JPS62265795A - Ceramic board with built-in capacitor - Google Patents

Ceramic board with built-in capacitor

Info

Publication number
JPS62265795A
JPS62265795A JP61108628A JP10862886A JPS62265795A JP S62265795 A JPS62265795 A JP S62265795A JP 61108628 A JP61108628 A JP 61108628A JP 10862886 A JP10862886 A JP 10862886A JP S62265795 A JPS62265795 A JP S62265795A
Authority
JP
Japan
Prior art keywords
dielectric constant
capacitor
green sheet
ceramic
fired
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61108628A
Other languages
Japanese (ja)
Inventor
進 西垣
信介 矢野
博文 砂原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Narumi China Corp
Original Assignee
Narumi China Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Narumi China Corp filed Critical Narumi China Corp
Priority to JP61108628A priority Critical patent/JPS62265795A/en
Publication of JPS62265795A publication Critical patent/JPS62265795A/en
Pending legal-status Critical Current

Links

Landscapes

  • Production Of Multi-Layered Print Wiring Board (AREA)
  • Ceramic Capacitors (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、同時焼成によりコンデンサを含む電子回路を
積層セラミックス内に設けてなる回路基板に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a circuit board in which an electronic circuit including a capacitor is provided in a laminated ceramic by co-firing.

[従来の技術] 従来、民生用やコンピューター用などの電子別器類に使
用する回路基板として、セラミックスを絶縁体として使
用した基板が使用されてきた。その代表的なものとして
、WやMOを配線用導体として使用した導体同時焼成ア
ルミナセラミックス基板や、焼成されたアルミナセラミ
ックス基板上に、Ag、Aq−Pd、Au、CLJなと
の配線導体やガラスからなる絶縁材料を焼き付けて回路
を形成する厚膜回路基板が知られている。これらの基板
は、配線の高密度化や電子部品の小型化への要求から、
配線のファインパターン化や多層化が行なわれてきた。
[Prior Art] Conventionally, circuit boards using ceramics as an insulator have been used as circuit boards for electronic appliances such as consumer products and computers. Typical examples include conductor-co-fired alumina ceramic substrates that use W or MO as wiring conductors, wiring conductors such as Ag, Aq-Pd, Au, CLJ, and glass on fired alumina ceramic substrates. Thick film circuit boards are known in which circuits are formed by baking an insulating material made of . These boards have been developed due to the demand for higher wiring density and smaller electronic components.
Fine patterns and multilayer wiring have been implemented.

使用されるセラミックス材料としては、信号の伝播遅延
の問題から誘電率は小さい方が良く、アルミナや厚膜基
板に使用されるガラス絶縁材料の誘電率εrは10以下
の値となってあり、今後ますます低誘電率をもつ材料が
要求されるようになってきている。また、回路に必要な
コンデンサは通常チップ化されたコンデンサ部品を上記
配線基板上にマウントする方法が用いられる。
For the ceramic materials used, it is better to have a small dielectric constant due to signal propagation delay issues, and the dielectric constant εr of alumina and glass insulating materials used for thick film substrates is set to a value of 10 or less. Materials with increasingly low dielectric constants are being required. Further, for the capacitors necessary for the circuit, a method is generally used in which chipped capacitor parts are mounted on the wiring board.

U発明が解決しようとする問題点コ 上記のようなコンデンサの実装方法は高密度化′、小型
化という点からは好ましくなく、基板内部に電極を形成
してコンデンサを構成すると、ざらに一層の高密度化と
小型化が実用できる。
Problems to be Solved by the Invention The above-mentioned capacitor mounting method is unfavorable from the viewpoints of high density and miniaturization, and if the capacitor is constructed by forming electrodes inside the substrate, it will be much more difficult to mount the capacitor. High density and miniaturization are practical.

しかしながら、アルミナやガラス絶縁材料の誘電率は前
述した理由から10以下でおり、コンデンサを構成して
も得られる容量は小さく、大容量のものを得るのは困難
でおった。この問題を解決するには、誘電率の小さなセ
ラミックス基板内部に誘電率の大きな材料を積層し、電
極を形成して大容量のコンデンサを得れば良い。
However, the dielectric constant of alumina and glass insulating materials is 10 or less for the reasons mentioned above, and even if a capacitor is constructed, the capacitance obtained is small, and it has been difficult to obtain a large capacitance. To solve this problem, a capacitor with a large capacity can be obtained by laminating a material with a high dielectric constant inside a ceramic substrate with a low dielectric constant and forming electrodes.

しかし、組成の異なるセラミックスを同時焼成により積
層複合化した場合、熱膨張係数が異なるために生じる応
力や、組成の異なる材料が反応することにより、界面に
生じるポアーが原因となってクラックが発生し、信頼性
が著しく低下して実用的なものを得ることはできなかっ
た。
However, when ceramics with different compositions are laminated and composited by co-firing, cracks occur due to stress caused by different coefficients of thermal expansion and pores generated at the interface due to reactions between materials with different compositions. However, reliability deteriorated significantly and it was not possible to obtain a practical product.

[問題点を解決するための手段] 本発明は上記問題点を解決せんとするもので、セラミッ
ク絶縁層、コンデンサー用電極その他の電子回路用配線
を同時焼成して得られる基板において、セラミックス絶
縁層は組成の異なる800〜1100°Cで焼成可能な
2種類以上のセラミックスを積層した構造をもち、その
うちの1種以上は誘電率が15以上あって、その内部に
コンデンサとしての容量をとる電極を有し、他のセラミ
ックスとの界面には全面もしくは大部分の面に上記温度
で焼成可能な柔かい金属中間層を設けたことを特徴とす
るコンデンナ内蔵セラミックス基板でおる。
[Means for Solving the Problems] The present invention aims to solve the above problems, and includes a substrate obtained by co-firing a ceramic insulating layer, a capacitor electrode, and other electronic circuit wiring. has a laminated structure of two or more types of ceramics with different compositions that can be fired at 800 to 1100°C, one or more of which has a dielectric constant of 15 or more, and has an electrode inside that takes the capacity as a capacitor. A ceramic substrate with a built-in condenser is characterized in that a soft metal intermediate layer that can be fired at the above-mentioned temperature is provided on the entire surface or most of the interface with other ceramics.

すなわち、本発明は誘電率の小ざなセラミックス基板内
部に誘電率が15以上のセラミックス材料を積層してコ
ンデンサを構成し、かつクラックなどの無い信頼性の高
いセラミックス回路基板を提供するものである。
That is, the present invention constitutes a capacitor by laminating a ceramic material having a dielectric constant of 15 or more inside a ceramic substrate having a small dielectric constant, and provides a highly reliable ceramic circuit board free from cracks.

セラミックス材料として800〜1100℃で焼成可能
なものを使用するが、かかる材料としては、ホウケイ酸
ガラスや、ざらに数種類の酸化物(例えばM!;10.
CaO、Bad、A I 203、PbO,に20.N
a2O,zno、L i 20など)を含むガラスとア
ルミナ、石英などの混合物を原料とするものが挙げられ
るが、その他800〜1100’Cで焼成できるものな
らば何でも良い。誘電率の小さいセラミックスとは誘電
率が15より小さいものでおり、好ましくは10以下の
ものが良い。誘電率が15以上の材料を800〜110
0’(:、で焼成可能なものを使用するが、同時焼成す
るので、上記誘電率の小さな材料の焼成温度とほぼ一致
するものを選定する必要がある。
Ceramic materials that can be fired at 800 to 1100°C are used, such as borosilicate glass and several types of oxides (for example, M!; 10.
CaO, Bad, AI 203, PbO, 20. N
Examples include those made from a mixture of glass containing (a2O, zno, Li 20, etc.) and alumina, quartz, etc., but any other materials that can be fired at 800 to 1100'C may be used. Ceramics with a low dielectric constant are those with a dielectric constant of less than 15, preferably 10 or less. Materials with dielectric constant of 15 or more 800-110
A material that can be fired at 0'(:) is used, but since they are fired at the same time, it is necessary to select a material that almost matches the firing temperature of the material with a small dielectric constant.

800〜1100°Cで焼成可能なものとしては、Pb
 (Fe1/3 * Nb2/3 ) 03  (Fe
1/2・W1/2 ) 03系のものに代表されるPb
系復合ペロブスカイト組成物やBaTi0J系化合物に
フラックスを添加したものなど、誘電率が15以りで8
00〜1100’Cで焼成可能なものなら何でもよい。
Among those that can be fired at 800 to 1100°C are Pb
(Fe1/3 * Nb2/3) 03 (Fe
1/2・W1/2) Pb represented by the 03 series
8 with a dielectric constant of 15 or more, such as a composite perovskite composition or a BaTi0J compound with flux
Any material that can be fired at 00 to 1100'C may be used.

これらの組成および誘電率の異なるセラミックスの界面
の全面もしくは大部分の面に設ける軟らかい金属中間層
としては、ACI、ACI−Pd、Act−Pt、Ag
−Pd−Pt等のACI系や、AU、Cuなどの塑性変
形し易く、柔らかな材料が用いられる。
ACI, ACI-Pd, Act-Pt, and Ag
ACI-based materials such as -Pd-Pt and soft materials that are easily plastically deformed such as AU and Cu are used.

金属中間層は、セラミックス絶縁層と同時焼成する必要
があり、原料としてこれらの金属の粉末や必要ならばざ
らに少量のセラミック原料粉末を添加したものを使用す
る。これらの金属の融点は、1100°C以下でおるの
で、原料金屈扮末の焼成温度は800〜1100℃とな
り、これが同時焼成するセラミック材料に焼成温度が8
00〜1100°Cのものを使用する理由である。かか
る金属は柔かく塑性変形し易いため、同時焼成後のセラ
ミックス界面に生じる熱g張着による応力や、界面に生
じやすいポアーなとの欠陥への応力集中を緩和すること
ができるので、発生するクラックを防止することができ
る。そして、上記誘電率の大きなセラミックスの内部に
相対する電極を形成すれば、大容量のコンデンサを構成
することができる。
The metal intermediate layer needs to be fired simultaneously with the ceramic insulating layer, and powders of these metals or, if necessary, a small amount of ceramic raw material powder is used as the raw material. Since the melting point of these metals is below 1100°C, the firing temperature of the raw material and final product is 800 to 1100°C, which means that the firing temperature of the ceramic material to be fired at the same time is 800°C to 1100°C.
This is the reason for using a temperature range of 00 to 1100°C. Since such metals are soft and easily deformed plastically, they can alleviate the stress caused by thermal g adhesion that occurs at the ceramic interface after co-firing, and stress concentration on defects such as pores that tend to occur at the interface, thereby reducing cracks that occur. can be prevented. By forming opposing electrodes inside the ceramic having a high dielectric constant, a capacitor with a large capacity can be constructed.

以上のような構造を1与るには、グリーンシートを使用
したシート積層法やシート印刷積層法を利用するのが好
ましい。
In order to provide the above structure, it is preferable to use a sheet lamination method using green sheets or a sheet printing lamination method.

シート積層法の場合を第1図について説明する。第1図
は説明の便宜上全工程を1つの図面で示しておる。まず
低誘電率材料用の原料混合粉末を使用してドクターブレ
ード法により成形し、厚み0.1〜0.5mm程度のグ
リーンシート1を得る。これに必要な配線パターン2を
、Act、Ag−Pd、AU、Cuなどの800〜11
00℃で焼成可能な導体材料ペーストを使用してスクリ
ーン印刷する。また、他の導体層との接続には打ち抜き
金型やパンチングマシーンでグリーンシート1に形成さ
れた0、2〜0.5mmφのスルーホール3を通じて行
なうようにし、導体材料ペースト4を充填する。
The case of the sheet lamination method will be explained with reference to FIG. FIG. 1 shows all the steps in one drawing for convenience of explanation. First, a green sheet 1 having a thickness of approximately 0.1 to 0.5 mm is obtained by forming a raw material mixed powder for a low dielectric constant material by a doctor blade method. The wiring pattern 2 required for this is 800~11 of Act, Ag-Pd, AU, Cu, etc.
Screen printing is performed using a conductive material paste that can be fired at 00°C. Further, connections to other conductive layers are made through through holes 3 of 0.2 to 0.5 mmφ formed in the green sheet 1 using a punching die or punching machine, and filled with a conductive material paste 4.

以上と同様の方法で得られた厚み30〜400μm程度
の高誘電率材料よりなるグリーンシート5にコンデンサ
形成用の電極6と、必要なスルーホール3や配線パター
ンを形成する。
Electrodes 6 for forming a capacitor, and necessary through holes 3 and wiring patterns are formed on a green sheet 5 made of a high dielectric constant material and having a thickness of about 30 to 400 μm obtained by the same method as described above.

同じグリーンシー1〜1を使用して片面の全面もしくは
大部分の面にAg、Ag−Pd、Au、CUなどの金属
材料ペーストを印刷し金属中間層7とする。ただし接続
用のスルーホール内の導体と中間合屈層が接触してはい
けないので、スルーホールの周囲0.2〜3mm程度の
幅は印1iijl+しないでおく。コンデンサ電(〜を
印刷したグリーンシート5の上下に金属中間層を印刷し
たグリーンシート1,1を積層し、ざらにその下に配線
パターンを印刷した低誘電率のグリーンシート1を積層
した後、80〜150°C150〜250 kg/cm
2の条件で熱圧着し一体化する。そして、800〜11
00’Cの焼成温度で焼成しコンデンサ内蔵セラミック
基板を得る。
Using the same Green Sea 1 to 1, a metal material paste such as Ag, Ag-Pd, Au, or CU is printed on the entire surface or most of one side to form the metal intermediate layer 7. However, since the conductor in the connection through-hole must not come into contact with the intermediate coupling layer, the width of about 0.2 to 3 mm around the through-hole should not be marked. After laminating green sheets 1 and 1 on which a metal intermediate layer is printed on the top and bottom of a green sheet 5 on which a capacitor electric (~) is printed, and a low dielectric constant green sheet 1 on which a wiring pattern is roughly printed on the bottom thereof, 80~150°C150~250 kg/cm
Heat-compress and integrate under the conditions of 2. And 800-11
A ceramic substrate with a built-in capacitor is obtained by firing at a firing temperature of 00'C.

なお、金属中間層7の厚みは5〜50μmか望ましく、
これより簿いと応)[和への効果がなくなり、これより
厚いと同時焼成時のソリか発生し易くなる。使用する金
、睨中間層や導体の材料がAg、Ag−Pd、Auなど
酸化雰囲気テ焼成可能な場合は、RuO2系や Bi2Ru2O7系などの抵抗体8を焼成後の基板上に
通常の厚膜法により形成でき、必要によっては基板内部
、表面上に基板と同時焼成により得ることも可能である
。、Cuなどの中性、還元雰囲気での焼成が必要なもの
の場合は、LaB6 、Sn○2 、BaRuO3,5
rRuO3系などの抵抗が厚膜法や同時焼成により得る
ことができる。また、このような構造の場合、金属中間
層をアースして、クロスト−り防止用のガード電極とし
て使用することもできる。
Note that the thickness of the metal intermediate layer 7 is preferably 5 to 50 μm;
(If it is thicker than this, it will be more likely to warp during simultaneous firing.) If the material used for the gold, intermediate layer, or conductor can be fired in an oxidizing atmosphere such as Ag, Ag-Pd, or Au, the resistor 8, such as RuO2 type or Bi2Ru2O7 type, is coated with a normal thick film on the substrate after firing. If necessary, it can be formed inside or on the surface of the substrate by co-firing with the substrate. , Cu, etc., which require firing in a neutral or reducing atmosphere, use LaB6, Sn○2, BaRuO3,5
Resistors such as those based on rRuO3 can be obtained by a thick film method or co-firing. Further, in the case of such a structure, the metal intermediate layer can be grounded and used as a guard electrode for preventing crosstalk.

[実施例] 以下実施例並びに比較例について本発明の詳細な説明す
る。%はいずれも単量%でおる。
[Example] The present invention will be described in detail below with reference to Examples and Comparative Examples. All percentages are expressed as mono%.

実施例1 1450’Cで溶融、水中急冷して作成したCa018
.2%、A I 20318.2%、5iO254゜5
%、B20] 9.1%の組成をもつ平均粒径3〜3.
5μmのガラス粉末60%と平均粒径1.2μmのアル
ミナ粉末の混合物に、溶剤(トルエン)、バインダー(
アクリル樹脂)、可塑剤(DOP>を加え、十分に混練
して粘度2000〜40000cosのスラリーを作成
し、通常のドクターブレード法を用いて厚み0.411
mの第2図に示す低誘電率材料のグリーンシート9を作
成した。このグリーンシート9を900 ’Cで焼成し
た基板の特性は、誘電率εr =7.8 、高比重=2
.9 、熱膨服係数= 5.3x 10−6 / ’C
1抗折強度= 2400kg/ cm 2てあった。こ
のグリーンシート9を30mm角に比断じた後0.3m
mφのスルーホール3を形成した後、Ag90%、Pd
lO%の混合0末に行別バインダー(エチルセルローズ
)と溶剤(テルピネオール)を加えて作成した導体材料
ペースト4をスルーオール3に充填し、同じ導体ペース
1〜を使用して配線パターン2を印刷した。
Example 1 Ca018 created by melting at 1450'C and quenching in water
.. 2%, A I 20318.2%, 5iO254°5
%, B20] with a composition of 9.1% and an average particle size of 3 to 3.
A solvent (toluene) and a binder (
Add acrylic resin) and plasticizer (DOP>), mix thoroughly to create a slurry with a viscosity of 2000 to 40000 cos, and use the usual doctor blade method to form a slurry with a thickness of 0.411.
A green sheet 9 made of a low dielectric constant material as shown in FIG. The characteristics of the substrate obtained by firing this green sheet 9 at 900'C are as follows: dielectric constant εr = 7.8, high specific gravity = 2
.. 9, thermal expansion coefficient = 5.3x 10-6 / 'C
1 bending strength = 2400 kg/cm2. After cutting this green sheet 9 into 30mm square, 0.3m
After forming the mφ through hole 3, 90% Ag, Pd
Fill through-all 3 with conductive material paste 4 created by adding line-by-line binder (ethyl cellulose) and solvent (terpineol) to the mixed end of lO%, and print wiring pattern 2 using the same conductive paste 1~ did.

PbO1Fe203、Nb2O5、WO38所定量秤瓜
した後、湿式)昆合し乾燥する。乾:心厚お1を750
°Cで仮焼し、湿式゛0砕した後、92燥する。上記と
同様の方法で、100μ(IIj’iの高誘電率材料の
グリーンシート1oを作成した。このグリーンシート1
0を30mm角に切断した後、両面の相対する位置に、
上記導体材料ペースト4を使用して2h+m角の電極6
をスクリーン印刷した。
After weighing a predetermined amount of PbO1Fe203, Nb2O5, and WO38, combine them (wet) and dry. Dry: 750 yen for 1
After calcining at °C, wet crushing, and drying at 92°C. A green sheet 1o of a high dielectric constant material of 100μ (IIj'i) was created in the same manner as above.
After cutting 0 into 30mm squares, place them at opposing positions on both sides.
A 2h+m square electrode 6 using the above conductive material paste 4
was screen printed.

同じグリーンシートを30mm角に切断した後、0.3
mmφのスルーホールを形成した後、上記導体ペースト
をスルーホールに充填した後、スルーホールの周りを0
12mm幅で残るように、片面全面に、AC+100%
粉末に有機バインダー(エチルセルローズ)と溶剤を加
え混練して作成した導体ペーストを中間金属層7として
スクリーン印刷した。同様の方法で、中間金属層7を印
刷したグリーンシートをざらに一枚作成した。
After cutting the same green sheet into 30mm squares, 0.3
After forming a through hole of mmφ and filling the through hole with the above conductive paste, the area around the through hole is
AC+100% on one side, leaving a width of 12mm
A conductive paste prepared by adding and kneading an organic binder (ethyl cellulose) and a solvent to powder was screen printed as the intermediate metal layer 7. Roughly one green sheet on which the intermediate metal layer 7 was printed was prepared in the same manner.

第2図に示した構造になるように、印刷を終了した低誘
電率のグリーンシート9と高誘電率のグリーンシート1
0を積層した後、100℃、100k(]/ Cm 2
で熱圧着した。通常の電気式バッチ炉を使用して900
 ’C130分で酸化雰囲気焼成した。得られたコンデ
ンサ内蔵基板の金属中間層の厚みは10μmでおった。
A low dielectric constant green sheet 9 and a high dielectric constant green sheet 1 that have been printed have the structure shown in Figure 2.
After laminating 0, 100℃, 100k(]/Cm2
It was heat-pressed. 900 using a regular electric batch furnace
It was fired in an oxidizing atmosphere at C130 minutes. The thickness of the metal intermediate layer of the obtained capacitor built-in substrate was 10 μm.

また、クラックは発生しておらず、1qられた容量は1
10nFで高誘電率材料の誘電率はεr = 3800
at 1 k l−1zて市った。
In addition, no cracks occurred, and the capacity reduced by 1q was 1
At 10 nF, the dielectric constant of the high dielectric constant material is εr = 3800
At 1 k l-1z came to market.

比較例1 実施例1と同様の材料を用い中間金属層かない以外は同
様の構造のものを作成したが、このものは高誘電率材H
に多数のクランクが発生した。
Comparative Example 1 A product with the same structure as Example 1 was made using the same materials except that there was no intermediate metal layer, but this product was made of high dielectric constant material H.
A large number of cranks occurred.

実施例2 市販のアルミノ鎗ホウケイ正ガラス(Pb0−A120
3−3iO2−8203M>をl>f’?して作成した
平均粒径3〜3.5μmのガラス粉末50%と、平均粒
径1.2μmのアルミナ粉末50%の混合物を実施例1
と同様の方法で0.4mm厚の低誘電材料のグリーンシ
ートを作成した。このグリーンシートを900’Cで焼
成した基板の特性は、誘電率εr =7.5 、高比重
=2.95、熱膨張係数= 5.5x10−6/’C1
抗折強度=2200kg、/cm2であった。
Example 2 Commercially available alumino porcelain glass (Pb0-A120
3-3iO2-8203M>l>f'? Example 1 A mixture of 50% glass powder with an average particle size of 3 to 3.5 μm and 50% alumina powder with an average particle size of 1.2 μm prepared by
A green sheet of low dielectric material having a thickness of 0.4 mm was prepared in the same manner as described above. The characteristics of the substrate obtained by firing this green sheet at 900'C are as follows: dielectric constant εr = 7.5, high specific gravity = 2.95, coefficient of thermal expansion = 5.5x10-6/'C1
The bending strength was 2200 kg/cm2.

実施例1で作成した高誘電率材料のグリーンシートを使
用し、実施例1と同様の@造を持つコンデンサ内蔵基板
を作成した。中間金属層としてはAg90%、pd10
%の合金を使用し、厚みは実施例1よりスクリーン印刷
回数を増して40μmを得た。
Using the green sheet of the high dielectric constant material prepared in Example 1, a capacitor-embedded board having the same @ structure as in Example 1 was prepared. The intermediate metal layer is Ag90%, pd10
% alloy was used, and the thickness was 40 μm by increasing the number of screen printings compared to Example 1.

1qられた基板はクラックが発生しておらず、容量は1
20nFで、高誘電率材料の誘電率はεr=4200a
t1 k HZであった。
The 1q board has no cracks and the capacity is 1
At 20nF, the dielectric constant of the high dielectric constant material is εr=4200a
It was t1 kHz.

比較例2 実施例2と同様の材料を用い、中間金属層がない以外は
同様の構造のものを作成したが、このものは高誘電率材
料に多数のクラックが発生した。
Comparative Example 2 A similar structure as in Example 2 was made using the same materials except that the intermediate metal layer was not provided, but in this case, many cracks occurred in the high dielectric constant material.

実施例3 A099%、Pt 1%の合金粉末100部と、実施例
1で作成した高誘電率材料のグリーンシートに使用した
セラミック原料粉末5部からなる混合粉末に、有機バイ
ンダー(エチルセルローズ)と溶剤(テルピネオール)
を加え充分混練して、中間金属層用ペーストを作成した
。実施例1で作成した厚みO,h+mの低誘電率材料グ
リーンシートを35X30mmに切断した。このグリー
ンシートに上記中間金属層用ペーストを使用して32x
26mmの中間金属層を印刷した。実施例1で作成した
高誘電率材料グリーンシートを3部mmx 30mmに
切断した後、実施例1で作成した△Ω−PdΩ−Pd導
体ベーストしてコンデンナ用電極を印刷した。このよう
にして電極を印刷した高誘電材料グリーンシート、印刷
していない高誘電率月利グリーンシート、上記中間金属
層を印刷した低誘電率材料グリーンシートを積層し−た
後、100°C,100kg/am2の条件で熱圧着し
一体化した。相対する2つの側面を切断し、コンデンナ
電極の端部を側面に露出させた。切断した側面を上記A
Q−Pd導体ペース[・を使用して印刷し、露出した電
(へを接続した。1ひられた@逍を第3図に示す。
Example 3 An organic binder (ethyl cellulose) was added to a mixed powder consisting of 100 parts of an alloy powder of 99% A0 and 1% Pt and 5 parts of the ceramic raw material powder used for the green sheet of high dielectric constant material prepared in Example 1. Solvent (terpineol)
was added and sufficiently kneaded to prepare a paste for intermediate metal layer. The green sheet of low dielectric constant material prepared in Example 1 and having a thickness of O, h+m was cut into a size of 35×30 mm. Using the above intermediate metal layer paste on this green sheet,
A 26 mm intermediate metal layer was printed. The high dielectric constant material green sheet prepared in Example 1 was cut into 3 pieces of 3 mm x 30 mm, and then the ΔΩ-PdΩ-Pd conductor prepared in Example 1 was used as a base and an electrode for a condenser was printed. After laminating the high-permittivity green sheet with printed electrodes, the unprinted high-permittivity green sheet, and the low-permittivity green sheet with the intermediate metal layer printed on it, the sheets were heated at 100°C. They were integrated by thermocompression bonding under the conditions of 100 kg/am2. Two opposing sides were cut to expose the ends of the condenser electrodes on the sides. The cut side is A above.
A Q-Pd conductor paste was used to print and connect the exposed conductors.The printed conductor is shown in Figure 3.

900’C130分の条件で酸化雰囲気焼成して得られ
た基板の容1を380n Fで、得られた高誘電率相γ
ミ1の誘電率はεr =4/+00であった。
The volume 1 of the substrate obtained by firing in an oxidizing atmosphere at 900'C for 130 minutes was heated to 380nF to form the high dielectric constant phase γ.
The dielectric constant of Mi1 was εr =4/+00.

[ブご明の効果] 本発明はコンデンサを内蔵したセラミック基板と同時焼
成で得るとともに、クランクの発生のない信頼性の高い
回路基板であって、大容量のコンデンサを内蔵した積層
基板を容易に得ることができる。
[Effect of Bugomei] The present invention is a highly reliable circuit board that can be obtained by co-firing with a ceramic substrate containing a capacitor and does not cause cranking, and can easily produce a multilayer substrate containing a large capacity capacitor. Obtainable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は本発明の実施例の構成を示す説明
図である。 1・・・グリーンシート、2・・・配線パターン、3・
・・スルーホール、4・・・導体材料ペースト、5・・
・グリーンシート、6・・・電極、7・・・中間金属層
、8・・・抵抗体。 9・・・低誘電材料のグリーンシート、10・・・高誘
電材料のグリーンシート。
1 to 3 are explanatory diagrams showing the configuration of an embodiment of the present invention. 1...Green sheet, 2...Wiring pattern, 3.
...Through hole, 4...Conductor material paste, 5...
- Green sheet, 6... Electrode, 7... Intermediate metal layer, 8... Resistor. 9... Green sheet of low dielectric material, 10... Green sheet of high dielectric material.

Claims (1)

【特許請求の範囲】[Claims] (1)セラミックス絶縁層、コンデンサー用電極その他
の電子回路用配線を同時焼成して得られる基板において
、セラミックス絶縁層は組成の異なる800〜1100
℃で焼成可能な2種類以上のセラミックスを積層した構
造をもち、そのうちの1種以上は誘電率が15以上あっ
て、その内部にコンデンサとしての容量をとる電極を有
し、他のセラミックスとの界面には全面もしくは大部分
の面に上記温度で焼成可能な柔かい金属中間層を設けた
ことを特徴とするコンデンサ内蔵セラミックス基板。
(1) In a substrate obtained by co-firing a ceramic insulating layer, a capacitor electrode, and other electronic circuit wiring, the ceramic insulating layer has a composition of 800 to 1100
It has a structure in which two or more types of ceramics that can be fired at °C are laminated, one or more of which has a dielectric constant of 15 or more, has an electrode inside that has a capacitance as a capacitor, and is different from other ceramics. A ceramic substrate with a built-in capacitor, characterized in that a soft metal intermediate layer that can be fired at the above temperature is provided on the entire surface or most of the interface.
JP61108628A 1986-05-14 1986-05-14 Ceramic board with built-in capacitor Pending JPS62265795A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61108628A JPS62265795A (en) 1986-05-14 1986-05-14 Ceramic board with built-in capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61108628A JPS62265795A (en) 1986-05-14 1986-05-14 Ceramic board with built-in capacitor

Publications (1)

Publication Number Publication Date
JPS62265795A true JPS62265795A (en) 1987-11-18

Family

ID=14489613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61108628A Pending JPS62265795A (en) 1986-05-14 1986-05-14 Ceramic board with built-in capacitor

Country Status (1)

Country Link
JP (1) JPS62265795A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166599A (en) * 1987-12-22 1989-06-30 Narumi China Corp Manufacture of laminated ceramic substrate
US4965098A (en) * 1988-07-19 1990-10-23 Toyota Jidosha Kabushiki Kaisha Two-tone paint film
JPH02305490A (en) * 1989-05-19 1990-12-19 Kyocera Corp Capacitor built-in composite circuit substrate
US4979991A (en) * 1988-09-19 1990-12-25 Toyota Jidosha Kabushiki Kaisha Production process of pigment
JPH04139711A (en) * 1990-09-29 1992-05-13 Kyocera Corp Composite circuit board with built-in capacitor
JPH05166668A (en) * 1991-08-05 1993-07-02 Hughes Aircraft Co Low-temperature common baking structure containing embedded capacitor
JP2005101478A (en) * 2003-08-27 2005-04-14 Kyocera Corp Glass ceramic multi-layer wiring board with built-in capacitor
JP2005285968A (en) * 2004-03-29 2005-10-13 Kyocera Corp Capacitor built-in glass ceramic multilayer wiring board
JP2006147689A (en) * 2004-11-17 2006-06-08 Murata Mfg Co Ltd Laminated ceramic electronic component
JP2007299777A (en) * 2006-04-27 2007-11-15 Tdk Corp Laminated semiconductor ceramic
US7545103B2 (en) 2004-05-07 2009-06-09 Panasonic Corporation Cold-cathode tube lighting device for use in a plurality of cold-cathode tubes lit by one low-impedance power source
JP2018110251A (en) * 2018-02-15 2018-07-12 太陽誘電株式会社 Multilayer ceramic capacitor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244631A (en) * 1986-04-17 1987-10-26 日本電気株式会社 Manufacture of composite laminated ceramic part

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62244631A (en) * 1986-04-17 1987-10-26 日本電気株式会社 Manufacture of composite laminated ceramic part

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01166599A (en) * 1987-12-22 1989-06-30 Narumi China Corp Manufacture of laminated ceramic substrate
US4965098A (en) * 1988-07-19 1990-10-23 Toyota Jidosha Kabushiki Kaisha Two-tone paint film
US4979991A (en) * 1988-09-19 1990-12-25 Toyota Jidosha Kabushiki Kaisha Production process of pigment
JPH02305490A (en) * 1989-05-19 1990-12-19 Kyocera Corp Capacitor built-in composite circuit substrate
JPH04139711A (en) * 1990-09-29 1992-05-13 Kyocera Corp Composite circuit board with built-in capacitor
JPH05166668A (en) * 1991-08-05 1993-07-02 Hughes Aircraft Co Low-temperature common baking structure containing embedded capacitor
JP2005101478A (en) * 2003-08-27 2005-04-14 Kyocera Corp Glass ceramic multi-layer wiring board with built-in capacitor
JP4658465B2 (en) * 2003-08-27 2011-03-23 京セラ株式会社 Glass ceramic multilayer wiring board with built-in capacitor
JP2005285968A (en) * 2004-03-29 2005-10-13 Kyocera Corp Capacitor built-in glass ceramic multilayer wiring board
JP4578134B2 (en) * 2004-03-29 2010-11-10 京セラ株式会社 Glass ceramic multilayer wiring board with built-in capacitor
US7545103B2 (en) 2004-05-07 2009-06-09 Panasonic Corporation Cold-cathode tube lighting device for use in a plurality of cold-cathode tubes lit by one low-impedance power source
JP2006147689A (en) * 2004-11-17 2006-06-08 Murata Mfg Co Ltd Laminated ceramic electronic component
JP2007299777A (en) * 2006-04-27 2007-11-15 Tdk Corp Laminated semiconductor ceramic
JP2018110251A (en) * 2018-02-15 2018-07-12 太陽誘電株式会社 Multilayer ceramic capacitor

Similar Documents

Publication Publication Date Title
JPS62265795A (en) Ceramic board with built-in capacitor
JP3944791B2 (en) Ceramic multilayer printed circuit board
JP3785903B2 (en) Multilayer substrate and manufacturing method thereof
JP2000173346A (en) Conductive paste and ceramic multilayer board
JP3190111B2 (en) Multilayer wiring board and dielectric layer material
US5352482A (en) Process for making a high heat-conductive, thick film multi-layered circuit board
EP1184882A1 (en) Conductor pattern built in multilayer board, multilayer board having built-in conductor pattern, and method of manufacturing multilayer board
JPH01166599A (en) Manufacture of laminated ceramic substrate
JP2598706B2 (en) Carrier board with built-in capacitor
JP2964725B2 (en) Composition for ceramic substrate
JP2652229B2 (en) Multilayer circuit ceramic substrate
JPH0738493B2 (en) Co-fired ceramic circuit board
JPH02121392A (en) Capacitor built-in composite circuit board and manufacture thereof
JPH11135899A (en) Ceramic circuit board
JPH0555079A (en) Composite circuit board containing capacitor
JPH01232797A (en) Ceramic multilayer circuit board
JPH04328207A (en) Conductor compound and wiring board
JP2700920B2 (en) Composite circuit board with built-in capacitor
JP2842705B2 (en) Composite circuit board with built-in capacitor
JP3934910B2 (en) Circuit board
JP3164664B2 (en) Multilayer circuit board
JPH0620516A (en) Conductive composition, ceramic multilayered substrate and semiconductor device
JPH0253951B2 (en)
JPH06243716A (en) Copper paste
JP2000353877A (en) Multilayer circuit board and its manufacture