JPS62243115A - Magnetic recording medium - Google Patents
Magnetic recording mediumInfo
- Publication number
- JPS62243115A JPS62243115A JP8687986A JP8687986A JPS62243115A JP S62243115 A JPS62243115 A JP S62243115A JP 8687986 A JP8687986 A JP 8687986A JP 8687986 A JP8687986 A JP 8687986A JP S62243115 A JPS62243115 A JP S62243115A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- magnetic
- alloy
- nonmagnetic
- sputtering
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000000758 substrate Substances 0.000 claims abstract description 22
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 14
- 239000000956 alloy Substances 0.000 claims abstract description 14
- 230000001681 protective effect Effects 0.000 claims abstract description 10
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 claims abstract 3
- 239000000314 lubricant Substances 0.000 claims description 9
- 229910052751 metal Inorganic materials 0.000 claims description 6
- 239000002184 metal Substances 0.000 claims description 6
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 238000004544 sputter deposition Methods 0.000 abstract description 14
- 239000010409 thin film Substances 0.000 abstract description 8
- 238000005498 polishing Methods 0.000 abstract description 5
- 229910000531 Co alloy Inorganic materials 0.000 abstract description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 abstract description 3
- 239000000463 material Substances 0.000 abstract description 3
- 230000001050 lubricating effect Effects 0.000 abstract 1
- 238000010186 staining Methods 0.000 abstract 1
- 229910001096 P alloy Inorganic materials 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000000034 method Methods 0.000 description 6
- 238000007747 plating Methods 0.000 description 6
- 239000000696 magnetic material Substances 0.000 description 5
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 239000011651 chromium Substances 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000003746 surface roughness Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 230000002250 progressing effect Effects 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229910020630 Co Ni Inorganic materials 0.000 description 1
- 229910002440 Co–Ni Inorganic materials 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 229910001004 magnetic alloy Inorganic materials 0.000 description 1
- 230000008774 maternal effect Effects 0.000 description 1
- OFNHPGDEEMZPFG-UHFFFAOYSA-N phosphanylidynenickel Chemical compound [P].[Ni] OFNHPGDEEMZPFG-UHFFFAOYSA-N 0.000 description 1
- 238000001552 radio frequency sputter deposition Methods 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の烏する技術分野〕
本発明は磁気記録装置に用いられる磁気ディスクなどの
磁気記録媒体に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a magnetic recording medium such as a magnetic disk used in a magnetic recording device.
近年磁気記録装置に用いられる磁気ディスクなどの磁気
記録媒体はますます高記録密ル1となる傾向にあり、こ
れに伴い磁気記録媒体の磁性層の膜厚を従来の約1 t
sm程度から0.1μm以下まで薄くし、保磁力(Hc
)もより高くする必要が生じている。そのため磁気記
録媒体の製造方法もサブミクロンオーダーでは磁性層の
膜厚が不均一になるスピンコード法に代って、均一な薄
膜を容易に形成することが可能なスパッタ法やメッキ法
が注目されるとともに、従来の酸化物例えば1−Fe2
O3磁性層はその磁気特性、特に残留磁束密度が小さく
出力が低いということから、磁性層としてスバ、り法に
よって形成されるコバルト(Co)系合金例えばコバル
ト一二、ケル(Ni)合金磁性薄膜が使用されるように
なった。In recent years, magnetic recording media such as magnetic disks used in magnetic recording devices have tended to have increasingly higher recording densities.
sm to less than 0.1 μm, and increase the coercive force (Hc).
) also need to be made higher. For this reason, as a manufacturing method for magnetic recording media, sputtering and plating methods, which can easily form a uniform thin film, are attracting attention in place of the spin code method, which results in non-uniform magnetic layer thickness on the submicron order. At the same time, conventional oxides such as 1-Fe2
Since the O3 magnetic layer has low magnetic properties, especially residual magnetic flux density, and low output, a magnetic thin film of a cobalt (Co) alloy such as cobalt-12 or Kel (Ni) alloy formed by the sintering method is used as the magnetic layer. started to be used.
第2図に例えばCo−Ni合合金性性薄膜磁性層を備え
たディスク状磁気記録媒体の豐部構成断面図を示す。FIG. 2 shows a cross-sectional view of the structure of a disk-shaped magnetic recording medium having a thin film magnetic layer made of a Co--Ni alloy, for example.
第2図の磁気記録媒体は合金基板l上に非磁性基体層2
!1を被覆し、この非磁性基体層2の上にさらに非出性
金属下地層3を介してCo−Ni合金薄膜の磁性層4を
被覆し、磁性層4上に保護潤滑層5を被覆したものであ
る。The magnetic recording medium shown in FIG. 2 has a non-magnetic base layer 2 on an alloy substrate l.
! A magnetic layer 4 of a Co-Ni alloy thin film was further coated on the non-magnetic base layer 2 via a non-extractable metal underlayer 3, and a protective lubricant layer 5 was coated on the magnetic layer 4. It is something.
このように構成された磁気記録媒体の合金基板lはアル
ミニウム合金が多用されているが、場合によってはプラ
スチ、りを用いてもよく、所定の面粗さ、平行度および
平面度に仕上げられる。非磁性基体層2はニッケルーり
ん(Ni−P)合金を無電解めっきしたもの、もしくは
基板1自体をアルマイト処理したものが用いられており
、いずれも所定の硬さを必要とし、表面は機械的研磨に
よる鏡面仕上げが要求される。また非磁性基体層2aは
温度上昇するとアルマイト処理では亀裂の発生があり、
N1−P合金では磁性を生ずるおそれがあるのでこれ
らの現象を起こさないための熱的な安定性をもっていな
ければならない。このほか非磁性金属下地層3は磁性層
4のCo−20〜30at%Ni合金薄膜の磁気特性を
高める作用をもつものであり、通常主としてクロム(C
r )などが用いられ、2000〜3000 A 8度
の膜厚を有し、下地層3と磁性層4はいずれもスパッタ
法によって形成される。The alloy substrate l of the magnetic recording medium constructed in this manner is often made of aluminum alloy, but in some cases plastic or glue may be used, and the substrate is finished to a predetermined surface roughness, parallelism, and flatness. The nonmagnetic base layer 2 is made of a nickel-phosphorus (Ni-P) alloy electrolessly plated, or the substrate 1 itself is alumite-treated. Both require a certain hardness, and the surface is mechanically coated. A mirror finish by polishing is required. In addition, when the temperature of the non-magnetic base layer 2a increases, cracks may occur during alumite treatment.
Since the N1-P alloy may generate magnetism, it must have thermal stability to prevent these phenomena from occurring. In addition, the non-magnetic metal underlayer 3 has the effect of enhancing the magnetic properties of the Co-20 to 30 at% Ni alloy thin film of the magnetic layer 4, and is usually made mainly of chromium (C).
r ), etc., and has a film thickness of 2000 to 3000 A and 8 degrees, and both the underlayer 3 and the magnetic layer 4 are formed by sputtering.
引き続き最後にカーボンもしくは二酸化珪素(5in2
)などの保護潤滑層5を被覆する。Finally, carbon or silicon dioxide (5in2
) etc. is coated with a protective lubricant layer 5.
以上磁気記録媒体についてその概要を述べたが、磁気記
録媒体は高記録密度、高信頼性そして低コストを指向す
る研究が進み、磁性層4の磁気特性の向上は勿論、下地
層3や磁性層4の薄膜形成が行なわれるとともに、非母
性基体層2aに関しても薄くて硬く1機械的性質や非磁
性体としての温度上昇に対するよりすぐれた安定性が望
まれる。As described above, an overview of magnetic recording media has been provided. As research toward magnetic recording media is progressing toward high recording density, high reliability, and low cost, improvements in the magnetic properties of the magnetic layer 4 as well as the underlayer 3 and the magnetic layer are progressing. At the same time, the non-maternal substrate layer 2a is also desired to be thin and hard, and to have excellent mechanical properties and stability against temperature rise as a non-magnetic material.
本発明は上述の点に鑑みてなされたものであり、その目
的はCo系合金研性層の磁気特性を損うことなく、媒体
の信頼性と農造効率を向上させる非磁性基体層をもった
磁気記録媒体を提供することにある。The present invention has been made in view of the above points, and its purpose is to provide a non-magnetic base layer that improves the reliability and agricultural efficiency of the medium without impairing the magnetic properties of the Co-based alloy abrasive layer. The object of the present invention is to provide a magnetic recording medium that has a unique structure.
本発明は不活性ガス雰囲気中で所定の面粗さ。 In the present invention, a predetermined surface roughness is obtained in an inert gas atmosphere.
平行度、平面度に仕上げられたアルミニウム合金基板上
に非磁性基体層、非磁性金属下地層、磁性層および保護
潤滑層をこの順に連続的にスパッタして積層形成した磁
気記録媒体であって、非磁性基体層をすぐれた機械的強
度を有し、非磁性体として熱的に安定な窒化アルミニウ
ム(keN )としたものである。A magnetic recording medium in which a nonmagnetic base layer, a nonmagnetic metal underlayer, a magnetic layer, and a protective lubricant layer are successively laminated in this order on an aluminum alloy substrate that is finished in parallelism and flatness, The nonmagnetic base layer is made of aluminum nitride (keN), which has excellent mechanical strength and is thermally stable as a nonmagnetic material.
以下本発明を実施例に基づき説明する。 The present invention will be explained below based on examples.
第1図に本発明により得られた磁気記録媒体の要部構成
断面図を示し、第2図と共通部分を同一符号で表わしで
ある。纂1図は第2図き基本的な構成は同じであるが第
1図が第2囚と異なる点は非磁性基体層2に機械的強度
が高く、非磁性体としての熱的安定性にすぐれた窒化ア
ルミニウム(AeN )薄膜を用いたことにある。FIG. 1 shows a cross-sectional view of the main part of a magnetic recording medium obtained according to the present invention, and parts common to those in FIG. 2 are denoted by the same reference numerals. The basic structure of Fig. 1 is the same as Fig. 2, but the difference between Fig. 1 and Fig. 2 is that the non-magnetic base layer 2 has high mechanical strength and thermal stability as a non-magnetic material. The reason is that an excellent aluminum nitride (AeN) thin film is used.
本発明の磁気記録媒体を製造する手順は下記の通りであ
る。まず非磁性合金基板lとし【旋盤加工および加工焼
鈍により表面のうねりが十分に小さいすなわち円周・半
径方向とも”XJbm以下の面に仕上げたディスク状ア
ルミニウム合金板をさらに研磨して平均表面粗さ0.0
2μmまで鏡面仕上げを行ないスクラブ洗浄したものを
用いる。次いでこの非磁性合金基板lの上に非磁性基体
層2として本発明ではMNをスパッタして形成した後、
引き続き同じスパッタ槽内でCrをスパッタして下地層
3.CO合金をスパッタして磁性層4.最後にCをスパ
ッタして保護潤滑層5を連続的に順次積層形成すること
によりこの磁気記録媒体が得られる。この際RFスパッ
タ装置を用いて初めにM合金基板lをスパッタエッチン
グにより表面の酸化物層を除去した後、全ガス圧4.O
X10−”TOrr*基板温度100℃以上として上述
のような連続スパッタを行なったものである。The procedure for manufacturing the magnetic recording medium of the present invention is as follows. First, a non-magnetic alloy substrate l is prepared. [A disc-shaped aluminum alloy plate whose surface waviness is sufficiently small by lathe processing and processing annealing, i.e., a surface of ``XJbm or less'' in both the circumferential and radial directions, is further polished to obtain an average surface roughness. 0.0
Use a product that has been mirror-finished to 2 μm and scrubbed. Next, in the present invention, MN is sputtered to form a nonmagnetic base layer 2 on this nonmagnetic alloy substrate l, and then
Subsequently, Cr was sputtered in the same sputtering bath to form the base layer 3. A magnetic layer 4. is formed by sputtering a CO alloy. Finally, this magnetic recording medium is obtained by sputtering C to continuously form a protective lubricant layer 5 one after another. At this time, after first removing the oxide layer on the surface of the M alloy substrate l by sputter etching using an RF sputtering device, the total gas pressure was 4. O
X10-''TOrr*Continuous sputtering as described above was performed at a substrate temperature of 100° C. or higher.
以上の過鵬を通して本発明では非磁性基体層2から保護
潤滑層5を積層するまでを同一スパッタ槽内で連続スパ
ッタlどより行なっているので1M造過程において各層
表面が汚れるのを完全に防止することができ、しかも本
発明は非磁性基体層2としてAl3Nを用いているため
に従来N1−P合金層では行なっていた表面研磨が不要
となり、その工数が短縮されて製造効率をあげることか
できる。Through the above process, in the present invention, the steps from the non-magnetic base layer 2 to the protective lubricant layer 5 are continuously sputtered in the same sputtering bath, completely preventing the surface of each layer from becoming dirty during the 1M manufacturing process. Furthermore, since the present invention uses Al3N as the non-magnetic base layer 2, surface polishing, which was conventionally performed for N1-P alloy layers, is not required, reducing the number of steps and increasing manufacturing efficiency. can.
また非磁性基体層2のAl3Nは従来のN1−Pめうき
層では得られないビッカース硬さで1000〜200゜
に達するものであり、ヘッドクラッシ、などによる衝撃
にも十分対応できる。さらにk13Nは製造過程におけ
る約300℃の温度上昇に対しても磁性を帯びることな
く非磁性体としての安定性を示し、この点も従来のN1
−P合金のようにこの温度で磁性を生ずる可能性は問題
とならず、スパッタ時の基板温度も高くすることにより
AgN層の付着強度を高めることができる。Furthermore, the Al3N of the non-magnetic base layer 2 has a Vickers hardness of 1000 to 200°, which cannot be obtained with the conventional N1-P plating layer, and can sufficiently withstand impacts caused by head crushes and the like. Furthermore, k13N exhibits stability as a non-magnetic material without becoming magnetic even when the temperature increases by approximately 300°C during the manufacturing process.
The possibility of magnetism occurring at this temperature as in -P alloys is not a problem, and the adhesion strength of the AgN layer can be increased by increasing the substrate temperature during sputtering.
次にAeNの非磁性基体層2を200OA、 Crの下
地よびカーボンの保護潤滑Jar 5を30OAの厚さ
に積層した第1図の構成を有する磁気記録媒体について
C8S試験を行なった。その結果、第2図に示したよう
に構成されるN1−Pめっきした非磁性基体層2aをも
つ従来の磁気記録媒体と比較しても、本発明の媒体はへ
、ドクラッシ、は発生することなく、C8S寿命も2万
回以上が得られた。したがって、非磁性基体層2をA6
Nとし、連続スパッタにより製造した本発明の磁気記録
媒体は実用的価値の高いものである。Next, a C8S test was conducted on a magnetic recording medium having the structure shown in FIG. 1, in which a nonmagnetic base layer 2 of AeN was laminated to a thickness of 200 OA, a Cr underlayer and a carbon protective lubricant Jar 5 were laminated to a thickness of 30 OA. As a result, even when compared with a conventional magnetic recording medium having an N1-P plated nonmagnetic base layer 2a configured as shown in FIG. In addition, the C8S life span was over 20,000 cycles. Therefore, the nonmagnetic base layer 2 is A6
The magnetic recording medium of the present invention manufactured by continuous sputtering using N is of high practical value.
合金基板上に非磁住基体層、非磁性金属下地層。 Non-magnetic base layer and non-magnetic metal underlayer on alloy substrate.
磁性層および保護潤滑層をこの111に積層形成してな
る従来の磁気記録媒体は、非磁性基体層にN1−P合金
めっき層を用いているので、基板の処理やN1−P合金
めっき層表面の機械的な!シ面研磨に多くの工数を要し
、またN1−P合金は製造過程中の温度上昇に対する非
磁性体としての熱的安定性などの問題があった。そこで
本発明は冥施例で述べたごとく非磁性基体層としてN1
−P合金めっきの代りにAgNのスバ、り膜として形成
することにより下記のような多くの利点を得ることがで
きたものである。A conventional magnetic recording medium in which a magnetic layer and a protective lubricant layer are laminated on this layer 111 uses an N1-P alloy plating layer for the non-magnetic base layer, so it is difficult to process the substrate and the surface of the N1-P alloy plating layer. Mechanical! Many man-hours are required for surface polishing, and the N1-P alloy has problems such as thermal stability as a non-magnetic material against temperature rises during the manufacturing process. Therefore, as described in the second embodiment, the present invention uses N1 as the nonmagnetic base layer.
By forming an AgN thin film instead of -P alloy plating, many advantages such as those described below can be obtained.
■合金基板上の媒体を構成する各層をすべて同一スバ、
り層内で連続スパッタしてA#層形成することができる
から、媒体として最も不都合な汚れを生ずることなく効
率よく創造され歩留りが高い。■All layers constituting the medium on the alloy substrate are made of the same substrate.
Since the A# layer can be formed by continuous sputtering within the second layer, the A# layer can be efficiently created and the yield is high without causing the most inconvenient contamination of the medium.
■非磁性基体層は従来のN1−P合金めっきのような表
面の鏡面研磨が不要となるから製造工程が短縮されさら
に効率があがる。(2) Since the non-magnetic base layer does not require mirror polishing of the surface unlike conventional N1-P alloy plating, the manufacturing process is shortened and efficiency is further improved.
■非磁性基体層の硬さが極めて大きく、非磁性体として
製造過程中の温度上昇に対し【十分安定性を保ち、基板
との付着強度が高い。■The hardness of the non-magnetic base layer is extremely high, and as a non-magnetic material, it maintains sufficient stability against temperature rises during the manufacturing process and has high adhesion strength to the substrate.
■得られる媒体に本来必要とする磁気特性およびC8S
特性をなんら損うことがない。■Magnetic properties and C8S originally required for the resulting media
No loss of properties.
第1図は本発明の磁気記録媒体の要部構成断面図、第2
図は従来の磁気記録媒体の要部構成断面図である。
1・・・合金基板、2・・・非磁性基体層、3・・・非
磁性金属下地層、4・・・磁性層、5・・・保護潤滑層
。
第2図FIG. 1 is a cross-sectional view of the main part of the magnetic recording medium of the present invention, and FIG.
The figure is a cross-sectional view of the main part of a conventional magnetic recording medium. DESCRIPTION OF SYMBOLS 1... Alloy substrate, 2... Nonmagnetic base layer, 3... Nonmagnetic metal base layer, 4... Magnetic layer, 5... Protective lubricant layer. Figure 2
Claims (1)
および保護潤滑層をこの順に積層してなるものにおいて
、前記各層を連続してスパッタ形成することを特徴とす
る磁気記録媒体。 2)特許請求の範囲第1項記載の媒体において、非磁性
基体層が窒化アルミニウム(AlN)であることを特徴
とする磁気記録媒体。 3)特許請求の範囲第1項または第2項記載の媒体にお
いて磁性層がコバルト(Co)系合金であることを特徴
とする磁気記録媒体。[Claims] 1) A non-magnetic base layer, a non-magnetic metal underlayer, a magnetic layer and a protective lubricant layer are laminated in this order on a substrate, characterized in that each of the layers is successively sputter-formed. magnetic recording media. 2) A magnetic recording medium according to claim 1, wherein the nonmagnetic base layer is aluminum nitride (AlN). 3) A magnetic recording medium according to claim 1 or 2, wherein the magnetic layer is made of a cobalt (Co) alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8687986A JPS62243115A (en) | 1986-04-15 | 1986-04-15 | Magnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8687986A JPS62243115A (en) | 1986-04-15 | 1986-04-15 | Magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62243115A true JPS62243115A (en) | 1987-10-23 |
Family
ID=13899119
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8687986A Pending JPS62243115A (en) | 1986-04-15 | 1986-04-15 | Magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62243115A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5536549A (en) * | 1993-08-02 | 1996-07-16 | Tulip Memory Systems, Inc. | Austenitic stainless steel substrate for magnetic-recording media |
US5626920A (en) * | 1991-10-04 | 1997-05-06 | Tulip Memory Systems, Inc. | Method for coating metal disc substrates for magnetic-recording media |
-
1986
- 1986-04-15 JP JP8687986A patent/JPS62243115A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5626920A (en) * | 1991-10-04 | 1997-05-06 | Tulip Memory Systems, Inc. | Method for coating metal disc substrates for magnetic-recording media |
US5811182A (en) * | 1991-10-04 | 1998-09-22 | Tulip Memory Systems, Inc. | Magnetic recording medium having a substrate and a titanium nitride underlayer |
US6103367A (en) * | 1991-10-04 | 2000-08-15 | Tulip Memory Systems, Inc. | Coating of metal substrate for magnetic recording medium |
US5536549A (en) * | 1993-08-02 | 1996-07-16 | Tulip Memory Systems, Inc. | Austenitic stainless steel substrate for magnetic-recording media |
US5900126A (en) * | 1993-08-02 | 1999-05-04 | Tulip Memory Systems, Inc. | Method for manufacturing austenitic stainless steel substrate for magnetic-recording media |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5552217A (en) | Magnetic recording medium and a method for producing it | |
JPS62243115A (en) | Magnetic recording medium | |
JPH05143972A (en) | Metal thin film magnetic recording medium and its production | |
JPS59217224A (en) | Magnetic memory medium | |
JPH087251A (en) | Magnetic recording medium | |
JPS6342027A (en) | Production of magnetic recording medium | |
JPH0514325B2 (en) | ||
JPH09147357A (en) | Production of magnetic recording medium | |
JPH0440620A (en) | Magnetic recording disk and production thereof | |
JPH07272263A (en) | Magnetic disk | |
JPH11250438A (en) | Magnetic recording medium, production of magnetic recording medium and magnetic recorder | |
JP2502040B2 (en) | Magnetic disk manufacturing method | |
JPH03150718A (en) | Magnetic recording medium | |
JPH03237613A (en) | Magnetic recording medium and its production | |
JPS6035332A (en) | Magnetic storage body | |
JPH0740362B2 (en) | Method of manufacturing magnetic recording medium | |
JPS6057131B2 (en) | Manufacturing method for high recording density magnetic disks | |
JPH05135342A (en) | Magnetic recording medium | |
JPS62149024A (en) | Magnetic recording medium | |
JPS61202325A (en) | Magnetic disk | |
JPH0467252B2 (en) | ||
JPS63145738A (en) | Alloy for film formation | |
JPH03125322A (en) | Magnetic recording medium | |
JPH0440627A (en) | Magnetic recording disk and its production | |
JPH03241526A (en) | Magnetic recording medium |