JPS62283820A - Method for obtaining iron oxide for producing ferrite from hematitic iron ore - Google Patents

Method for obtaining iron oxide for producing ferrite from hematitic iron ore

Info

Publication number
JPS62283820A
JPS62283820A JP61125615A JP12561586A JPS62283820A JP S62283820 A JPS62283820 A JP S62283820A JP 61125615 A JP61125615 A JP 61125615A JP 12561586 A JP12561586 A JP 12561586A JP S62283820 A JPS62283820 A JP S62283820A
Authority
JP
Japan
Prior art keywords
mesh
iron ore
iron oxide
hematitic
10mum
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61125615A
Other languages
Japanese (ja)
Inventor
Kyosuke Matagawa
俣川 恭輔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nittetsu Mining Co Ltd
Original Assignee
Nittetsu Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nittetsu Mining Co Ltd filed Critical Nittetsu Mining Co Ltd
Priority to JP61125615A priority Critical patent/JPS62283820A/en
Publication of JPS62283820A publication Critical patent/JPS62283820A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)

Abstract

PURPOSE:To obtain high quality iron oxide for producing ferrite by combining the selection of magnetic separators with conditions during concentration under specified conditions so as to concentrate dry powdery hematitic iron ore by a dry process. CONSTITUTION:Hematitic iron ore 1 as raw material is divided into a part of >100 mesh, a part of 100 mesh-325 mesh, a part of 325 mesh-10mum and a part of <10mum with a sizing device 2. Since the parts of >100 mesh or of <10mum have a high impurity content, they are removed as matter 5 not to be concentrated. The medium grain size parts of 100 mesh-325 mesh and of 325 mesh-10mum, that is, parts each having <=5 ratio of the maximum grain size dmax to the minimum grain size dmin are fed to high gradient magnetic separators 3. Air is then fed to the separators 3 with exhaust fans at 2-8m/min flow rate so as to regulate the amount of the iron ore powder in each flow to 0.5-3kg/m<3>. Magnetized matter is taken out as iron oxide 4 for producing ferrite and unmagnetized matter is removed 5.

Description

【発明の詳細な説明】 この発明は乾燥粉状の赤鉄鉱質鉄鉱石から珪素やアルミ
ニウムの化合物を主体とする非磁性の不純物を分離除去
して良質なフェライト製造用酸化鉄を得る磁力選別方法
に関する。
[Detailed description of the invention] This invention is a magnetic separation method for separating and removing non-magnetic impurities mainly composed of silicon and aluminum compounds from dry powdered hematite iron ore to obtain high-quality iron oxide for producing ferrite. Regarding.

従来の技術 赤鉄鉱質鉄鉱石からフェライト製造用酸化鉄を得る手段
として、湿式による磁力選鉱法や浮遊選鉱法などがある
。湿式による方法では、得られt酸化鉄を乾燥して粉体
に戻す工程が必要になり、多大の時間と経費がかかるこ
とになる。一方、乾式による選別方法の例として分級に
よって不純物を除去する方法があるが収率が低いことや
不純物の除去が充分でないなどの難点がある。
2. Description of the Related Art Methods for obtaining iron oxide for ferrite production from hematite iron ore include a wet magnetic beneficiation method and a flotation method. The wet method requires a step of drying the obtained iron oxide and returning it to powder, which requires a great deal of time and expense. On the other hand, as an example of a dry sorting method, there is a method in which impurities are removed by classification, but there are drawbacks such as low yield and insufficient removal of impurities.

発明が解決しようとする問題点 赤鉄鉱は常磁性であって磁気吸引力が弱く、乾式による
磁力選別方法では細かい粒子が着磁物として充分に捕捉
されずに非磁性物側へ流出したり、非磁性の不純物が着
磁物の中に混入して不純物の分離除去が充分性われない
ため、着磁物として得られる産物の収率が低く、ま之フ
ェライト製造用酸化鉄として使用可能な高品質の産物が
得られない。このtめ赤鉄鉱質鉄鉱石を乾式で磁力選別
して良質のフェライト製造用酸化鉄を工業的規模で得る
ことは困難であった。
Problems to be Solved by the Invention Hematite is paramagnetic and has a weak magnetic attraction, so in the dry magnetic sorting method, fine particles are not sufficiently captured as magnetized materials and flow out to the non-magnetic material side. Since non-magnetic impurities are mixed into the magnetized material and the impurities cannot be separated and removed sufficiently, the yield of the product obtained as a magnetized material is low, and the high Unable to obtain quality products. It has been difficult to obtain high-quality iron oxide for producing ferrite on an industrial scale by dry magnetically sorting this hematite iron ore.

問題点を解決する定めの手段及び作用 発明者は乾燥粉状の赤鉄鉱質鉄鉱石(以下原料鉄鉱石と
称す〕を乾式のままで磁力選別する研究を実施していた
が、磁力選別機の選定と選別条件の組み合せによって良
質のフェライト製造用酸化鉄が得られることを見出した
Predetermined Means and Effects for Solving the Problems The inventor had conducted research on magnetically separating dry powdered hematite iron ore (hereinafter referred to as raw iron ore) in a dry process, but It has been found that a combination of selection and sorting conditions can yield high quality iron oxide for ferrite production.

この発明はこの知見によるもので、それは原料鉄鉱石を
分粒して粒度を一定の範囲に調整し、高勾配磁力選別機
を用い、その磁力選別機内部を通過する空気の流速及び
気流中の原料鉄鉱石の含有量を一定の範囲に調節して選
別することにより達成される。
This invention is based on this knowledge, which involves sizing raw iron ore to adjust the particle size within a certain range, using a high gradient magnetic separator, and adjusting the flow rate of the air passing through the magnetic separator and the airflow in the air flow. This is achieved by adjusting the content of raw material iron ore within a certain range and sorting it.

以下実施例に基いて説明する。The following will be explained based on examples.

第1図は本発明の実施例の一態様を示す系統図である。FIG. 1 is a system diagram showing one aspect of an embodiment of the present invention.

原料鉄鉱石1は分粒装置2により100メツシユより粗
粒の部分、100メツシユ〜325メツシユの部分、3
25メツシユ〜10μmの部分および10μm以下の部
分に分粒する。ここで分粒装置2は特に限定されるもの
ではないが、ふるい、風力分級機、サイクロン分級機な
どが単独あるいは組み合せて使用可能である。100メ
ツシユより粗粒の部分および10μm以下の部分はとも
に不純物の含有量が高くて選別てよる品質向上が難かし
く、ま之、その量も少ないので除去物5として選別の対
象から除外した。100メツシユ〜10μmの中間粒度
の部分は第1図では325メツシユを境に2つの部分に
分粒したが、磁力選別に供給する粒度の分布範囲として
上限側の粒度d maxと下限側の粒度d==−の比d
max/ds[i−4程度以下にするのが適当であり、
大きい場合でも5以下にする必要があった。尚、本発明
にいう粒度とは分粒装置の分粒点をいう。磁力選別機で
の磁性粒子に作用する磁気力は粒子径の3乗に比例する
ので粒度分布の範囲が太きすぎると磁性物粒子の大小に
よるそれぞれの磁気力の大小の差が甚だしく大きくなっ
て適当な選別条件を与えることが困難である。逆て粒度
分布の範囲を小さくすれば中間粒度の部分の産物が多数
に分割されるため選別の工程が増加して工業的に不利で
ある。磁力選別には高勾配磁力選別機3を使用する。高
勾配磁力選別機3は図示しない排風機により空気を吸引
導入し、その気流により分粒調整した原料鉄鉱石lを搬
送して磁力選別を行なう。高勾配磁力選別機3は磁場の
強さを3〜5キロガウスとし、気流の流速を2〜8 m
 / seeにするのが適当であった。流速がこれより
太きすぎれば磁力選別機3で着磁物として捕捉され之磁
性物粒子が気流によって非着磁物側にもち去られて収率
が悪化し、逆に流速が小さすぎれば非磁性の不純物が充
分に分離されないまま着磁物に混入するので着磁物とし
て得られるフェライト製造用酸化鉄の品質が悪化する。
The raw material iron ore 1 is divided into parts coarser than 100 mesh, parts between 100 mesh and 325 mesh, and 3
The particles are divided into 25 mesh to 10 μm portions and 10 μm or less portions. Here, the particle sizer 2 is not particularly limited, but a sieve, a wind classifier, a cyclone classifier, etc. can be used alone or in combination. Both the part coarser than 100 mesh and the part 10 μm or less have a high content of impurities, making it difficult to improve the quality by sorting, and their quantity is also small, so they were excluded from the selection as removed material 5. In Fig. 1, the intermediate particle size part of 100 mesh to 10 μm is divided into two parts with 325 mesh as the boundary, but the upper limit particle size d max and the lower limit particle size d are the distribution range of the particle size supplied to magnetic separation. ==- ratio d
max/ds[i-4 or less is appropriate;
Even if it was large, it had to be 5 or less. Incidentally, the particle size as used in the present invention refers to the particle sizing point of a particle sizing device. The magnetic force that acts on magnetic particles in a magnetic separator is proportional to the cube of the particle diameter, so if the particle size distribution range is too wide, the difference in the magnetic force depending on the size of the magnetic particles becomes extremely large. It is difficult to provide appropriate screening conditions. On the other hand, if the range of particle size distribution is narrowed, the product in the intermediate particle size portion will be divided into many pieces, which increases the number of sorting steps, which is industrially disadvantageous. A high gradient magnetic force sorter 3 is used for magnetic sorting. The high-gradient magnetic force separator 3 sucks and introduces air using an exhaust fan (not shown), and uses the airflow to convey the sized raw material iron ore l to perform magnetic separation. The high gradient magnetic force separator 3 has a magnetic field strength of 3 to 5 kilogauss and an air flow velocity of 2 to 8 m.
/see was appropriate. If the flow rate is too high, the magnetic particles will be captured as magnetized particles by the magnetic separator 3 and carried away by the airflow toward the non-magnetized particles, resulting in poor yield. Since magnetic impurities are mixed into the magnetized material without being sufficiently separated, the quality of the iron oxide for producing ferrite obtained as the magnetized material is deteriorated.

また、この気流中に供する原料鉄鉱石1の含有量は0.
5〜3Kq/−が適当であつ比。含有量を少くすれば選
別性能の悪化や処理能率の低下が起り、含有量が大きす
ぎると着磁物の品質が非什しtり原料鉄鉱石1の供給が
困難になったり高勾配磁力選別機3の内部閉塞がおこる
などの問題が発生するので、上記含有量の範囲でフェラ
イト製造用酸化鉄4としての品質を満足する産物が得ら
れた。
Moreover, the content of the raw material iron ore 1 provided in this air stream is 0.
A suitable ratio is 5 to 3 Kq/-. If the content is too low, the sorting performance will deteriorate and the processing efficiency will be lowered, and if the content is too large, the quality of the magnetized material will be inadequate, making it difficult to supply the raw material iron ore 1, or causing high gradient magnetic separation. Since problems such as internal clogging of the machine 3 occur, a product satisfying the quality as iron oxide 4 for producing ferrite was obtained within the above content range.

着磁物として捕捉されなかった非磁性の不純物は非着磁
物として気流とともに高勾配磁力選別機3から流出して
除去物5となる。
Non-magnetic impurities that are not captured as magnetized substances flow out of the high gradient magnetic force separator 3 as non-magnetized substances along with the air current, and become removed substances 5.

着磁物として高勾配磁力選別機3内に捕捉された磁性物
は原料鉄鉱石1の供給を停止して高勾配磁力選別機3の
磁場を消去したうえ、気流により搬出して除去物5とは
別に回収し、フェライト製造用酸化鉄4となる。
The magnetic substances captured in the high gradient magnetic force separator 3 as magnetized substances are removed by stopping the supply of the raw iron ore 1 and erasing the magnetic field of the high gradient magnetic force separator 3, and then carried out by airflow to become the removed material 5. is recovered separately and becomes iron oxide 4 for ferrite production.

実施例 第1回の系統に基きブラジル産鉄鉱石ペレッ7トフイー
ド(5in20.65係、〃禮30.56係〕を処理し
て第1表の結果を得た。
Example 7 Based on the system of the first example, Brazilian iron ore pellet feed (5 in. 20.65 in., 30.56 in.) was treated to obtain the results shown in Table 1.

このとき使用した機器と使用条件は下記の通りであった
The equipment and operating conditions used at this time were as follows.

分粒装置2は直径300咽の乾式サイクロンを分級点ヲ
10μmで使用し、また100メツシユと325メソシ
ュのふるいを使用し比。高勾配磁力選別機3は丈う社製
サイクリックタイプモデル10−15−20ヲ磁場の強
さ5キロガウスで使用した。
The particle sizer 2 uses a dry cyclone with a diameter of 300 mm with a classification point of 10 μm, and uses 100 mesh and 325 mesh sieves. The high gradient magnetic force separator 3 was a cyclic type model 10-15-20 manufactured by Jyuu Co., Ltd. and used with a magnetic field strength of 5 kilogauss.

発明の効果 本発明によれば乾燥粉状の赤鉄鉱質鉄鉱石を乾式のまま
選別して良質のフェライト製造用酸化鉄を得ることがで
きるのでその工業的価値は大きい。
Effects of the Invention According to the present invention, dry powdered hematite iron ore can be dry-sorted to obtain high-quality iron oxide for producing ferrite, which has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例の一態様を示す系統図である。 1・・・原料鉄鉱石    2・・・分粒装置3・・・
高勾配磁力選別機 4・・・フェライト製造用酸化鉄 5・・・除去物
FIG. 1 is a system diagram showing one aspect of an embodiment of the present invention. 1...Raw material iron ore 2...Sizing device 3...
High gradient magnetic force separator 4...Iron oxide for ferrite production 5...Removed material

Claims (1)

【特許請求の範囲】[Claims] 乾燥粉状の赤鉄鉱質鉄鉱石から磁力選別機を使用してフ
ェライト製造用酸化鉄を得る磁力選別方法において、粒
度分布範囲の上限側粒度dmaxと下限側の粒度dmi
nの比dmax/dminが5以下となるように分粒調
整した赤鉄鉱質鉄鉱石を、排風機により空気を導入した
高勾配磁力選別機に供給し、該高勾配磁力選別機内を通
過する空気気流の流速を2m/sec以上8m/sec
以下に調節しかつ該気流中の赤鉄鉱質鉄鉱石の含有量が
0.5Kg/m^3以上3Kg/m^3以下となるよう
にして磁力選別することを特徴とする赤鉄鉱質鉄鉱石か
らフェライト製造用酸化鉄を得る方法。
In a magnetic separation method for obtaining iron oxide for ferrite production from dry powdery hematite iron ore using a magnetic separation machine, the upper limit particle size dmax and the lower limit particle size dmi of the particle size distribution range are used.
Hematite iron ore that has been sized so that the ratio dmax/dmin of n is 5 or less is supplied to a high gradient magnetic force separator into which air is introduced by an exhaust fan, and the air passes through the high gradient magnetic force separator. Air flow velocity 2m/sec or more 8m/sec
Hematitic iron ore, which is adjusted to the following and magnetically sorted so that the content of hematitic iron ore in the air flow is 0.5 Kg/m^3 or more and 3 Kg/m^3 or less. How to obtain iron oxide for ferrite production from.
JP61125615A 1986-06-02 1986-06-02 Method for obtaining iron oxide for producing ferrite from hematitic iron ore Pending JPS62283820A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61125615A JPS62283820A (en) 1986-06-02 1986-06-02 Method for obtaining iron oxide for producing ferrite from hematitic iron ore

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61125615A JPS62283820A (en) 1986-06-02 1986-06-02 Method for obtaining iron oxide for producing ferrite from hematitic iron ore

Publications (1)

Publication Number Publication Date
JPS62283820A true JPS62283820A (en) 1987-12-09

Family

ID=14914465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61125615A Pending JPS62283820A (en) 1986-06-02 1986-06-02 Method for obtaining iron oxide for producing ferrite from hematitic iron ore

Country Status (1)

Country Link
JP (1) JPS62283820A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102716793A (en) * 2012-06-07 2012-10-10 鞍山市华冶矿山设备制造有限公司 Method and system for producing ultra-pure powdered iron
CN102773156A (en) * 2012-08-14 2012-11-14 中钢集团马鞍山矿山研究院有限公司 Beneficiation method for producing blast furnace lump ore by hematite at medium-high grade
CN102778843A (en) * 2012-07-23 2012-11-14 东北大学 Operation control method of high magnetic grading process
CN104689905A (en) * 2015-02-10 2015-06-10 玉溪大红山矿业有限公司 Mineral processing process for improving quality and reducing silicon of iron ore concentrate
CN106000638A (en) * 2016-05-20 2016-10-12 甘肃酒钢集团宏兴钢铁股份有限公司 Process for extracting iron from comprehensive tailings of refractory iron ores

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102716793A (en) * 2012-06-07 2012-10-10 鞍山市华冶矿山设备制造有限公司 Method and system for producing ultra-pure powdered iron
CN102716793B (en) * 2012-06-07 2014-12-10 鞍山市华冶矿山设备制造有限公司 Method and system for producing ultra-pure powdered iron
CN102778843A (en) * 2012-07-23 2012-11-14 东北大学 Operation control method of high magnetic grading process
CN102773156A (en) * 2012-08-14 2012-11-14 中钢集团马鞍山矿山研究院有限公司 Beneficiation method for producing blast furnace lump ore by hematite at medium-high grade
CN104689905A (en) * 2015-02-10 2015-06-10 玉溪大红山矿业有限公司 Mineral processing process for improving quality and reducing silicon of iron ore concentrate
CN106000638A (en) * 2016-05-20 2016-10-12 甘肃酒钢集团宏兴钢铁股份有限公司 Process for extracting iron from comprehensive tailings of refractory iron ores

Similar Documents

Publication Publication Date Title
US3672579A (en) Process for beneficiating magnetite iron ore
US3754713A (en) Separation of magnetizable particles
US11130141B2 (en) System and method for recovering glass and metal from a mixed waste stream
JP2018058059A (en) Processing apparatus of incineration ash and processing method thereof
CN114555233B (en) Method and device for the continuous pneumatic separation of particulate material from a mixture of particles of non-uniform size and density
US2217300A (en) swart
US2990124A (en) System for separating magnetic susceptible particles
JPH0647315A (en) Method for beneficiation of kish graphite
JPS62283820A (en) Method for obtaining iron oxide for producing ferrite from hematitic iron ore
CN113518666A (en) Method and apparatus for pneumatic separation
AU2020101235A4 (en) Method for the Beneficiation of Iron Ore Streams
US7367456B2 (en) Air jig for separation of minerals from coal
CN109482333B (en) Dry-wet combined enrichment process for copper ore
US2558635A (en) Process for treating a magnetic iron ore
JP4012696B2 (en) Sizing / classifying apparatus and sizing / classifying method
US20230271195A1 (en) Process for dry beneficiation of fine and very fine iron ore by size and electrostatic segregation
RU2028832C1 (en) Method for concentration of iron ores
JPS62254851A (en) Dry magnetic separation of fine powder
US704010A (en) Apparatus for concentrating magnetic iron ores.
JPS599695Y2 (en) Sorting device for iron scrap and non-metallic materials
JPS62237975A (en) Method of improving quality of powdered iron ore
SU831182A1 (en) Magnetic material separation method
CN111185301B (en) Dry-type environment-friendly ore dressing system and ore dressing method
SU1155294A1 (en) Method of ore processing
RU2067026C1 (en) Method of processing of mineral raw materials