JPS622469A - High-molecular secondary cell - Google Patents
High-molecular secondary cellInfo
- Publication number
- JPS622469A JPS622469A JP60140488A JP14048885A JPS622469A JP S622469 A JPS622469 A JP S622469A JP 60140488 A JP60140488 A JP 60140488A JP 14048885 A JP14048885 A JP 14048885A JP S622469 A JPS622469 A JP S622469A
- Authority
- JP
- Japan
- Prior art keywords
- metal
- negative electrode
- electrolyte
- anions
- positive electrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、正極に高分子化合物、負極に金属を用いた充
電可能な2次電池に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a rechargeable secondary battery using a polymer compound as a positive electrode and a metal as a negative electrode.
ポリアセチレンなどの共役2型締合を有する高分子は、
電気化学的にCl0a−、PF5−、 BFa−などの
アニオンや、L !”、(C4Hs )4N+などのカ
チオyをドーピングし、P型及びn型電導性高分子を作
ることが知られている。例えば、ザ ケミカルソサイア
テイ オプ ジャパン コミュニケーション1979年
594頁〜595頁(’l’he(:hemical
5ociety of Japan communic
ation1979 pp594〜595)参照。Polymers with conjugated type 2 compaction such as polyacetylene are
Electrochemically, anions such as Cl0a-, PF5-, BFa-, and L! It is known that p-type and n-type conductive polymers are created by doping with cations such as ``, (C4Hs)4N+.For example, The Chemical Society Op Japan Communication, 1979, pp. 594-595 ( 'l'he(:chemical
5ociety of Japan community
ation 1979 pp594-595).
又このような電気化学的ドーピングを応用した充電可能
な電池も報告されている。このタイプの電池の1例とし
て、正極、負極にポリアセチレン膜を用い、有機電解液
として炭酸プロピレンに(C4HI )a NCl0a
を溶解させたものを用いた電池では、開路電圧25
v、短絡電流11.1mAが得られている旨報告されて
いる。ザ ケミカルソサイアテイ オプ ジャパン コ
ミュニケーション 1981年 317頁〜319頁(
’l’hechemical 5ociety of
Japan comnunication1981
pp317〜319)参照。Rechargeable batteries using such electrochemical doping have also been reported. As an example of this type of battery, polyacetylene membranes are used for the positive and negative electrodes, and propylene carbonate (C4HI)a NCl0a is used as the organic electrolyte.
In a battery using a dissolved material, the open circuit voltage is 25
It is reported that a short circuit current of 11.1 mA was obtained. The Chemical Society Op Japan Communication 1981, pp. 317-319 (
'l'chemical 5ociety of
Japan communication1981
See pp. 317-319).
ポリアセチレンを電極とする2次電池はエネルギー密度
(Wh/Kq)が大きいことから、最近注目されだして
いる。Secondary batteries using polyacetylene as electrodes have recently been attracting attention because of their high energy density (Wh/Kq).
電池の形式としては、(1)両極に導電性高分子を用い
、正極ではアニオン、負極ではカチオ/の出し入れを行
なう電池、(2)正極に導電性高分子、負極に金属を用
い、正極にはアニオンの出し入れを行ない、負極では金
属の溶解析出を行なう電池。The types of batteries are (1) a battery that uses a conductive polymer for both electrodes, with anions at the positive electrode and cations at the negative electrode; (2) a battery that uses a conductive polymer for the positive electrode and a metal for the negative electrode; is a battery in which anions are taken in and taken out, and metal is dissolved and deposited at the negative electrode.
(3)両極に導電性高分子を用い、アニオン又はカチオ
ンの1種数を移動させる電池、(4)負[K導電性高分
子を用い、正極に眉間化合物を用い、アルカリ金属イオ
ンな゛どのカチオンの出し入れを行なう電池、(5)負
極に層間化合物、正極に導電性高分子を用い、負極にカ
チオン、正極にアニオンの出し入れを行なう電池、(6
)負極に導電性高分子、正極にアルカリ金属を用い、ア
ルカリ金属イオンの出し入れを行なう電池などが報告さ
れている。(3) A battery that uses a conductive polymer for both electrodes and moves one type of anion or cation; (4) A battery that uses a conductive polymer for the negative electrode, a compound for the positive electrode, and a battery that uses alkali metal ions, etc. A battery that takes in and out cations, (5) A battery that uses an intercalation compound in the negative electrode and a conductive polymer in the positive electrode, and takes in and out cations and anions in the negative electrode and the positive electrode, (6
) Batteries have been reported that use a conductive polymer for the negative electrode and an alkali metal for the positive electrode, allowing alkali metal ions to be taken in and taken out.
これらメ電池のうち、アニオン、カチオン両イオンの出
し入れを行なう電池では、電解液量が多く、エネルギー
密度が上がらず、またカチオンのみの出し入れを行なう
電池及び金属の溶解、析出を併なう電池では、樹脂状金
属の析出により、電池の短絡などの問題が生じ寿命が短
かい欠点がある。Among these batteries, batteries that take in and take out both anions and cations require a large amount of electrolyte and the energy density does not increase; However, due to the precipitation of resinous metals, problems such as battery short circuits occur, resulting in a short service life.
本発明の目的はエネルギー密度が高く、シかも長寿命の
充電可能な2次電池を提供するKある。An object of the present invention is to provide a rechargeable secondary battery with high energy density and long life.
本発FiAは正極、負極および電解液からなる2次電池
において、正極の材料として導電性高分子、負極材料と
して金属を用い、充電過程では上記負極において金属と
結合して生成した金属塩よりアニオンを上記電解液中に
放出し、上記正極では上記電解液中のアニオンが導電性
高分子へと取シ込まれるように働き、一方放電過程では
、上記正極において上記導電性高分子に取シ込まれたア
ニオンを上記電′M液中に放出し、上記負極金属と塩を
生成するよう働く2次電池である。The developed FiA uses a conductive polymer as the positive electrode material and a metal as the negative electrode material in a secondary battery consisting of a positive electrode, a negative electrode, and an electrolyte. is released into the electrolytic solution, and the anions in the electrolytic solution work to be incorporated into the conductive polymer at the positive electrode, while in the discharge process, the anions are incorporated into the conductive polymer at the positive electrode. This is a secondary battery that functions to release the anions contained in the electrolyte into the electrolyte solution and generate salt with the negative electrode metal.
従って1本発明では生成した金属塩を電解液に実質的に
溶解させない。Therefore, in the present invention, the generated metal salt is not substantially dissolved in the electrolytic solution.
本発明に係わる2次電池の正極に用いられる導電性高分
子材料は、主に、主鎖に共役2]1結合を有する高分子
材料で、その例としてはポリアセチL/ ン、 7f!
リハ5 フェニン、ポリチェニレン、ホリピロール、
ボ替アニレンなど数多くの4のが知られている。これら
のうち、アニオン、例えば(1)PF6− 、 S b
Fs−、As Pg’″、5bCt@−O如きva族
の元素のハロゲン化アニオン、■)BF2−の如きli
a族のハロゲン化アニオン、(3)ド(Is’ ) 、
Br″″。The conductive polymer material used for the positive electrode of the secondary battery according to the present invention is mainly a polymer material having a conjugated 2]1 bond in the main chain, examples of which include polyacetylene, 7f!
Rehabilitation 5 Phenine, polythenylene, holipyrrole,
Many types of 4 are known, such as bokae anilene. Among these, anions such as (1) PF6-, S b
Fs-, As Pg''', 5bCt@-O halide anions of elements of the va group, ■) li such as BF2-
a-group halogenated anion, (3) do(Is'),
Br″″.
C1−、F−の如きハロゲンアニオン、 (4)Ct0
4″″の如き過塩素酸アニオン、 (5)S04”−な
どの酸素酸アニオンなどを安定にドーピングできるもの
であれば良い。Halogen anions such as C1-, F-, (4) Ct0
Any material that can stably dope a perchlorate anion such as 4'''' or an oxyacid anion such as (5) S04''- may be used.
使用する溶媒は、電池の作動電圧内において安定であれ
ばよい。The solvent used only needs to be stable within the operating voltage of the battery.
本発明では負極における金属の溶解析出反応ではなく、
アニオンの移動及び金属との反応を利用するため、負極
に使用する金属は前述したアニオンとの塩の溶屏度の小
さいものを選択する必要がある。電解液は負極に用いる
金属よ)イオン化傾向の大きな金属塩を溶かした飽和電
解液を用いる。In the present invention, the metal dissolution precipitation reaction at the negative electrode is not performed, but
In order to take advantage of the movement of anions and their reaction with metals, it is necessary to select metals used for the negative electrode that have a low degree of salt solubility with the above-mentioned anions. The electrolyte used is a saturated electrolyte in which a metal salt with a high ionization tendency (such as the metal used in the negative electrode) is dissolved.
本発明の2次電池では、I!電極間移行する活物質はア
ニオンのみとなり、電解液量は電極物質空間及び電極間
の短絡を防止するために必要な高分子不織布等のセパレ
ータを湿めらすだけの量で十分である。In the secondary battery of the present invention, I! The active material that migrates between the electrodes is only the anion, and the amount of electrolyte is sufficient to moisten the electrode material space and the separator, such as a polymeric nonwoven fabric, necessary to prevent short circuits between the electrodes.
以下、本発明の実施例によって更に本発明の詳細な説明
する。第1図乃至第2図は本発明に係わる2次電池の拡
大斜視図乃至その一部拡大図である。電解液に非水溶媒
を用い、また負極に金属を用いるため、電池ケースとし
ての外壁は、At薄!(1〜100μm)でラミネート
した樹脂フィルムlでおおわれている。また、高分子電
極2の構造は集電効果を高め、電極端子を収り出すため
、耐食材で作られた金網3などをうめ込んだ構造となり
ている。電極間にはポリプロピレン、ガラスなどで構成
された布状のセノ(レータ4を置き、電極間の短絡を防
止している。第1図及び第2図の構成図は単電池のそれ
であるが、単電池間に適切な導電性のセパレータを置き
、電解液の単電池間の移動を防止することによりミ池を
積層化することも可能である。Hereinafter, the present invention will be further explained in detail with reference to examples of the present invention. 1 and 2 are enlarged perspective views and partially enlarged views of a secondary battery according to the present invention. Since a non-aqueous solvent is used for the electrolyte and a metal is used for the negative electrode, the outer wall of the battery case is thin! (1 to 100 μm) is covered with a laminated resin film l. Further, the structure of the polymer electrode 2 is such that a wire mesh 3 made of corrosion-resistant material is embedded therein in order to enhance the current collecting effect and take out the electrode terminal. A cloth-like sensor (4) made of polypropylene, glass, etc. is placed between the electrodes to prevent short circuits between the electrodes.The configuration diagrams in Figures 1 and 2 are of a single cell. It is also possible to stack the ponds by placing a suitable conductive separator between the cells to prevent electrolyte from moving between the cells.
次に具体的な実施例につき述べる。Next, specific examples will be described.
実施例1
正極にポリアセチレンを用いた。ポリアセチレンの密度
は0.3g/cm”で、厚みはiooμmである。集電
体には白金網を用いた。溶媒に炭酸プロピレンを用い、
負極にはMg金属又はMgの合金、電解質に塩化マグネ
シウムの飽和溶液を用いた。Example 1 Polyacetylene was used for the positive electrode. The density of polyacetylene is 0.3 g/cm" and the thickness is ioo μm. A platinum wire mesh was used as the current collector. Propylene carbonate was used as the solvent.
Mg metal or Mg alloy was used for the negative electrode, and a saturated solution of magnesium chloride was used for the electrolyte.
電流密度5mA/cyf、ポリアセチレンへの塩素イオ
ンのドーピング率(炭素原子当シのドーノ(ントイオン
のモル比)を4mo1%の条件下で充放電サイクルを繰
シ返し九ところ、放電終了電圧を0、5 Vとした時の
充放電サイクル寿命は400回で負極上へ樹脂状物質の
析出は認められなかった。The charge and discharge cycles were repeated under the conditions of a current density of 5 mA/cyf and a doping rate of chlorine ions to polyacetylene (molar ratio of chlorine ions per carbon atom) of 4 mo1%, and then the discharge end voltage was set to 0. The charge/discharge cycle life at 5 V was 400 times, and no resinous substance was observed to be deposited on the negative electrode.
実施例2
いた。充放電の条件は実施例1と同様条件でサイクルテ
ストを行なった所、サイクル寿命は520回であった。Example 2 There was. A cycle test was conducted under the same charging and discharging conditions as in Example 1, and the cycle life was 520 times.
また自己放電率は、1日当91.7係と低かった。Also, the self-discharge rate was low at 91.7 units per day.
実施例3
正極にポリチオフェン、負極にMg金属を用いた。電解
液は、炭酸プロピレンとジメトキシエタンの混合溶媒に
塩化リチウムの2mol/l#液を用いた。充放電の条
件は、実施1例1と同様条件でサイクルテストを行なっ
た所、クーロン効率が50−以上となるサイクル寿命は
630回であった。Example 3 Polythiophene was used for the positive electrode and Mg metal was used for the negative electrode. As the electrolytic solution, a 2 mol/l solution of lithium chloride in a mixed solvent of propylene carbonate and dimethoxyethane was used. A cycle test was conducted under the same charging and discharging conditions as in Example 1, and the cycle life at which the coulomb efficiency was 50 or more was 630 cycles.
これらの実施例に対し、実施例1と同様に正極にポリア
セチレン、負極にMg金属を用い、電解液には1 mo
l / lの過塩素酸リチウムを溶かした炭酸プロピ
レン溶液を用いた従来形の2次電池に、充放電サイクル
テストを行なったところ、100回で負極にMgのデン
ドライトが析出し、電池内部で短絡が起シ寿命となった
。For these Examples, as in Example 1, polyacetylene was used for the positive electrode, Mg metal was used for the negative electrode, and 1 mo
When a conventional secondary battery using a propylene carbonate solution containing l/l lithium perchlorate was subjected to a charge/discharge cycle test, Mg dendrites were deposited on the negative electrode after 100 cycles, and a short circuit occurred inside the battery. became the lifespan.
実施例4
正極にポリアニリン、負極にMg金属を用いた電池を組
み立てた。正極ポリアニリンは、白金網上に酸性水溶液
から電解酸化重合し九もので、水洗後、80Cで真空乾
燥して使用し念。セル電極間に含浸した電解液は、炭酸
プロビレ/とジメトキシエタンの体積比で1対IK混合
した溶媒に硫酸リチウムを飽和させたものである。Example 4 A battery was assembled using polyaniline for the positive electrode and Mg metal for the negative electrode. The positive electrode polyaniline was electrolytically oxidized and polymerized from an acidic aqueous solution onto a platinum mesh, and after washing with water, it was vacuum dried at 80C before use. The electrolytic solution impregnated between the cell electrodes is a solvent prepared by mixing 1 to IK by volume of propylene carbonate and dimethoxyethane and saturated with lithium sulfate.
電流密度5mA/cdlで、ドーピング率はポリアニリ
ンに対して3 mmol / g b放電終了電圧を0
,5Vとしたときの充放電サイクル寿命は910回であ
った。また同じ充放電下での自己放電率はl−7日であ
った。At a current density of 5 mA/cdl, the doping rate was 3 mmol/g for polyaniline, and the discharge end voltage was 0.
, 5V, the charge/discharge cycle life was 910 times. Moreover, the self-discharge rate under the same charging and discharging conditions was 1-7 days.
実施例5
実施例4と同様、正極にはポリアニリン、負極にはMg
−At合金(M g / A を原子比=9)を用いた
。充放電サイクル寿命は1200回、自己放電率は、l
チ/日であった。Example 5 Similar to Example 4, polyaniline was used for the positive electrode and Mg was used for the negative electrode.
-At alloy (atomic ratio of Mg/A=9) was used. The charge/discharge cycle life is 1200 times, and the self-discharge rate is l
It was 1/day.
これ等の実施例に対し、実施例4と同様の正。For these examples, the same positive as Example 4 is applied.
負極材料を用い、電解液には炭酸プロピレンとジメトキ
シエタンの混合溶媒に硫酸リチウムを0.5mo l
/ L溶解させ念ものを用いた従来形の2次電池に、実
施例4と同様の充放電サイクルテストを行なった所、サ
イクル寿命は310回で、Sυ、負極に樹脂状Mgの析
出が認められた。Using a negative electrode material, the electrolyte contains 0.5 mol of lithium sulfate in a mixed solvent of propylene carbonate and dimethoxyethane.
A charge/discharge cycle test similar to that in Example 4 was performed on a conventional secondary battery using L-dissolved material, and the cycle life was 310 times, with Sυ and resinous Mg deposited on the negative electrode. It was done.
本発明によると、主鎖に共役2重粘合を有する高分子を
用いる2次電池において、正極に高分子負極に溶解度の
小さな金属を用いることにより。According to the present invention, in a secondary battery using a polymer having conjugated double viscosity in the main chain, a metal having low solubility in the polymer negative electrode is used as the positive electrode.
ま九、!溶液に負極より酸化還元電位がより卑な金属の
塩の溶液を用いることにより金属の樹脂状析出がないた
め、充放電サイクル寿命の長い電池を提供できる。そし
て、イオン化傾向の大きな金属塩を溶かした飽和電解液
を用いるため電解液の液抵抗を下げることができ、電池
のエネルギー密度を大巾に向上させることができる。Maku,! By using a solution of a salt of a metal whose oxidation-reduction potential is more base than that of the negative electrode, a battery with a long charge-discharge cycle life can be provided because there is no resinous precipitation of the metal. Furthermore, since a saturated electrolyte containing a metal salt having a high ionization tendency is used, the resistance of the electrolyte can be lowered, and the energy density of the battery can be greatly improved.
第1図は本発明に係わる2次電池の構造を示す一部断面
斜視図、第2図は、その一部拡大断面図である。
■・・・2ミネート樹脂フイルム、2・・・ポリアセチ
レン、3・・・エキスバンドメタル、4・・・セパレー
タ。
5・・・負極金属、6・・・電極端子。FIG. 1 is a partially sectional perspective view showing the structure of a secondary battery according to the present invention, and FIG. 2 is a partially enlarged sectional view thereof. ■...2 laminated resin film, 2... polyacetylene, 3... extracted band metal, 4... separator. 5... Negative electrode metal, 6... Electrode terminal.
Claims (1)
した負極及び、上記正極及び負極間に介在する電解液と
から成る2次電池に於いて、上記両電極間を移行する上
記電解液中の活物質を主としてアニオンのみとすること
を特徴とする高分子2次電池。 2、正極を主鎖に共役2重結合を有する高分子材料で構
成したことを特徴とする特許請求の範囲第1項記載の高
分子2次電池。 3、負極をMg又はその合金で構成したことを特徴とす
る特許請求の範囲第1項乃至第2項記載の高分子2次電
池。 4、電解液に負極金属より酸化還元電位が卑な金属の塩
の溶液を用いることを特徴とする特許請求の範囲第1項
、第2項乃至第3項記載の高分子2次電池。[Claims] 1. In a secondary battery comprising a positive electrode made of a conductive polymer material, a negative electrode made of a metal material, and an electrolytic solution interposed between the positive electrode and the negative electrode, A polymer secondary battery characterized in that the active material in the electrolytic solution that transfers mainly consists of anions only. 2. The polymer secondary battery according to claim 1, wherein the positive electrode is made of a polymer material having a conjugated double bond in its main chain. 3. The polymer secondary battery according to claims 1 and 2, wherein the negative electrode is made of Mg or an alloy thereof. 4. The polymer secondary battery according to claims 1, 2 and 3, characterized in that the electrolyte is a solution of a salt of a metal whose oxidation-reduction potential is more base than that of the negative electrode metal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60140488A JPS622469A (en) | 1985-06-28 | 1985-06-28 | High-molecular secondary cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60140488A JPS622469A (en) | 1985-06-28 | 1985-06-28 | High-molecular secondary cell |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS622469A true JPS622469A (en) | 1987-01-08 |
Family
ID=15269775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60140488A Pending JPS622469A (en) | 1985-06-28 | 1985-06-28 | High-molecular secondary cell |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS622469A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5518841A (en) * | 1993-02-12 | 1996-05-21 | Matsushita Electric Industrial Co., Ltd. | Composite cathode |
WO2013157189A1 (en) * | 2012-04-16 | 2013-10-24 | パナソニック株式会社 | Electrochemical energy storage device, active substance using same, and production method therefor |
WO2013157187A1 (en) * | 2012-04-16 | 2013-10-24 | パナソニック株式会社 | Non-aqueous electrolyte for electrochemical element, production method therefor, and electrochemical element using same |
-
1985
- 1985-06-28 JP JP60140488A patent/JPS622469A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5518841A (en) * | 1993-02-12 | 1996-05-21 | Matsushita Electric Industrial Co., Ltd. | Composite cathode |
US5571292A (en) * | 1993-02-12 | 1996-11-05 | Matsushita Electronic Industrial Co., Ltd. | Method of producing a composite electrode |
WO2013157189A1 (en) * | 2012-04-16 | 2013-10-24 | パナソニック株式会社 | Electrochemical energy storage device, active substance using same, and production method therefor |
WO2013157187A1 (en) * | 2012-04-16 | 2013-10-24 | パナソニック株式会社 | Non-aqueous electrolyte for electrochemical element, production method therefor, and electrochemical element using same |
CN103703602A (en) * | 2012-04-16 | 2014-04-02 | 松下电器产业株式会社 | Electrochemical energy storage device, active substance using same, and production method therefor |
JPWO2013157189A1 (en) * | 2012-04-16 | 2015-12-21 | パナソニック株式会社 | Electrochemical energy storage device, active material used therefor, and manufacturing method thereof |
US9812264B2 (en) | 2012-04-16 | 2017-11-07 | Panasonic Corporation | Electrochemical energy storage device which exhibits capacity through a conversion reaction, and active material for the same and production method thereof |
US10033049B2 (en) | 2012-04-16 | 2018-07-24 | Panasonic Corporation | Non-aqueous electrolyte for electrochemical devices, method for producing the same, and electrochemical device using the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108428926B (en) | Copper-manganese water system secondary battery with positive and negative poles both undergoing deposition/dissolution reaction | |
US3639174A (en) | Voltaic cells with lithium-aluminum alloy anode and nonaqueous solvent electrolyte system | |
CN110176591B (en) | Aqueous zinc ion secondary battery and preparation method of anode based on organic electrode material | |
RU2170476C1 (en) | Iron base storage battery | |
US8415074B2 (en) | Nonaqueous electrolyte battery | |
CN104795567B (en) | Aquo-lithium ion/sodium-ion battery based on iodide ion solution anode and organic matter cathode | |
JP2002203542A (en) | Positive electrode for lithium-sulfur battery and lithium-sulfur battery including the same | |
CN102903973A (en) | Battery | |
CN102903924A (en) | Battery | |
CN102005615A (en) | Rechargeable nickel ion battery | |
CN103094627A (en) | Battery | |
CN112928343B (en) | Water system copper ion battery suitable for large-scale energy storage application | |
CN103094583A (en) | Battery and treatment method of battery current collector | |
CN108390110B (en) | Lead-manganese secondary battery | |
JPH0460304B2 (en) | ||
CN112952212A (en) | Aqueous manganese dioxide-metal secondary battery | |
CN109119635B (en) | Battery with a battery cell | |
CN105449294A (en) | Battery | |
JP2007265712A (en) | Electrode and storage element using it | |
JPS622469A (en) | High-molecular secondary cell | |
CN105336956A (en) | Battery | |
CN108365247A (en) | A kind of bromo- half flow battery with ion embedded type solid cathode | |
Loupe et al. | Electrochemical energy storage: Current and emerging technologies | |
CN113140708A (en) | Alkaline storage battery based on tin cathode | |
CN111180777A (en) | Positive electrode electrolyte for zinc-bromine single flow battery |