JPS62274782A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS62274782A
JPS62274782A JP11746486A JP11746486A JPS62274782A JP S62274782 A JPS62274782 A JP S62274782A JP 11746486 A JP11746486 A JP 11746486A JP 11746486 A JP11746486 A JP 11746486A JP S62274782 A JPS62274782 A JP S62274782A
Authority
JP
Japan
Prior art keywords
layer
gate
metal layer
ohmic
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11746486A
Other languages
Japanese (ja)
Inventor
Cho Shimada
兆 嶋田
Tatsuo Akiyama
秋山 龍雄
Yutaka Etsuno
越野 裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11746486A priority Critical patent/JPS62274782A/en
Publication of JPS62274782A publication Critical patent/JPS62274782A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To accomplish high-precision adjustment of distance between a gate and ohmic element and thereby to realize FETs less in characteristics dispersion by a method wherein a gate, source, and drain regions are determined in one and the same lithography process. CONSTITUTION:An N-low-concentration region 2, an N<+> high-concentration region 3, and a CVD silicon oxide layer 4 are formed on a GaAs semiconductor substrate 1. By means of photolithography, an opening for an ohmic electrode is provided, wherein a photoresist layer 5 coating the CVD silicon oxide layer 4 serves as a mask. The silicon oxide layer 4 in the opening is caused to melt for removal for the surfacing of the high-concentration region 3, whereon AuGe to be an ohmic metal layer 6 is deposited by evaporation. A mesa-type element region 11 is formed, the silicon oxide layer 4 is provided with a hole that will be as deep as to reach the high-concentration region 3, and then a gate metal layer 9 is evaporated upon the ohmic metal layer 6. With the evaporation- deposited layer containing an overhang, a structure is produced wherein a part of the gate metal layer 9 is deposited in a hole 8, planned for a gate layer, adjacent to the high-concentration region 3.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔発明の目的〕 (産業上の利用分野) 本発明はゲート電極ならびにオーミック電極等を自己整
合によって形成する方法に関し、特にGaAsFETに
好適するものである。
Detailed Description of the Invention 3. Detailed Description of the Invention [Object of the Invention] (Field of Industrial Application) The present invention relates to a method of forming gate electrodes, ohmic electrodes, etc. by self-alignment, and is particularly suitable for GaAsFETs. It is.

(従来の技#?) ■−V族半導体化合物を利用した半導体素子としてGa
AsFETもしくはGaAs1C等が実用化されている
が、このGaAsFETの製造方法を第2図a−e及び
第3図a−eにより説明する。
(Conventional technique #?) ■-Ga as a semiconductor element using V group semiconductor compound
AsFET, GaAs1C, etc. have been put into practical use, and a method for manufacturing this GaAsFET will be explained with reference to FIGS. 2 a-e and 3 a-e.

第2図にはN中層すなわち高濃度不純物領域をゲートに
対して自己整合的に形成する例を示し、第3図はオーミ
ック金属層をゲートに対して自己整合的に設ける方法を
示す。
FIG. 2 shows an example in which an N medium layer, that is, a high concentration impurity region is formed in self-alignment with the gate, and FIG. 3 shows a method in which an ohmic metal layer is formed in self-alignment with the gate.

第2図aに示すようにGaAs基板20にエピタキシャ
ル成長法で低濃度不純物領域N−21ならびに高濃度不
純物領域N−22を順次堆積後、その表面を被覆するフ
ォトレジスト層23にはFETのゲート予定位置が開口
した穴明はパターンを第2図すに示すように形成する。
As shown in FIG. 2a, after a low concentration impurity region N-21 and a high concentration impurity region N-22 are sequentially deposited on a GaAs substrate 20 by an epitaxial growth method, a photoresist layer 23 covering the surface is used as a gate for an FET. The holes with open positions form a pattern as shown in Figure 2.

次いでこのフォトレジスト23をマスクとして等方性食
刻法により高濃度不純物領域22を溶除して低濃度不純
物領域21を露出させて窓を設けこぎにゲート金、@2
4を蒸着し、更にこの開口内に堆積したゲート金属以外
はフォトレジスト層23をスペーサとするいわゆるリフ
トオフ法によって除去するが、この状態を第2図Cの断
面図に示す。
Next, using this photoresist 23 as a mask, the high-concentration impurity region 22 is removed by isotropic etching to expose the low-concentration impurity region 21 and a window is formed.
4 is vapor-deposited, and further, the portion other than the gate metal deposited in the opening is removed by a so-called lift-off method using the photoresist layer 23 as a spacer, and this state is shown in the cross-sectional view of FIG. 2C.

前記等方性食刻工程により高濃度不純物領域22にはゲ
ート金属24を囲むテーパ部が形成される。
Through the isotropic etching process, a tapered portion surrounding the gate metal 24 is formed in the high concentration impurity region 22.

次にオーミック電極25の設置に当って、このゲート金
属24を保護するフォトレジスト層23′ を第2図d
に示すように形成後全面にオーミック電極用金属を蒸着
しこのフォトレジストM23′ に堆積したオーミック
電極用金属をリフトオフ法によって除去してFETを完
成する。この断面図を第2図eに示した。
Next, when installing the ohmic electrode 25, a photoresist layer 23' that protects the gate metal 24 is applied as shown in FIG.
As shown in FIG. 3, after the formation, an ohmic electrode metal is deposited on the entire surface, and the ohmic electrode metal deposited on the photoresist M23' is removed by a lift-off method to complete the FET. This cross-sectional view is shown in FIG. 2e.

次にオーミック金属をゲートに対して自己整合的に設置
する例を第3図により説明するが第2図との同一部品に
は同一の番号を付ける。
Next, an example in which an ohmic metal is installed in a self-aligned manner with respect to a gate will be explained with reference to FIG. 3, and the same parts as in FIG. 2 are given the same numbers.

この例はいわゆるサイドウオールをゲート金属の側面に
被着する型を示すもので、特に高濃度不純物領域とゲー
ト金属間の距離を調整可能として逆バイアス時の耐圧劣
化ならびに耐圧向上を狙ったものであることは良く知ら
れている。G a A s半導体基板20の表面からそ
の内部に向けて低濃度の不純物を導入して第3図aに示
すよようにN−領域即ち、低不純物濃度領域21を形成
してから、所定の位置にゲート金属24を蒸着法により
堆積する。
This example shows a type in which a so-called sidewall is attached to the side surface of the gate metal, and the distance between the high-concentration impurity region and the gate metal can be adjusted in particular, with the aim of reducing breakdown voltage deterioration and improving breakdown voltage during reverse bias. One thing is well known. After introducing low concentration impurities from the surface of the GaAs semiconductor substrate 20 into the inside thereof to form an N- region, that is, a low impurity concentration region 21 as shown in FIG. A gate metal 24 is deposited at the position by vapor deposition.

次にステップカバレージの良好な絶縁膜例えばプラズマ
CVD(chemical Vapour Depos
ition)膜26を第3図すのように被覆し1次に異
方性食刻法例えばRI E (Reactive I 
on Etching)によってゲート金属24の側面
にサイドウオール27を形成する。更に、第3図Cに示
すようにフォトレジスト23’ 、サイドウオール27
およよびゲート金属24をマスクとして珪素イオンを半
導体基板20にイオン注入法によって導入して高濃度不
純物領域22を形成し、引続きオーミック金属25を全
面に被覆する。この結果ゲート金属層24ならびにサイ
ドウオール27の頂面にもこのオーミック金属25が被
着されこれをいわゆるエッチバック法によって除去する
Next, an insulating film with good step coverage, such as plasma CVD (chemical vapor deposition)
tion) The film 26 is coated as shown in FIG.
A sidewall 27 is formed on the side surface of the gate metal 24 by on etching. Furthermore, as shown in FIG. 3C, a photoresist 23' and a side wall 27 are
Silicon ions are introduced into the semiconductor substrate 20 by ion implantation using the gate metal 24 as a mask to form a high concentration impurity region 22, and then the entire surface is covered with an ohmic metal 25. As a result, the ohmic metal 25 is deposited on the top surfaces of the gate metal layer 24 and the sidewalls 27, and is removed by a so-called etch-back method.

具体的には前述のイオン注入工程時に使用したフォトレ
ジスト層23′に代えて新たにフォトレジスト23゛″
を第3図dのように被覆しこれをRIE法によってゲー
ト金属層24ならびにサイドウオール27が露出するま
で除去する。この露出したオーミック金属25はイオン
エツチングによって除去してソース、ドレインとして機
能する高濃度不純物領域毎にオーミック金属を形成し、
又この金属上のフォトレジストは0□アツシヤ等によっ
て除去して第3図eのFETを形成する。
Specifically, a new photoresist layer 23'' was used in place of the photoresist layer 23' used during the ion implantation process described above.
is coated as shown in FIG. 3d, and removed by RIE until the gate metal layer 24 and sidewalls 27 are exposed. This exposed ohmic metal 25 is removed by ion etching to form an ohmic metal in each high concentration impurity region that functions as a source and a drain.
The photoresist on this metal is removed by a 0□ assher or the like to form the FET shown in FIG. 3e.

(発明が解決しようとする問題点) 第2図a−eに示したGaAsFETの製造方法ではオ
ーミック金属層25とゲート金属層24の間隔を第2図
すに示すようにリソグラフィ技術によるマスク合せによ
って実施しているので、その合せズレが生じ易く安定し
た素子特性が得られない難点があった。
(Problems to be Solved by the Invention) In the GaAsFET manufacturing method shown in FIGS. 2a-e, the distance between the ohmic metal layer 25 and the gate metal layer 24 is determined by mask alignment using lithography technology as shown in FIG. Since this method is implemented, there is a problem that misalignment easily occurs and stable device characteristics cannot be obtained.

又、第2図a〜eに例示したサイドウオールを形成した
GaAsFETにあってはフォトレジスト層によって平
坦化工程を施してからエッチバックを行うが、ゲート金
属層の露出と同時にこのR4E処理を中止するいわゆる
ジャストエツチング(J ust E tching)
が仲々難かしくその終了点(End Po1ut)を検
出するのが困難であった。本発明はこの難点を除去した
半導体装置の製造方法に関し、簡便で歩溜りの良い製造
方法を提供することを目的とする。
In addition, in the case of GaAsFETs with sidewalls formed as shown in FIGS. 2a to 2e, etchback is performed after a planarization process is performed using a photoresist layer, but this R4E process is stopped at the same time as the gate metal layer is exposed. So-called just etching
It was difficult to detect the end point (End Poult). The present invention relates to a method of manufacturing a semiconductor device that eliminates this difficulty, and an object of the present invention is to provide a method of manufacturing a semiconductor device that is simple and has a high yield.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) この発明はゲート電極及びオーミック引出し電極を自己
整合法を利用して形成するが、その具体的手段としては
■−■族半導体基板に低濃度不純物領域を設け、これを
被覆する高濃度不純物領域に積層した珪素酸化物層の異
方性食刻によって孔部を設け、露出した低濃度不純物領
域にゲート金属を形成するリセス構造とした。このゲー
ト金属の形成に先立って高濃度不純物領域には珪素酸化
物層を設け、これの選択的除去によって得られるパター
ンにオーミック金属層を形成し、このオーミック金、@
層に間挿した珪素酸化物層の除去的オーミック金属層端
をオーバハング構造とし、この孔部に堆積するゲート金
R層に段切れを発生させ。
(Means for Solving the Problems) In the present invention, the gate electrode and the ohmic lead-out electrode are formed using a self-alignment method, and the specific method is to form a low concentration impurity region on a ■-■ group semiconductor substrate. A hole is formed by anisotropic etching of the silicon oxide layer laminated on the high-concentration impurity region covering the high-concentration impurity region, and a recessed structure is formed in which gate metal is formed in the exposed low-concentration impurity region. Prior to the formation of this gate metal, a silicon oxide layer is provided in the high concentration impurity region, and an ohmic metal layer is formed in the pattern obtained by selectively removing the silicon oxide layer.
The ends of the removed ohmic metal layer of the silicon oxide layer interposed between the layers are formed into an overhang structure, and a step break is generated in the gate gold R layer deposited in this hole.

オーミンク金属に積層するゲート金属層を引出し電極と
して利用する。
The gate metal layer laminated on the Ohmink metal is used as an extraction electrode.

(作用) m−v族半導体基板には低濃度不純物領域と高濃度不純
物領域を順次被着し、その表面を覆うCVD珪素酸化物
層を選択的に除去し、この結果ゲート形成予定位置に残
った珪素酸化物層の周りにオーミック金属層を形成する
。このゲートの形成予定位置に残った珪素酸化物層を異
方性食刻工程によって溶除してリセス構造にすると共に
低濃度不純物領域を露出させ、この食刻によるダメージ
を除去するためにライトエツチングを行う。この結果オ
ーミック金属層端にはいわゆるオーバハング構造が形成
され次いで被覆するゲート金属層はこの部分で段切れを
起して高濃度不純物領域及びリセス構造に被着する。こ
の高濃度不純物領域に積層したゲート金属層はオーミッ
ク金属の引出し電極として利用し、又リセス構造に被着
するゲート金属層とは自己整合によって同時に形成され
る。
(Operation) A low-concentration impurity region and a high-concentration impurity region are sequentially deposited on the m-v group semiconductor substrate, and the CVD silicon oxide layer covering the surface is selectively removed. An ohmic metal layer is formed around the silicon oxide layer. The silicon oxide layer remaining at the location where the gate is to be formed is removed by an anisotropic etching process to form a recessed structure, and the low concentration impurity region is exposed, and light etching is performed to remove the damage caused by this etching. I do. As a result, a so-called overhang structure is formed at the end of the ohmic metal layer, and the covering gate metal layer then breaks off at this portion and adheres to the high concentration impurity region and the recess structure. The gate metal layer laminated in this high concentration impurity region is used as an ohmic metal lead electrode, and is formed simultaneously with the gate metal layer deposited on the recessed structure by self-alignment.

この結果ゲートとオーミック金屑間の距離が極めて小さ
いのでFETとしてのソース電極即ち高濃度不純物領域
の直列抵抗が小さく、更にリセス構造を採用したので表
面空乏層の影響が抑制され、ゲート耐圧を向上する。
As a result, the distance between the gate and the ohmic gold dust is extremely small, so the series resistance of the source electrode, that is, the high concentration impurity region, as an FET is small.Furthermore, the adoption of a recessed structure suppresses the effects of the surface depletion layer, improving gate breakdown voltage. do.

(実施例) 第1図a ” hに示す製造工程により本発明を詳述す
る。
(Example) The present invention will be explained in detail with reference to the manufacturing process shown in FIGS.

GaAs半導体基板1には分子線エピタキシィ法等によ
って低濃度不純物領域N−2および高濃度不純物領域N
+ 3を厚さ0.3tm及び0.5am積層する。
A low concentration impurity region N-2 and a high concentration impurity region N are formed on the GaAs semiconductor substrate 1 by molecular beam epitaxy or the like.
+3 is laminated to a thickness of 0.3tm and 0.5am.

この工程としては、各領域を所定の厚さに゛堆積してか
らドーズ量1〜3 X 10” cm−” と5×10
°■2のSiイオンをイオン注入してN−ならびにN÷
領領域した。
In this process, each region is deposited to a predetermined thickness, and then the dose is 1 to 3 x 10"cm-" and 5 x 10 cm.
By implanting Si ions of °■2 into N- and N÷
It was territory.

この断面図を第1図aに示す0次にこの表面に被覆した
厚さ約0.4.のCVD珪素酸化物層4に被着するフォ
トレジスト層5を利用してオーミック電極用の窓明けを
いわゆるフォトリソグラフィ技術によって行うがその断
面を第1図すに示す。
This cross-sectional view is shown in FIG. 1a. The thickness of the coating on this surface is about 0.4 mm. Using the photoresist layer 5 deposited on the CVD silicon oxide layer 4, a window for the ohmic electrode is formed by a so-called photolithography technique, the cross section of which is shown in FIG.

引続いてこの窓に露出した珪素酸化物層4を溶除して現
われた高濃度不純物領域3にオーミック金属6としてA
 u G eを0.24 NiO,3,nからなる複合
金属層を蒸着する。この結果第1図Cにみられるように
フォトレジスト層5・・・頂面にはこの複合金属層が被
着するが、これらをこのフォトレジスト層をスペーサと
してリフトオフし、引続いて前述のゲート形成予定位置
に被着する珪素酸化物層を溶除し、次の素子分離工程に
移行する。
Subsequently, the silicon oxide layer 4 exposed in this window is melted away, and A is applied as an ohmic metal 6 to the high concentration impurity region 3 that appears.
A composite metal layer consisting of 0.24 NiO,3,n is evaporated. As a result, as shown in FIG. 1C, this composite metal layer is deposited on the top surface of the photoresist layer 5, which is lifted off using this photoresist layer as a spacer, and then the above-mentioned gate The silicon oxide layer deposited on the planned formation position is dissolved away, and the process moves to the next element isolation step.

この工程としては第1図dに示すように、オーミック金
属層6及びその中心部分に被着した珪素酸化物層4部分
をフォトレジストマスク5′で被覆してからG a A
 s半導体基板1及びニーに被着した高ならびに低濃度
不純物領域2,3からなる素子分離領域7をH,PO,
+H,O,+H,O等方性食刻液によって溶除してメサ
型の素子領域11を形成する。第1図dに図示した点線
は形成する素子領域を示すもので、フォトレジスト層5
′を除去して第1図eに示すように新たなフォトレジス
トマスク5′をこの素子領域側面とオーミック金属層6
に形成してから前記ゲート形成予定位置に残存する珪素
酸化物層4の穴明けを実施するにの珪素酸化物層4はB
 cl、ガスを利用する異方性食刻即ちRI E (R
eactive Ion Etching)によって高
濃度不純物領域3に達するまで行う。
In this step, as shown in FIG. 1d, the ohmic metal layer 6 and the silicon oxide layer 4 deposited on the center thereof are covered with a photoresist mask 5', and then G a A is applied.
s The element isolation region 7 consisting of the high and low concentration impurity regions 2 and 3 attached to the semiconductor substrate 1 and the knee is heated with H, PO,
A mesa-shaped element region 11 is formed by ablation using +H, O, +H, O isotropic etching liquid. The dotted lines shown in FIG. 1d indicate the element regions to be formed, and the photoresist layer 5
' is removed and a new photoresist mask 5' is applied between the sides of this device region and the ohmic metal layer 6, as shown in FIG. 1e.
After forming the silicon oxide layer 4, the silicon oxide layer 4 remaining at the gate formation position is drilled.
cl, anisotropic etching using gas, or RIE (R
(active ion etching) until reaching the high concentration impurity region 3.

この食刻ダメージ層を除去するために前記素子分離工程
に適用した等方性食刻液によって軽く食刻する。 この
ライトエツチング(ligft stching)によ
ってオーミック金属層端aにはヒサシができたいわゆる
オーバハング構造が第1図fに示すように形成され、次
いでゲート金属層9をこのオーミック金属層6上に蒸着
する。このゲート金属としてはTi −Pt −Au(
0,1趨−0,,24−0,34)をこの順に堆積した
複合層を採用するが、この蒸着層は前記オーバハング構
造のために二Nで段切れを起しゲート層形成予定位置の
孔部8にこの複合金属からなるゲート金属層9が堆積し
高濃度不純物領域3に隣接する構造となる。
In order to remove this etching damage layer, it is lightly etched using the isotropic etching solution used in the element separation process. By this light etching (ligft stitching), a so-called overhang structure with a canopy is formed at the end a of the ohmic metal layer, as shown in FIG. This gate metal is Ti-Pt-Au (
A composite layer is adopted in which layers 0,1-0,,24-0,34) are deposited in this order, but due to the overhang structure, this deposited layer is broken at 2N, and the gate layer is formed at the planned position. A gate metal layer 9 made of this composite metal is deposited in the hole 8 to form a structure adjacent to the high concentration impurity region 3.

前記オーミック金属層に積層したこのゲート金属層9′
はその引出し電極層として利用し、最終的にはパッシベ
ーシミン層10としてプラズマSiO2(今後P−3i
Oと記載する)を0.5μs程度被覆してFETを完成
する。
This gate metal layer 9' laminated on the ohmic metal layer
will be used as the extraction electrode layer, and will eventually be made of plasma SiO2 (P-3i
(denoted as O) for about 0.5 μs to complete the FET.

このゲート金属層9及び引出し電極層9′には適当な位
置に電極を形成するのは当然であるが、図面では省略し
た。
It is a matter of course that electrodes are formed at appropriate positions on the gate metal layer 9 and the extraction electrode layer 9', but these are omitted in the drawings.

(発明の効果) このように本発明では1回のリングラフィ工程によって
ゲートとソースドレイン領域が決められるので、精度良
くゲートとオーミック間隔が調整でき、したがってバラ
ツキの少ないFET特性が小滴り良く得られる。
(Effects of the Invention) In this way, in the present invention, since the gate and source/drain regions are determined by a single phosphorography process, the gate and ohmic spacing can be adjusted with high precision, and therefore FET characteristics with little variation can be obtained with good droplets. .

更に、ゲートとオーミック領域間隔が極めて狭いので、
 ソースの直列抵抗(Rs)が小さく、又リセス構造を
採用しているため表面空乏層の影響も小さくゲト耐圧が
向上する利点がある。
Furthermore, since the distance between the gate and the ohmic region is extremely narrow,
The series resistance (Rs) of the source is small, and since the recessed structure is adopted, the effect of the surface depletion layer is small and the gate breakdown voltage is improved.

更に又、ゲート電極形成と同時にオーミック引出し電極
も形成できるので工数を従来より少なくできる。
Furthermore, since the ohmic lead electrode can be formed at the same time as the gate electrode, the number of steps can be reduced compared to the conventional method.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a = hは本発明に係るFETの製造工程を示
す断面図、第2図a−eならびに第3図a〜eは従来の
製造工程毎の断面図である。 代理人  弁理士  井 上 −男 第 11!1 第 3 図 @ 2 図
FIG. 1 a=h is a sectional view showing the manufacturing process of an FET according to the present invention, and FIGS. 2 a-e and 3 a-e are sectional views showing each conventional manufacturing process. Agent Patent Attorney Inoue - Male No. 11!1 Figure 3 @ Figure 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基板に低濃度不純物領域ならびに高濃度不純物領
域を順次積み重ね、この積層体表面に被着する絶縁物層
を選択的に除去して露出する前記高濃度不純物領域にオ
ーミック金属層を被覆後、素子分離工程によって得られ
る素子領域の前記オーミック金属層間に残る前記珪素酸
化物層を除去して前記低濃度不純物層を露出すると共に
前記オーミック金属層にオーバハング構造を形成し、こ
のオーミック金属層及び露出した前記低濃度不純物領域
にゲート金属層を被覆することを特徴とする半導体装置
の製造方法。
A low-concentration impurity region and a high-concentration impurity region are sequentially stacked on a semiconductor substrate, and the insulating layer adhering to the surface of this stack is selectively removed to coat the exposed high-concentration impurity region with an ohmic metal layer. The silicon oxide layer remaining between the ohmic metal layers in the element region obtained by the separation step is removed to expose the low concentration impurity layer, and an overhang structure is formed on the ohmic metal layer, and the ohmic metal layer and the exposed silicon oxide layer are removed. A method of manufacturing a semiconductor device, characterized in that the low concentration impurity region is covered with a gate metal layer.
JP11746486A 1986-05-23 1986-05-23 Manufacture of semiconductor device Pending JPS62274782A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11746486A JPS62274782A (en) 1986-05-23 1986-05-23 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11746486A JPS62274782A (en) 1986-05-23 1986-05-23 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS62274782A true JPS62274782A (en) 1987-11-28

Family

ID=14712328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11746486A Pending JPS62274782A (en) 1986-05-23 1986-05-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS62274782A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043776A (en) * 1988-06-28 1991-08-27 Nec Corporation Semiconductor device having compound semiconductor FET of E/D structure with high margin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5043776A (en) * 1988-06-28 1991-08-27 Nec Corporation Semiconductor device having compound semiconductor FET of E/D structure with high margin

Similar Documents

Publication Publication Date Title
US5675159A (en) Recessed gate field effect transistor
CA1205922A (en) Self-aligned manufacture of fet
US6821858B2 (en) Semiconductor devices and methods for manufacturing the same
JPH0532911B2 (en)
JP2553699B2 (en) Method for manufacturing semiconductor device
JPS62274782A (en) Manufacture of semiconductor device
JPS62232142A (en) Manufacture of semi-oxide isolation device
JPH0548107A (en) Thin film field effect transistor, its manufacture, and high-withstand voltage thin film field effect transistor
KR100262144B1 (en) Fea adjusted by incorporated mosfet and manufacturing method of the same
US6344378B1 (en) Field effect transistors, field emission apparatuses, thin film transistors, and methods of forming field effect transistors
GB2070858A (en) A shallow channel field effect transistor
JPS60136263A (en) Manufacture of semiconductor device
JPH01251669A (en) Manufacture of field effect transistor
JPS6323669B2 (en)
JP2001332697A (en) Semiconductor device comprising semiconductor resistor element and manufacturing method thereof
JP2503667B2 (en) Method for manufacturing semiconductor device
KR0134858B1 (en) Fabrication method of contact hole in semiconductor device
JPS6112079A (en) Manufacture of semiconductor element
JPH0372634A (en) Manufacture of mes fet
JPH1098111A (en) Mos semiconductor device and manufacture thereof
JP4072248B2 (en) Manufacturing method of semiconductor device
JPS6342177A (en) Manufacture of semiconductor element
JPH06177161A (en) Manufacture of metal schottky junction field-effect transistor
JPH079913B2 (en) Method for manufacturing field effect transistor
JPH0156536B2 (en)