぞれ複数個のコンデンサーとインダクタンスのLC梯
子型接続回路であることを特徴とする所のガス浄化装置
。 (6)特許請求の範囲(1)より(5)までのいづれか
に記載の装置において、該放電用高速スイッチ要素が回
転火花スイッチであることを特徴とする所のガス浄化装
置。 (7)特許請求の範囲(1)より(5)までのいづれか
に記載の装置において、該放電用高速スイッチ要素が固
定式火花スイッチであることを特徴とする所のガス浄化
装置。 (8)特許請求の範囲(1)より(7)までのいづれか
に記載の装置において、該コロナ電極系がコロナ放電極
と対向電極のみから成る二電極系であり、該他の電極が
対向電極であることを特徴とする所のガス浄化装置。 (9)特許請求の範囲(8)に記載の装置において、該
対向電極が非コロナ電極であることを特徴とする所のガ
ス浄化装置。 (10)特許請求の範囲(8)に記載の装置において、
該対向電極がコロナ放電を行なうコロナ放電極であるこ
とを特徴とする所のガス浄化装置。 (11)特許請求の範囲(1)より(7)までのいづれ
かに記載の装置において、該コロナ電極系がコロナ放電
極、対向電極の他、該コロナ放電極の近傍に両電極より
絶縁されて配設せる第三電極を有する三電極系であるこ
とを特徴とする所のガス浄化装置。 (12)特許請求の範囲(11)に記載の装置において
、該第三電極と該対向電極の間に直流高電圧を印加する
ための直流高圧電源を有し、かつ該極短パルス高電圧を
該コロナ放電極と該他の電極としての該第三電極の間に
印加することを特徴とする所のガス浄化装置。 (13)特許請求の範囲(11)、(12)のいづれか
に記載の装置において、該第三電極が非コロナ電極であ
ることを特徴とする所のガス浄化装置。 (14)特許請求の範囲(11)、(12)のいづれか
に記載の装置において、該第三電極がコロナ電極を行な
うコロナ放電極であることを特徴とする所のガス浄化装
置。 (15)特許請求の範囲(1)より(14)までのいづ
れかに記載の装置において、該コロナ放電極と該他の電
極との間に予めバイアス高電圧を印加するためのバイア
ス高圧電源を設け、該バイアス高電圧に重ねてこれと同
極性の該極短パルス高電圧を結合コンデンサーを介して
両電極間に印加することを特徴とする所のガス浄化装置
。 (16)特許請求の範囲(15)に記載の装置において
、該バイアス高圧電源が直流高圧電源であることを特徴
とする所のガス浄化装置。 (17)特許請求の範囲(15)に記載の装置において
、該バイアス高圧電源が該極短パルス高電圧の半値巾よ
りも充分に長い巾を有するバイアス用パルス高電圧を発
生する所のバイアス・パルス高圧電源であることを特徴
とする所のガス浄化装置。 (18)特許請求の範囲(1)より(17)までのいづ
れかに記載の装置において、該コロナ電極系として該コ
ロナ放電極、該対向電極、該他の電極の中の少なくとも
一つの長さが少なくともその上を伝播する該極短パルス
高電圧の幾何学的長さの半分以上であり、かつその終端
が開放されている様なコロナ伝送線路を用いることを特
徴とする所のガス浄化装置。 (19)特許請求の範囲(18)に記載の装置において
、該コロナ伝送線路を構成する少なくとも一つの長さの
長い電極の少なくとも一つ以上の中間点においてピーキ
ング用コイルを挿入することを特徴とする所のガス浄化
装置。 (20)特許請求の範囲(18)に記載の装置において
、該コロナ伝送線路の全長を複数個の部分線路に分かち
、その下流端の部分線路を除く部分線路が複数個のコロ
ナ放電極の並列接続せるものより成り、かつその並列接
続のコロナ放電極数が上流端より下流端に向って逐次減
少する如きものであることを特徴とする所のガス浄化装
置。 (21)特許請求の範囲(1)より(18)までのいづ
れかに記載の装置において、該コロナ放電極が帯状でか
つ入力端から終端に向ってその巾を減する如きピーキン
グ用コロナ電極であることを特徴とする所の浄化装置。 (22)特許請求の範囲(1)より(20)までのいづ
れかに記載の装置において、該コロナ放電極が断面が円
形の線状コロナ放電極であることを特徴とする所のガス
浄化装置。 (23)特許請求の範囲(1)より(20)までのいづ
れかに記載の装置において、該コロナ放電極が断面が多
角形の線状コロナ放電極であることを特徴とする所のガ
ス浄化装置。 (24)特許請求の範囲(1)より(20)までのいづ
れかに記載の装置において、該コロナ放電極が断面が星
形の線状コロナ放電極であることを特徴とする所のガス
浄化装置。 (25)特許請求の範囲(1)より(20)までのいづ
れかに記載の装置において、該コロナ放電極がストリッ
プ状の線状コロナ放電極であることを特徴とする所のガ
ス浄化装置。 (26)特許請求の範囲(1)より(20)までのいづ
れかに記載の装置において、該コロナ放電極が突起付線
状コロナ放電極であることを特徴とする所のガス浄化装
置。 (27)特許請求の範囲(1)より(20)までのいづ
れかに記載の装置において、該コロナ放電極が突起付棒
状コロナ放電極であることを特徴とする所のガス浄化装
置。 (28)特許請求の範囲(1)より(20)までのいづ
れかに記載の装置において、該コロナ放電極が突起付ス
トリップ状コロナ放電極であることを特徴とする所のガ
ス浄化装置。 (29)特許請求の範囲(1)より(28)までのいづ
れかに記載の装置において、該極短高圧パルス電源と該
コロナ電極系とを高圧同軸ケーブルによって接続し、か
つ該同軸ケーブルの長さを少なくともその上で伝播する
該極短パルス高電圧の幾何学的長さ以上として、これに
分離用伝送線路の作用を附与したことを特徴とする所の
ガス浄化装置。 (30)特許請求の範囲(1)より(9)までおよび(
11)より(29)までのいづれかに記載の装置におい
て、該コロナ放電極および該対向電極がそれぞれ電気集
塵装置における放電極および集塵極であり、該ケーシン
グがそのに下方捕集粒子を受納するためのホッパーと、
これを外部に排出するための排出口を有し、排ガスの浄
化に加えてガス中の微粒子の電気集塵を行なうことを特
徴とする所のガス浄化装置。 (31)特許請求の範囲(1)より(30)までのいづ
れかに記載の装置において、該コロナ放電極、対向電極
の中少なくとも一者に機械的衝撃を与えるための槌打装
置を設けたことを特徴とする所のガス浄化装置。 (32)特許請求の範囲(1)より(31)までのいづ
れかに記載の装置において、該コロナ電極系を電気集塵
装置のケーシング内に配設したことを特徴とする所のガ
ス浄化装置。 (33)特許請求の範囲(1)より(32)までのいづ
れかに記載の装置において、該対向電極ないし集塵極表
面に液膜を形成する手段を具備したことを特徴とする所
のガス浄化装置。 (34)特許請求の範囲(1)より(33)までのいづ
れかに記載の装置において、該浄化すべきガスに予め反
応促進用添加剤を添加するための添加剤注入装置を備え
たことを特徴とする所のガス浄化装置。 (35)特許請求の範囲(34)に記載の装置において
、該添加剤注入装置がアンモニア注入装置であることを
特徴とする所のガス浄化装置。 (38)特許請求の範囲(1)より(35)までのいづ
れかに記載の装置において、該浄化すべきガスに予め前
処理を施すためのガス前処理装置を備えたことを特徴と
する所のガス浄化装置。 (37)特許請求の範囲(36)に記載の装置において
、該ガス前処理装置がガス冷却塔であることを特徴とす
る所のガス浄化装置。 (38)特許請求の範囲(1)より(37)までのいづ
れかに記載の装置において、浄化後のガスを更に後処理
するためのガス後処理装置を備えたことを特徴とする所
のガス浄化装置。 (39)特許請求の範囲(38)に記載の装置において
、該ガス後処理装置が反応後のガスを吸収するためのガ
ス吸収装置であることを特徴とする所のガス浄化装置。 (40)特許請求の範囲(39)に記載の装置において
、該ガス後処理装置が集塵装置であることを特徴とする
所のガス浄化装置。[Claims] (1) Provided with a gas inlet for introducing gas to be purified containing gaseous pollutants such as nitrogen oxides and sulfur oxides, and a gas outlet for discharging the purified gas. A corona electrode system consisting of two or more independent electrodes arranged in a gas passage in a casing, at least one as a corona discharge electrode and at least one as a counter electrode facing the corona discharge electrode, insulated from each other. A high-voltage ultra-short circuit comprising a capacitive energy storage element for applying an ultra-short pulse high voltage with an extremely short pulse width between the corona electrode and other electrodes, a power source for charging the same, and a high-speed switching element for discharging. In a gas purification device equipped with a pulse power source, the output ultra-short pulse high voltage of the high-voltage ultra-short pulse power source increases the temporal peak value Ep of the distance-wise average electric field strength between the corona discharge electrode and the counter electrode, Critical value Ep0 = 8d (kV/cm
) A gas purification device characterized by having a wave height value Vp as above. (2) The gas purification device according to claim (1), wherein the half width of the ultrashort pulse high voltage is 1 (us) or less. (3) A gas purification device according to any one of claims (1) and (2), characterized in that the capacitive energy storage element is a condenser. (4) A gas purification device according to any one of claims (1) and (2), characterized in that the capacitive energy storage element is a high-voltage coaxial cable. (5) The device according to any one of claims (1) and (2), characterized in that each of the capacitive energy storage elements is an LC ladder-type connection circuit of a plurality of capacitors and inductances. gas purification equipment. (6) A gas purification device according to any one of claims (1) to (5), characterized in that the high-speed discharge switch element is a rotary spark switch. (7) A gas purification device according to any one of claims (1) to (5), wherein the high-speed discharge switch element is a fixed spark switch. (8) In the device according to any one of claims (1) to (7), the corona electrode system is a two-electrode system consisting only of a corona discharge electrode and a counter electrode, and the other electrode is the counter electrode. A gas purification device characterized by: (9) A gas purification device according to claim (8), wherein the counter electrode is a non-corona electrode. (10) In the device according to claim (8),
A gas purification device characterized in that the counter electrode is a corona discharge electrode that performs corona discharge. (11) In the device according to any one of claims (1) to (7), the corona electrode system includes a corona discharge electrode, a counter electrode, and a portion insulated from both electrodes in the vicinity of the corona discharge electrode. A gas purification device characterized in that it is a three-electrode system having a third electrode arranged therein. (12) The device according to claim (11), further comprising a DC high voltage power supply for applying a DC high voltage between the third electrode and the counter electrode, and applying the ultrashort pulse high voltage. A gas purification device characterized in that a voltage is applied between the corona discharge electrode and the third electrode as the other electrode. (13) A gas purification device according to any one of claims (11) and (12), characterized in that the third electrode is a non-corona electrode. (14) A gas purification device according to any one of claims (11) and (12), characterized in that the third electrode is a corona discharge electrode serving as a corona electrode. (15) In the device according to any one of claims (1) to (14), a bias high voltage power source is provided for applying a bias high voltage in advance between the corona discharge electrode and the other electrode. . A gas purification device characterized in that the extremely short pulse high voltage of the same polarity as the bias high voltage is applied between both electrodes via a coupling capacitor. (16) The gas purification device according to claim (15), wherein the bias high voltage power source is a DC high voltage power source. (17) In the device according to claim (15), the bias high voltage power source generates a bias pulse high voltage having a width sufficiently longer than the half width of the extremely short pulse high voltage. A gas purification device for a place characterized by a pulsed high-voltage power source. (18) In the device according to any one of claims (1) to (17), the corona electrode system has a length of at least one of the corona discharge electrode, the counter electrode, and the other electrode. A gas purification device characterized in that it uses a corona transmission line which is at least half the geometrical length of the ultra-short pulsed high voltage propagating thereover and whose terminal end is open. (19) The device according to claim (18), characterized in that a peaking coil is inserted at a midpoint of at least one of at least one long electrode constituting the corona transmission line. gas purification equipment at the location. (20) In the device according to claim (18), the entire length of the corona transmission line is divided into a plurality of partial lines, and the partial lines except for the partial line at the downstream end include a plurality of parallel corona discharge electrodes. What is claimed is: 1. A gas purification device comprising a plurality of corona discharge electrodes connected in parallel, and the number of corona discharge electrodes connected in parallel gradually decreases from an upstream end to a downstream end. (21) In the device according to any one of claims (1) to (18), the corona discharge electrode is a peaking corona electrode that is strip-shaped and whose width decreases from the input end to the terminal end. A purification device for a place characterized by: (22) A gas purification device according to any one of claims (1) to (20), wherein the corona discharge electrode is a linear corona discharge electrode with a circular cross section. (23) A gas purification device according to any one of claims (1) to (20), wherein the corona discharge electrode is a linear corona discharge electrode with a polygonal cross section. . (24) A gas purification device according to any one of claims (1) to (20), wherein the corona discharge electrode is a linear corona discharge electrode with a star-shaped cross section. . (25) A gas purification device according to any one of claims (1) to (20), characterized in that the corona discharge electrode is a strip-shaped linear corona discharge electrode. (26) A gas purification device according to any one of claims (1) to (20), characterized in that the corona discharge electrode is a linear corona discharge electrode with a protrusion. (27) A gas purification device according to any one of claims (1) to (20), characterized in that the corona discharge electrode is a rod-shaped corona discharge electrode with a protrusion. (28) A gas purification device according to any one of claims (1) to (20), characterized in that the corona discharge electrode is a strip-shaped corona discharge electrode with projections. (29) In the device according to any one of claims (1) to (28), the ultra-short high-voltage pulse power source and the corona electrode system are connected by a high-voltage coaxial cable, and the length of the coaxial cable is A gas purification device characterized in that the length is at least longer than the geometrical length of the ultrashort pulse high voltage propagating thereon, and the action of a separation transmission line is imparted to the ultrashort pulse high voltage. (30) Claims (1) to (9) and (
In the device according to any one of 11) to (29), the corona discharge electrode and the counter electrode are respectively a discharge electrode and a dust collection electrode in an electrostatic precipitator, and the casing receives downwardly collected particles therein. A hopper for storing
1. A gas purification device having an exhaust port for discharging the exhaust gas to the outside, and in addition to purifying the exhaust gas, it also performs electrostatic precipitation of fine particles in the gas. (31) The device according to any one of claims (1) to (30) is provided with a hammering device for applying a mechanical impact to at least one of the corona discharge electrode and the counter electrode. A gas purification device for a place that is characterized by: (32) A gas purification device according to any one of claims (1) to (31), characterized in that the corona electrode system is disposed within a casing of an electrostatic precipitator. (33) A gas purification device according to any one of claims (1) to (32), characterized in that the device is provided with means for forming a liquid film on the surface of the counter electrode or dust collecting electrode. Device. (34) The apparatus according to any one of claims (1) to (33), further comprising an additive injection device for adding a reaction accelerating additive to the gas to be purified in advance. Gas purification equipment for places where (35) The gas purification device according to claim (34), wherein the additive injection device is an ammonia injection device. (38) The apparatus according to any one of claims (1) to (35), characterized in that it is equipped with a gas pretreatment device for pretreating the gas to be purified. Gas purification equipment. (37) The gas purification device according to claim (36), wherein the gas pretreatment device is a gas cooling tower. (38) The apparatus according to any one of claims (1) to (37), characterized in that it is equipped with a gas post-processing device for further post-processing the purified gas. Device. (39) A gas purification device according to claim (38), wherein the gas post-treatment device is a gas absorption device for absorbing gas after reaction. (40) The gas purification device according to claim (39), wherein the gas post-treatment device is a dust collector.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13447586A JP2649340B2 (en) | 1986-06-10 | 1986-06-10 | Ultra-short pulse high-voltage charged gas purifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13447586A JP2649340B2 (en) | 1986-06-10 | 1986-06-10 | Ultra-short pulse high-voltage charged gas purifier |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62289249A true JPS62289249A (en) | 1987-12-16 |
JP2649340B2 JP2649340B2 (en) | 1997-09-03 |
Family
ID=15129190
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13447586A Expired - Fee Related JP2649340B2 (en) | 1986-06-10 | 1986-06-10 | Ultra-short pulse high-voltage charged gas purifier |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2649340B2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000140614A (en) * | 1998-10-20 | 2000-05-23 | Boc Group Inc:The | Contact method of electrostatically controlled gas and solid particle with each other |
US6274006B1 (en) | 1996-04-04 | 2001-08-14 | Mitsubishi Heavy Industries, Ltd. | Apparatus and method for treating exhaust gas and pulse generator used therefor |
US7084528B2 (en) | 2002-06-12 | 2006-08-01 | Ngk Insulators, Ltd. | High-voltage pulse generating circuit |
JP2011161330A (en) * | 2010-02-05 | 2011-08-25 | Nippon Steel Corp | Apparatus for denitrifying exhaust |
JP2011161329A (en) * | 2010-02-05 | 2011-08-25 | Nippon Steel Corp | Apparatus for treating exhaust discharged from sintering machine |
JP2012148214A (en) * | 2011-01-17 | 2012-08-09 | Sumitomo Metal Mining Engineering Co Ltd | Wet electrostatic precipitator |
CN110917826A (en) * | 2019-11-20 | 2020-03-27 | 邯郸钢铁集团有限责任公司 | Pulse corona plasma flue gas desulfurization and denitrification device with medicament peak clipping function |
CN113567818A (en) * | 2021-08-16 | 2021-10-29 | 重庆大学 | Fabry-Perot type partial discharge sensing device and method based on cantilever support structure |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4418212B2 (en) | 2003-11-21 | 2010-02-17 | 日本碍子株式会社 | High voltage pulse generator |
JP4538305B2 (en) | 2004-12-07 | 2010-09-08 | 日本碍子株式会社 | Discharge device |
JP4684765B2 (en) | 2005-06-29 | 2011-05-18 | 日本碍子株式会社 | Electric circuit and pulse power supply |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS501968A (en) * | 1973-05-10 | 1975-01-10 | ||
JPS51114370A (en) * | 1975-04-02 | 1976-10-08 | Hitachi Ltd | Method of purification of exhaust gas |
JPS5269864A (en) * | 1975-12-08 | 1977-06-10 | Chiyoda Kenkyu Kaihatsu Kk | Gas corona catalyst treating method |
JPS59111902A (en) * | 1982-12-15 | 1984-06-28 | Senichi Masuda | Ozone generator |
JPS60253185A (en) * | 1984-05-28 | 1985-12-13 | 増田 閃一 | Electric field unit for honeycomb type gas oxidation |
-
1986
- 1986-06-10 JP JP13447586A patent/JP2649340B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS501968A (en) * | 1973-05-10 | 1975-01-10 | ||
JPS51114370A (en) * | 1975-04-02 | 1976-10-08 | Hitachi Ltd | Method of purification of exhaust gas |
JPS5269864A (en) * | 1975-12-08 | 1977-06-10 | Chiyoda Kenkyu Kaihatsu Kk | Gas corona catalyst treating method |
JPS59111902A (en) * | 1982-12-15 | 1984-06-28 | Senichi Masuda | Ozone generator |
JPS60253185A (en) * | 1984-05-28 | 1985-12-13 | 増田 閃一 | Electric field unit for honeycomb type gas oxidation |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6274006B1 (en) | 1996-04-04 | 2001-08-14 | Mitsubishi Heavy Industries, Ltd. | Apparatus and method for treating exhaust gas and pulse generator used therefor |
US6344701B1 (en) | 1996-04-04 | 2002-02-05 | Mitsubishi Heavy Industries, Ltd. | Pulse generator for treating exhaust gas |
JP2000140614A (en) * | 1998-10-20 | 2000-05-23 | Boc Group Inc:The | Contact method of electrostatically controlled gas and solid particle with each other |
US7084528B2 (en) | 2002-06-12 | 2006-08-01 | Ngk Insulators, Ltd. | High-voltage pulse generating circuit |
US7414333B2 (en) | 2002-06-12 | 2008-08-19 | Ngk Insulators, Ltd. | High-voltage pulse generating circuit |
JP2011161330A (en) * | 2010-02-05 | 2011-08-25 | Nippon Steel Corp | Apparatus for denitrifying exhaust |
JP2011161329A (en) * | 2010-02-05 | 2011-08-25 | Nippon Steel Corp | Apparatus for treating exhaust discharged from sintering machine |
JP2012148214A (en) * | 2011-01-17 | 2012-08-09 | Sumitomo Metal Mining Engineering Co Ltd | Wet electrostatic precipitator |
CN110917826A (en) * | 2019-11-20 | 2020-03-27 | 邯郸钢铁集团有限责任公司 | Pulse corona plasma flue gas desulfurization and denitrification device with medicament peak clipping function |
CN113567818A (en) * | 2021-08-16 | 2021-10-29 | 重庆大学 | Fabry-Perot type partial discharge sensing device and method based on cantilever support structure |
CN113567818B (en) * | 2021-08-16 | 2024-05-03 | 重庆大学 | Fabry-Perot partial discharge sensing device and method based on cantilever supporting structure |
Also Published As
Publication number | Publication date |
---|---|
JP2649340B2 (en) | 1997-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6132692A (en) | Barrier discharge conversion of SO2 and NOx to acids | |
US5871703A (en) | Barrier discharge conversion of SO2 and NOx to acids | |
US6117403A (en) | Barrier discharge conversion of Hg, SO2 and NOx | |
Van Veldhuizen et al. | Energy efficiency of NO removal by pulsed corona discharges | |
AU581554B2 (en) | Method of removing so2, nox and particles from gas mixtures using streamer corona | |
EP1318703A2 (en) | Plasma reaction apparatus | |
JPS62289249A (en) | Extra-short pulse high voltage impressing type gas purifying apparatus | |
CN105642080A (en) | Device and method for purifying flue gases | |
CN101496987B (en) | Wet-type flue gas treating reactor by pulse corona | |
Dinelli et al. | Pulse power electrostatic technologies for the control of flue gas emissions | |
CN103523856A (en) | Water mist discharge and ultrasound synergetic degradation wastewater treatment device and running method thereof | |
CN101337152A (en) | Resource ozone oxidation dry method capable of removing sulfur dioxide and nitrogen oxides in flue gas | |
CN104801159B (en) | A kind of plasma flue gas desulfurization denitration dust-removing demercuration integrated apparatus | |
CN201357041Y (en) | Wet-type pulse corona flue gas treatment reactor | |
CN106422704B (en) | Integrated deep removal system for multiple pollutants | |
JP3208628B2 (en) | Exhaust gas purification system by plasma method | |
EP3943195A1 (en) | Low specific resistance substance treatment method and treatment device | |
JPH10249151A (en) | Desulfurizing/denitrifying method and device therefor | |
CN209378775U (en) | A kind of off-gas cleaning equipment | |
US20240316494A1 (en) | Apparatus and method for electron irradiation scrubbing | |
JP3095259B2 (en) | NO oxidation removal method | |
CN106216096A (en) | A kind of smoke pollution substance treating method based on wet type plasma | |
KR100448632B1 (en) | Apparatus and method for simutaneous removal of air pollutants using non-thermal plasma technology | |
US3917470A (en) | Electrostatic precipitator | |
CN203663673U (en) | Flue gas pollutant treatment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |