JPS6226491A - Heat transfer device - Google Patents

Heat transfer device

Info

Publication number
JPS6226491A
JPS6226491A JP16532285A JP16532285A JPS6226491A JP S6226491 A JPS6226491 A JP S6226491A JP 16532285 A JP16532285 A JP 16532285A JP 16532285 A JP16532285 A JP 16532285A JP S6226491 A JPS6226491 A JP S6226491A
Authority
JP
Japan
Prior art keywords
heat
accumulator
liquid
heat receiving
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16532285A
Other languages
Japanese (ja)
Inventor
Tetsuro Ogushi
哲朗 大串
Yasushi Sakurai
桜井 也寸史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP16532285A priority Critical patent/JPS6226491A/en
Publication of JPS6226491A publication Critical patent/JPS6226491A/en
Pending legal-status Critical Current

Links

Landscapes

  • Central Heating Systems (AREA)

Abstract

PURPOSE:To reduce the heating amount in an accumulator as well as the power of a pump by reheating circulating liquid from a radiator to the accumulator with steam stream from a heat receiving section. CONSTITUTION:High-temperature vapor 3B, generated in the heat receiving section 1, flows to the radiator 2 through a pipeline 4A and a flow path 23 in a heat exchanger 21, and is condensed by cooling. Liquid 3A, whose temperature is lowered, passes through the pipeline 4B and the flow path 22 in the heat exchanger 21 while the temperature thereof is raised by heat received from the high-temperature vapor 3B in the flow path 23, thereafter, flows into the accumulator 7 through the pipeline 8D. Next, the accumulator 7 is heated when a thermoelectric element 13 is switched over and the liquid, whose temperature has been raised is changed into vapor. As a result, the internal pressure becomes higher than the pressure in the heat receiving section1 nd liquid in the accumulator 7 is discharged into the heat receiving section 1. Accordingly, the circulation of the liquid may be generated even in case the amount of input electric power of the thermoelectric element 13 is small.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は一電子機器の冷却などに用いられる熱伝達装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a heat transfer device used for cooling electronic equipment, etc.

〔従来の技術〕[Conventional technology]

従来−熱伝達装置は熱輸送媒体を管路内に封入し、この
熱輸送媒体の液体と蒸気との相変化を利用したものが一
般的であり、受熱部で吸収した熱を放熱部に輸送して発
散させるようにしている。
Conventional heat transfer devices generally enclose a heat transport medium in a pipe and utilize the phase change of this heat transport medium between liquid and vapor, which transports the heat absorbed in the heat receiving part to the heat radiating part. I try to let it out.

第3図は従来の熱伝達装置を示す構成図である。FIG. 3 is a configuration diagram showing a conventional heat transfer device.

図において、1は受熱部、2は放熱部、3は熱輸送媒体
としてのテフロンやメチルアルコールfZトの凝縮性の
作動流体である。この作動流体3は上記受熱部1と放熱
部2とを介装したループ状の管路4内に適量封入されて
いる。5は放熱を効果熱に行うために放熱部2に設けら
れた送風ファンである。6.7は受熱部1の上流側と放
熱部2の下流側とを接続する管路4に介装された複数個
のアキュムレータであり、この例においては2個の第1
及び第2のアキュムレータで、2個並列に配管されてい
る。すなわち、4Aは受熱部1の下流側と放熱部2の上
流側とを接続する管路+ 4B、4Cは受熱部1の上流
側と放熱部2の下流側とを接続する管路で、受熱部1側
の・q路4Cは第1及び第2のアキュムレータ6.7と
受熱部1とを連通接続する管路8Aと・U路8Bとに分
岐され、放熱部2側の管路4Bは第1及び第2のアキュ
ムレータ6.7と放熱部2とを連通接続する管路8Cと
管路8Dとに分岐されている。9〜12は分岐されたそ
れぞれの管路8A〜8Dを選択的に開閉する開閉手段と
しての開閉弁で、各開閉弁9,10は各管路8A、8B
に介装された開閉手段としての第1及び第2の開閉弁、
各開閉弁11.12は各管路8C,8Dに介装された開
閉手段としての第3及び第4の開閉弁である。
In the figure, 1 is a heat receiving part, 2 is a heat radiating part, and 3 is a condensable working fluid such as Teflon or methyl alcohol fZ as a heat transport medium. An appropriate amount of the working fluid 3 is sealed in a loop-shaped conduit 4 which has the heat receiving section 1 and the heat radiating section 2 interposed therebetween. Reference numeral 5 denotes a blower fan provided in the heat radiating section 2 to efficiently radiate heat. 6.7 is a plurality of accumulators installed in the pipe line 4 connecting the upstream side of the heat receiving section 1 and the downstream side of the heat dissipating section 2;
and a second accumulator, two of which are piped in parallel. That is, 4A is a pipe connecting the downstream side of the heat receiving part 1 and the upstream side of the heat radiating part 2. 4B and 4C are the pipes connecting the upstream side of the heat receiving part 1 and the downstream side of the heat radiating part 2. The q path 4C on the part 1 side is branched into a pipe 8A and a U path 8B that communicate and connect the first and second accumulators 6.7 and the heat receiving part 1, and the pipe 4B on the heat radiating part 2 side is It is branched into a conduit 8C and a conduit 8D that communicate and connect the first and second accumulators 6.7 and the heat radiation section 2. Reference numerals 9 to 12 indicate on-off valves as opening/closing means for selectively opening and closing the respective branched pipes 8A to 8D, and each of the on-off valves 9 and 10 is connected to each of the pipes 8A and 8B.
first and second on-off valves as on-off means installed in the
Each of the on-off valves 11 and 12 is a third and fourth on-off valve as an on-off means provided in each of the conduits 8C and 8D.

そして、各開閉弁9〜12は各アキュムレータ6.7の
動作を制御する制御手段を構成するために、次のように
その開閉動作が互いに連動されている。丁なわち、各開
閉弁9,12が両者共に開で、各開閉弁10.11が両
者共に閉の第1の状態と、各開閉弁9,12が両者共に
閉で、各開閉弁10及び11が両者共に開の第2の状態
とを交互に適当な時間間隔で繰り返すように連動されて
いる。13は各アキュムレータ6.7を加熱冷却する加
熱冷却手段としてのベルチェ効果を利用した熱電素子で
、この熱電素子13は各アキュムレータ6.7間に介装
され、熱電素子13の一方の而14をアキュムレータ6
と接触させ、他方の面15をアキュムレータ7と接触さ
せるように設けられている。この熱′也素子13は通電
する電流の正負を切り換えることにより、前記両面14
.15において発熱及び吸熱を交互に行うことができる
Each of the on-off valves 9 to 12 constitutes a control means for controlling the operation of each accumulator 6.7, so that their opening and closing operations are interlocked with each other as follows. In other words, a first state in which the on-off valves 9 and 12 are both open and both on-off valves 10 and 11 are closed, and a first state in which the on-off valves 9 and 12 are both closed and each on-off valve 10 and 11 are interlocked so that the second state in which both are open is alternately repeated at appropriate time intervals. Reference numeral 13 denotes a thermoelectric element that utilizes the Beltier effect as a heating and cooling means for heating and cooling each accumulator 6.7. This thermoelectric element 13 is interposed between each accumulator 6. Accumulator 6
The other surface 15 is provided so as to be in contact with the accumulator 7. This heating element 13 can heat the both surfaces 14 by switching between positive and negative currents.
.. In step 15, exothermic and endothermic events can be performed alternately.

ここで正負の切り換えは、各開閉弁9〜12が第1の状
態にある時、熱電素子13の面14が発熱状態、面15
が吸熱状態となり、第2の状態にある時、熱電素子13
の面14が吸熱状態、面15が発熱状態となるように連
動されている、このように構成された熱伝達装置におい
ては、前記第1の状態に設定されると、受熱部1で発生
した蒸気3Bは管路4を通って放熱部2へと流通し、冷
却されて凝縮する。凝縮された液体3Aは管路4B、管
路8Dを経て開閉弁12を通過し、アキュムレータ7へ
流れ込む作用により、受熱部lで吸収した熱が放熱部2
へと輸送される。この間、開閉弁10は閉になっている
ため、受熱部1から7キユムレータ7へ管路8Bを通っ
て直接蒸気が流れ込むようなことはない。また、開閉弁
9は開、開閉弁11は閉となっている。この時、上記熱
電素子13にはアキュムレータ6を加熱し、アキュムレ
ータ7を冷却するように電圧が印加されており、アキュ
ムレータ6の内部圧力がアキュムレータ7の内部圧力よ
りも高くなるために、アキュムレータ6からアキュムレ
ータ7に向つ方向に液体を流通させる駆動力が発生する
。その結果、アキュムレータ6内にある液体は・a路8
A、開閉弁9、及び管路4Cを通って受熱部1へ還流す
ることになる。換言すれば、受熱部lに作動流体3が供
給されることになる。
Here, the switching between positive and negative means that when each of the on-off valves 9 to 12 is in the first state, the surface 14 of the thermoelectric element 13 is in a heating state, and the surface 15 is in a heating state.
is in the endothermic state and in the second state, the thermoelectric element 13
In the heat transfer device configured in this way, in which the surface 14 is interlocked so that the surface 14 is in the heat absorption state and the surface 15 is in the heat generation state, when the first state is set, the heat generated in the heat receiving part 1 is The steam 3B flows through the pipe line 4 to the heat radiation section 2, where it is cooled and condensed. The condensed liquid 3A passes through the on-off valve 12 via the pipe line 4B and the pipe line 8D, and flows into the accumulator 7, whereby the heat absorbed by the heat receiving part l is transferred to the heat dissipating part 2.
transported to. During this time, since the on-off valve 10 is closed, steam does not directly flow from the heat receiving section 1 to the seventh accumulator 7 through the pipe line 8B. Further, the on-off valve 9 is open, and the on-off valve 11 is closed. At this time, a voltage is applied to the thermoelectric element 13 to heat the accumulator 6 and cool the accumulator 7, and since the internal pressure of the accumulator 6 becomes higher than the internal pressure of the accumulator 7, A driving force is generated that causes the liquid to flow in the direction toward the accumulator 7. As a result, the liquid in the accumulator 6 is
A, the on-off valve 9, and the conduit 4C are returned to the heat receiving section 1. In other words, the working fluid 3 is supplied to the heat receiving part l.

一方、一定周期経過後、ちるいは各アキュムレータ6.
7内の液面の検知などにより、各開閉弁9〜12及び熱
電素子13の切り換えが行われると、熱′llc素子1
3は面14が吸熱状態、面15が発熱状態となる、また
、各開閉弁9.12が両者共に閉で、各開閉弁10.1
1が両者共に開の第2状態に切り換えると、受熱部1で
蒸発した蒸気3Bは放熱部2で液化した後、アキュムレ
ータ6へ流れ込み、アキュムレータ7から受熱部1へと
液体が還流するという点が異なるだけの第1の状態と全
く同様な作用で熱輸送が行われる。この上うに、各開閉
9F9〜12の開閉の切り換え、及び熱心素子13の電
流の切り換えにより、受熱部1に作動流体3が還流して
いる時点で各アキエムレータ6.7を切り換え、はぼ連
続的に作^の流体3を受熱部1へと還流させることがで
きる。
On the other hand, after a certain period has passed, each accumulator 6.
When the on-off valves 9 to 12 and the thermoelectric element 13 are switched by detecting the liquid level in the thermoelectric element 7, the thermoelectric element 1
3, the surface 14 is in an endothermic state and the surface 15 is in an exothermic state, and each on-off valve 9.12 is both closed, and each on-off valve 10.1
1 is switched to the second state where both are open, the vapor 3B evaporated in the heat receiving part 1 is liquefied in the heat radiating part 2, and then flows into the accumulator 6, and the liquid is refluxed from the accumulator 7 to the heat receiving part 1. Heat transport is performed in exactly the same manner as in the first state, only with a difference. Furthermore, by switching the opening/closing of each opening/closing 9F9 to 12 and switching the current of the active element 13, each Achiemulator 6.7 is switched at the point when the working fluid 3 is flowing back into the heat receiving part 1, and the The produced fluid 3 can be returned to the heat receiving section 1.

〔発明が解決しようとする間」点〕[While the invention is trying to solve the problem]

上記のような従来の熱伝達装置は以上のように構成され
ているので、熱′1素子13の)′JD熱により各アキ
ュムレータ6.7内の圧力を高めるためには、各アキュ
ムレータ6.7内の液体を蒸発させる必要があるが、放
熱部2で冷却されて凝縮し管路4Bを通って各アキュム
レータ6.7へ還流する液体3Aは、放熱部2で凝縮温
1以下lこ過冷却されて各アキュムレータ6.7で蒸発
する温度よりもかなり低い温度で流入する。そのため、
熱電素子13による加熱量として、液体を蒸気に変える
蒸発潜熱の他に、液体の温度を蒸発温度まで上昇させる
ための顕熱量が必要となり、したがって、作動液体3を
循環させるために必要なポンプ動力、すなわち熱電素子
13への入力電力が多く必要となるという間4点があっ
た。
Since the conventional heat transfer device as described above is constructed as described above, in order to increase the pressure inside each accumulator 6.7 by the )'JD heat of the heat element 13, each accumulator 6.7 It is necessary to evaporate the liquid inside, but the liquid 3A that is cooled and condensed in the heat dissipation section 2 and flows back to each accumulator 6.7 through the pipe 4B is supercooled in the heat dissipation section 2 to a condensation temperature of 1 or less. It enters at a temperature significantly lower than the temperature at which it evaporates in each accumulator 6.7. Therefore,
As the amount of heating by the thermoelectric element 13, in addition to the latent heat of vaporization that changes the liquid to vapor, an amount of sensible heat is required to raise the temperature of the liquid to the evaporation temperature. Therefore, the pump power necessary to circulate the working liquid 3 is required. There were four points: that is, a large amount of input power to the thermoelectric element 13 was required.

この発明は、かかる間遺点を解決するためになされたも
ので、放熱部からアキュムレータへの還流液体を、受熱
部からの蒸気流で再加熱することにより、アキュムレー
タへの加熱1が小さくでき、また、ポンプ動力も小さく
できる熱伝達装置、11を得ることを目的とする。
This invention was made to solve this problem, and by reheating the reflux liquid from the heat radiating part to the accumulator with the steam flow from the heat receiving part, the amount of heating 1 to the accumulator can be reduced. Another object of the present invention is to obtain a heat transfer device 11 that can reduce pump power.

〔問題点を解決するための手段〕[Means for solving problems]

この発明に係る熱伝達装置は、放熱部とアキュムレータ
間の管路の中途に、放熱部からアキュムレータへの還流
液体と、アキュムレータから受熱部への液流との間に熱
交換を行わせるための熱交換器を介装させるようにした
ものである。
The heat transfer device according to the present invention is provided with a heat transfer device for performing heat exchange between the reflux liquid from the heat radiating part to the accumulator and the liquid flow from the accumulator to the heat receiving part, in the middle of the pipe between the heat radiating part and the accumulator. A heat exchanger is installed.

また、この発明の別の発明に係る熱伝達装置は、放熱部
とアキュムレータ間のf i%の中途に、放熱部からア
キュムレータへの還R腹体と、受熱部から放熱部への蒸
気流との間に熱交換を行わせるための熱交換器を介装さ
せるようにし念ものである。
Further, in the heat transfer device according to another aspect of the present invention, a return body from the heat radiating part to the accumulator and a steam flow from the heat receiving part to the heat radiating part are provided midway between the heat radiating part and the accumulator. It is recommended that a heat exchanger be installed to perform heat exchange between the two.

〔作用〕[Effect]

この発明の熱伝達vc置においては、放熱部とアキュム
レータ間の管路の中途に介装される熱交換器は、放熱部
からアキュムレータへの還流液体の温度を上昇させ、ひ
いては、アキュムレータlこおける熱電素子による加熱
tを小さくさせるためのものである。
In the heat transfer VC device of the present invention, the heat exchanger interposed in the middle of the pipe between the heat radiating part and the accumulator increases the temperature of the reflux liquid from the heat radiating part to the accumulator, and as a result, the temperature of the reflux liquid from the heat radiating part to the accumulator increases. This is to reduce the heating t caused by the thermoelectric element.

〔実施例〕〔Example〕

第1図はこの発明の一人確例である熱伝達装置を示T構
成図で、第3図と同一部分は同一符号を用いて表示して
あり、その詳細な説明は省略する。
FIG. 1 is a block diagram showing a heat transfer device which is a concrete example of the present invention, and the same parts as in FIG. 3 are indicated by the same reference numerals, and detailed explanation thereof will be omitted.

図において、21は熱交換器であり、この熱交換器21
内において、−刃側の流路22は放熱部2と各アキュム
レータ6.7間の管i%4Bに介装され、他方側の流路
23は各アキュムレータ6.7と受熱部1間の管路4C
に介装されている。
In the figure, 21 is a heat exchanger, and this heat exchanger 21
Inside, the flow path 22 on the -blade side is interposed in the pipe i%4B between the heat radiating part 2 and each accumulator 6.7, and the flow path 23 on the other side is interposed in the pipe between each accumulator 6.7 and the heat receiving part 1. Road 4C
is interposed in.

次に、上記第1図に示T熱伝達装置の動作について説明
Tる。各開閉弁9〜12の開閉の切り換え、及び熱電素
子13の電流の切り換えは、上記従来装置と同様である
からその説明は省略する。
Next, the operation of the heat transfer device shown in FIG. 1 will be explained. The switching of opening and closing of each of the on-off valves 9 to 12 and the switching of the current of the thermoelectric element 13 are the same as in the conventional device described above, so a description thereof will be omitted.

第1図は、各開閉弁9.12が共に開で、各開閉弁10
.11が両者共に閉の第1の状態を示している。受熱部
lで発生した高温の蒸気3Bは管路4Aを通り上記熱交
換器21内の流路23を通った後に放熱部2へ流通し、
冷却されて凝縮Tる。
In FIG. 1, each on-off valve 9.12 is both open and each on-off valve 10 is open.
.. 11 indicates the first state in which both are closed. The high temperature steam 3B generated in the heat receiving part 1 passes through the pipe 4A and passes through the flow path 23 in the heat exchanger 21, and then flows to the heat radiating part 2,
It is cooled and condensed.

冷却されて低温となった液体3Aは管路4Bを通り、上
記熱交換器21内の流路22を通って上記流路23内の
高温の液体3Aから熱を受けて温度を高めた後に、管路
8Dを経て開閉弁12を通過してアキュムレータ7へ流
れ込む。一方、アキュムレータ6からの高温の液体は開
閉弁9.管路8Aを通り、熱交換器21内の流路23を
通って流路23内の液体を加熱した後、管@4Cを通っ
て受熱部lに流れ込む。
The cooled low-temperature liquid 3A passes through the pipe 4B, passes through the flow path 22 in the heat exchanger 21, receives heat from the high-temperature liquid 3A in the flow path 23, and increases its temperature. It flows into the accumulator 7 via the conduit 8D and the on-off valve 12. On the other hand, the high temperature liquid from the accumulator 6 is transferred to the on-off valve 9. After passing through the pipe 8A and the flow path 23 in the heat exchanger 21 to heat the liquid in the flow path 23, it flows into the heat receiving part l through the pipe @4C.

次いで、各開閉弁9〜12及び熱電素子13の切り換え
が行われると、アキュムレータ7が熱電素子13により
加熱されることになるが、アキュムし・−タ7内の液体
は高温となっているため、液体を蒸気に変える蒸発潜熱
分のみの7IO熱で蒸発が生シ、その結果、アキュムレ
ータ7の内部圧力が受熱部1の圧力よりも高くなり、ア
キュムレータ7内の液体が受熱部1へ排出されることに
なる。
Next, when the on-off valves 9 to 12 and the thermoelectric element 13 are switched, the accumulator 7 will be heated by the thermoelectric element 13, but since the liquid in the accumulator 7 is at a high temperature. , evaporation occurs with only the 7IO heat that is the latent heat of evaporation that converts the liquid into vapor, and as a result, the internal pressure of the accumulator 7 becomes higher than the pressure in the heat receiving part 1, and the liquid in the accumulator 7 is discharged to the heat receiving part 1. That will happen.

したがって、熱111素子13の入力電力量がわずかな
ものであっても液体の循環を生じることになる。
Therefore, even a small amount of power input to the thermal 111 element 13 will cause liquid circulation.

なお、上記実施例では、熱交換器21を管路4Bと管路
4Cの中途に介装させ九場合lこついて説明したが、各
アキュムレータ6.7の液体の出入口部の中途に上記熱
交換器21を介装させても良く、この場合に、アキュム
レータ6に流入する還流液体と、アキュムレータ7から
の流出液体との間で熱交換が行われるものである。
In the above embodiment, the heat exchanger 21 is interposed between the pipe line 4B and the pipe line 4C in nine cases. A vessel 21 may be provided, in which case heat exchange is performed between the reflux liquid flowing into the accumulator 6 and the liquid flowing out from the accumulator 7.

第2図はこの発明の別の発明の一実施例である熱伝達装
置を示す構成図で、第3図と同一部分は同一符号を用い
て表示してあり、その詳細な説明は省略する。図におい
て、21は熱交換器であり、この熱交換器21内におい
て、一方何の流路22は放熱部2と各アキュムレータ6
.7間の管路4Bに介装され、他方側の流路23は受熱
部1と放熱部2間の8路4Aiこ介装2九ている。
FIG. 2 is a configuration diagram showing a heat transfer device which is another embodiment of the present invention, in which the same parts as in FIG. 3 are indicated using the same reference numerals, and detailed explanation thereof will be omitted. In the figure, 21 is a heat exchanger, and within this heat exchanger 21, the flow passages 22 are connected to the heat radiation part 2 and each accumulator 6.
.. The channel 23 on the other side is interposed in the pipe line 4B between the heat receiving section 1 and the heat dissipating section 2.

次に、上記第2図に示T熱伝達装置の動作について説明
する。各開閉弁9〜12の開閉の切り換え、及び熱心素
子13の1d浦の切り換えは、上記従来装置と同様であ
るからその説明は省屹する。
Next, the operation of the T heat transfer device shown in FIG. 2 will be explained. The switching of opening and closing of each of the on-off valves 9 to 12 and the switching of 1 d of the eager element 13 are the same as in the above-mentioned conventional device, so a description thereof will be omitted.

第2図は、各開閉弁9,12が共に開で、各v’A閉弁
10,11が両者式に閉の第1の状態を示している。受
熱部1で発生した高温の蒸気3Bは前略4Aを通り上記
熱交換器21円の流路23を通った後に放熱部2へ流通
し、冷却てれて凝縮する。
FIG. 2 shows a first state in which the on-off valves 9 and 12 are both open and the v'A closing valves 10 and 11 are both closed. The high temperature steam 3B generated in the heat receiving part 1 passes through the above-mentioned approximately 4A and the flow path 23 of the heat exchanger 21, and then flows to the heat radiating part 2, where it is cooled and condensed.

冷却されて低温となった液体3Aは管路4Bを通り、上
記熱交換器21内の流路22を通って上記流路23内の
高温の蒸気3Bbら熱を受けて温度を高めた後、管路8
Dを経て開閉弁12を通過してアキュムレータ7へ流れ
込む。
The cooled low-temperature liquid 3A passes through the pipe line 4B, passes through the flow path 22 in the heat exchanger 21, receives heat from the high-temperature steam 3Bb in the flow path 23, and increases its temperature. Conduit 8
D, passes through the on-off valve 12 and flows into the accumulator 7.

次いで、各開閉弁9〜12及び熱!素子13の切り換え
が行われると、アキュムレータ7が熱電素子13(こよ
−り加熱されることになるが、アキュムレータ7内の液
体は高温となっているため、液体を蒸気に変える蒸発潜
熱分のみの加熱で蒸発が生じ、その結果、アキュムレー
タ7の内部圧力が受熱部1の圧力よりも篩くなり、アキ
ュムレータ7内の液体が受熱部1へ排出されることにな
る。
Next, each on-off valve 9-12 and heat! When the element 13 is switched, the accumulator 7 is heated more than the thermoelectric element 13 (but since the liquid in the accumulator 7 is at a high temperature, only the latent heat of vaporization that converts the liquid into vapor is heated). Evaporation occurs due to heating, and as a result, the internal pressure of the accumulator 7 becomes lower than the pressure in the heat receiving section 1, and the liquid in the accumulator 7 is discharged to the heat receiving section 1.

したがって、熱4素子13の入力電力量がわずかなもの
であっても液体の循環を生じることになる。
Therefore, even if the amount of input power to the four thermal elements 13 is small, circulation of the liquid will occur.

〔発明の効果〕〔Effect of the invention〕

この発明は以上説明したとおり、熱伝達装置において、
熱交換器により、放熱部から一方のアキ・ユムレータへ
の低温の還流液体と、他方のアキュムレータから受熱部
へ排出される高温の液流との間で熱交換を行わせる構成
とすか、又は、熱交換器により、放熱部からアキュムレ
ータへの低温の還流液体と、受熱部から放熱部への高温
の蒸気流との間で熱交換を行わせる構成としたので、ア
キュムレータへの流入液が高温で入り込むようにでき、
このため、アキュムレータへの加熱量が小さくて良く、
結果的には、液体の循環を行うためのポンプ動力を小さ
くできるなどの優れた効果を奏する。
As explained above, the present invention provides a heat transfer device including:
A heat exchanger is configured to perform heat exchange between the low temperature reflux liquid flowing from the heat radiating section to one accumulator and the high temperature liquid flow discharged from the other accumulator to the heat receiving section, or, The heat exchanger is configured to exchange heat between the low-temperature reflux liquid from the heat radiating section to the accumulator and the high-temperature vapor flow from the heat receiving section to the heat radiating section, so that the liquid flowing into the accumulator is at a high temperature. You can get into it,
Therefore, the amount of heating to the accumulator is small, and
As a result, excellent effects such as being able to reduce the pump power required to circulate the liquid can be achieved.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例である熱伝達装置を示す構
成図、第2図はこの発明の別の発明の一実施例である熱
伝達装置を示す構成図、第3図は従来の熱伝達装置を示
T構成図である。 図において、1・・・受熱部、2・・・放熱部、3・・
・作動流体、3A・・・液体、3B・・・蒸気、4.4
A、4B・・・管路、5・・・送風ファン、6,7・・
・アキュムレータ、8,8A、8B、80.8D・・・
管路、9〜12・・・開閉弁、13・・・熱電素子、2
1・・・熱交換器、22.23・・・流路である。 なお、各図中、同一符号は同一、又は相当部分を示す。
Fig. 1 is a block diagram showing a heat transfer device which is an embodiment of the present invention, Fig. 2 is a block diagram showing a heat transfer device which is another embodiment of the present invention, and Fig. 3 is a block diagram showing a heat transfer device which is an embodiment of the present invention. It is a T configuration diagram showing a heat transfer device. In the figure, 1... heat receiving part, 2... heat radiating part, 3...
・Working fluid, 3A...Liquid, 3B...Steam, 4.4
A, 4B...Pipeline, 5...Blower fan, 6,7...
・Accumulator, 8, 8A, 8B, 80.8D...
Pipe line, 9-12... Opening/closing valve, 13... Thermoelectric element, 2
1... Heat exchanger, 22. 23... Flow path. In each figure, the same reference numerals indicate the same or equivalent parts.

Claims (2)

【特許請求の範囲】[Claims] (1)受熱部と放熱部とを介装したループ状の管路を備
え、この管路内に熱輸送媒体としての凝縮性の作動流体
を封入し、前記受熱部の上流側で前記放熱部の下流側の
管路に複数並列に配設されたアキュムレータを介装し、
このアキュムレータを加熱冷却する加熱冷却手段を設け
、少なくとも1つのアキュムレータに対し前記放熱部で
凝縮された作動流体をアキュムレータに流入させる動作
と、アキュムレータ内にある流体を前記受熱部へ還流さ
せる動作とを交互に行わせると共に、他のアキュムレー
タに対し、前記動作と逆の順序で同様動作を交互に行わ
せしめる制御手段を設けた熱伝達装置において、凝縮部
で凝縮した後に、前記一方のアキュムレータに流入する
作動液体と、他方のアキュムレータから前記受熱部へ排
出される作動液体との間に熱交換を行わせしめる熱交換
器を設けたことを特徴とする熱伝達装置。
(1) A loop-shaped pipe line is provided with a heat receiving part and a heat radiating part interposed therebetween, a condensable working fluid as a heat transport medium is sealed in the pipe line, and the heat radiating part is placed on the upstream side of the heat receiving part. A plurality of accumulators are installed in parallel in the downstream pipe line,
A heating and cooling means for heating and cooling the accumulator is provided, and the operation of causing the working fluid condensed in the heat radiation section to flow into the accumulator and the operation of causing the fluid in the accumulator to flow back to the heat receiving section are performed for at least one accumulator. In a heat transfer device provided with a control means for causing the other accumulators to perform the same operations alternately in the reverse order of the aforementioned operations, the heat transfer device is provided with a control means that causes the other accumulators to perform the same operations alternately in the reverse order of the operations, wherein the heat is condensed in the condensing section and then flows into the one accumulator. A heat transfer device comprising a heat exchanger that performs heat exchange between the working liquid and the working liquid discharged from the other accumulator to the heat receiving section.
(2)受熱部と放熱部とを介装したループ状の管路を備
え、この管路内に熱輸送媒体としての凝縮性の作動流体
を封入し、前記受熱部の上流側で前記放熱部の下流側の
管路に複数並列に配設されたアキュムレータを介装し、
このアキュムレータを加熱冷却する加熱冷却手段を設け
、少なくとも1つのアキュムレータに対し前記放熱部で
凝縮された作動流体をアキュムレータに流入させる動作
と、アキュムレータ内にある流体を前記受熱部へ還流さ
せる動作とを交互に行わせると共に、他のアキュムレー
タに対し、前記動作と逆の順序で同様動作を交互に行わ
せしめる制御手段を設けた熱伝達装置において、凝縮部
で凝縮した後に、前記アキュムレータに流入する作動液
体と、前記受熱部から前記放熱部へ至る作動液体の蒸気
との間に熱交換を行わせしめる熱交換器を設けたことを
特徴とする熱伝達装置。
(2) A loop-shaped pipe line with a heat receiving part and a heat radiating part interposed therebetween, a condensable working fluid as a heat transport medium is sealed in the pipe line, and the heat radiating part is placed on the upstream side of the heat receiving part. A plurality of accumulators are installed in parallel in the downstream pipe line,
A heating and cooling means for heating and cooling the accumulator is provided, and the operation of causing the working fluid condensed in the heat radiation section to flow into the accumulator and the operation of causing the fluid in the accumulator to flow back to the heat receiving section are performed for at least one accumulator. In a heat transfer device, the working liquid flows into the accumulator after being condensed in a condensing section. and a heat exchanger for performing heat exchange between the heat receiving section and the vapor of the working liquid extending from the heat receiving section to the heat radiating section.
JP16532285A 1985-07-26 1985-07-26 Heat transfer device Pending JPS6226491A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16532285A JPS6226491A (en) 1985-07-26 1985-07-26 Heat transfer device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16532285A JPS6226491A (en) 1985-07-26 1985-07-26 Heat transfer device

Publications (1)

Publication Number Publication Date
JPS6226491A true JPS6226491A (en) 1987-02-04

Family

ID=15810122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16532285A Pending JPS6226491A (en) 1985-07-26 1985-07-26 Heat transfer device

Country Status (1)

Country Link
JP (1) JPS6226491A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015789A1 (en) * 1995-10-24 1997-05-01 Daikin Industries, Ltd. Air conditioner
WO1998044304A1 (en) * 1997-04-02 1998-10-08 Daikin Industries, Ltd. Piping washing method and piping washing apparatus for refrigerating apparatuses
EP1022524A1 (en) * 1997-09-11 2000-07-26 Daikin Industries, Limited Apparatus and method for cleaning pipes of refrigerating unit
US6915646B2 (en) * 2002-07-02 2005-07-12 Delphi Technologies, Inc. HVAC system with cooled dehydrator

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997015789A1 (en) * 1995-10-24 1997-05-01 Daikin Industries, Ltd. Air conditioner
US6062035A (en) * 1995-10-24 2000-05-16 Daikin Industries, Ltd. Air conditioner
WO1998044304A1 (en) * 1997-04-02 1998-10-08 Daikin Industries, Ltd. Piping washing method and piping washing apparatus for refrigerating apparatuses
US6321542B1 (en) 1997-04-02 2001-11-27 Daikin Industries, Ltd. Method for cleaning pipe and pipe cleaning apparatus for refrigerating apparatus
EP1022524A1 (en) * 1997-09-11 2000-07-26 Daikin Industries, Limited Apparatus and method for cleaning pipes of refrigerating unit
EP1022524A4 (en) * 1997-09-11 2001-03-21 Daikin Ind Ltd Apparatus and method for cleaning pipes of refrigerating unit
US6279330B1 (en) * 1997-09-11 2001-08-28 Daikin Industries, Ltd. Apparatus and method for cleaning pipes of refrigerating unit
US6915646B2 (en) * 2002-07-02 2005-07-12 Delphi Technologies, Inc. HVAC system with cooled dehydrator

Similar Documents

Publication Publication Date Title
US11035621B2 (en) Electronics cooling with multi-phase heat exchange and heat spreader
US2881594A (en) Electrical refrigerating device
JP3089034B2 (en) Fuel preheating in the fuel processing system of a fuel cell power plant
JPS6226491A (en) Heat transfer device
JPH11304274A (en) Waste heat utilized absorption type water cooling/ heating machine refrigerating machine
JP2006501612A (en) Thermal management system
CN205336732U (en) Cold drawing radiator based on superconductive principle of non - heat of transformation
CN210745036U (en) Heat transfer device, air conditioner assembly, water heater, refrigerating plant and thermoelectric generation device based on semiconductor wafer
JP2016023608A (en) Generating set using heat of exhaust gas of internal combustion engine
CN212781924U (en) Heat sink for computer
JPS60171389A (en) Heat transfer device
JPS6285451A (en) Heat transfer apparatus
JP2578988B2 (en) Thermoelectric device and method of controlling thermoelectric device
JPH0413636B2 (en)
CN117168201B (en) Loop heat pipe
US20240200834A1 (en) Device and Method for Magnetic Refrigeration
JPH09303984A (en) Thermal element
KR200143379Y1 (en) Heat plate in heat pump
KR102108633B1 (en) Apparatus for controlling temperature using thermoelectric element
Li et al. Heat Spreading Performance of Integrated IGBT Module with Bonded Vapour Chamber for Electric Vehicle
JPS6155563A (en) Heat transfer device
RU2187773C2 (en) Heat-transferring device and device for feed of heat-transfer agent
JPS6285450A (en) Heat transfer apparatus
JPH0197161A (en) Mhd generator
JPH0430585A (en) Thermoelectric device