JPS622404A - Thick film paste - Google Patents

Thick film paste

Info

Publication number
JPS622404A
JPS622404A JP13990485A JP13990485A JPS622404A JP S622404 A JPS622404 A JP S622404A JP 13990485 A JP13990485 A JP 13990485A JP 13990485 A JP13990485 A JP 13990485A JP S622404 A JPS622404 A JP S622404A
Authority
JP
Japan
Prior art keywords
metal
powder
thick film
paste
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13990485A
Other languages
Japanese (ja)
Other versions
JPH0368484B2 (en
Inventor
栄一 浅田
信一 小野
稔 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shoei Chemical Inc
Original Assignee
Shoei Chemical Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shoei Chemical Inc filed Critical Shoei Chemical Inc
Priority to JP13990485A priority Critical patent/JPS622404A/en
Publication of JPS622404A publication Critical patent/JPS622404A/en
Publication of JPH0368484B2 publication Critical patent/JPH0368484B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Conductive Materials (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 星1」2欠■四jυL 本発明はエレクトロニクス用厚膜ペーストに関する。[Detailed description of the invention] Star 1” 2 missing ■4jυL The present invention relates to thick film pastes for electronics.

エレクトロニクス分野において、電子回路や抵抗、コン
デンサ、ICパッケージ等の部品を製造するために、導
体ペーストや抵抗ペーストなどの厚膜ペーストが使用さ
れている。これは金、銀、白金、パラジウム、ルテニウ
ム等の負金属や銅、ニッケル、アルミニウム、モリブデ
ン、タングステンなどの卑金属やこれらの合金、酸化物
等の粉末を導電成分とし、必要に応じてガラス等の無機
結合剤やその他の添加剤と共に有機ビヒクル中に均一に
混合分散さけてペースト状としたものであり、絶縁基板
上に適用した後高温で焼付けするか、又は比較的低温で
加熱乾燥することによって導体被膜、抵抗被膜を形成す
る。
In the electronics field, thick film pastes such as conductor pastes and resistor pastes are used to manufacture components such as electronic circuits, resistors, capacitors, and IC packages. The conductive components are negative metals such as gold, silver, platinum, palladium, and ruthenium, base metals such as copper, nickel, aluminum, molybdenum, and tungsten, and powders of their alloys and oxides. It is made into a paste by uniformly mixing and dispersing it in an organic vehicle with an inorganic binder and other additives, and it is applied to an insulating substrate and then baked at a high temperature or heated and dried at a relatively low temperature. Forms a conductive film and a resistive film.

従来の技術 このような厚膜ペーストに使用される金属粉末としては
、従来より金属化合物の溶液に還元剤を作用させて湿式
還元する方法、金属の溶湯をアトマイズする方法、ある
いは金属を真空中又は不活性ガス中で蒸発さUて微粉化
する方法で製造されたものなどが使用されている。
BACKGROUND ART Conventionally, metal powder used in thick film pastes has been prepared by wet reduction methods in which a reducing agent is applied to a solution of a metal compound, by atomizing a molten metal, or by a method in which metals are heated in a vacuum or in a vacuum. Those manufactured by evaporation in an inert gas and pulverization are used.

発明が解決しようとする問題点 厚膜ペーストに要求される一般的な特性は、形成された
被膜が緻密であること、基板と強固に接着していること
、特に導体ペーストの場合、被膜表面に酸化物やガラス
質成分が少ないことなどである。
Problems to be Solved by the Invention The general characteristics required for thick film pastes are that the formed film is dense, that it has strong adhesion to the substrate, and, especially in the case of conductive paste, that the film surface has This is because there are few oxides and glassy components.

このような特性を満たすために、厚膜ペースト用金属粉
末としては、次のような性質を有するものが望まれてい
る。
In order to satisfy these characteristics, metal powder for thick film paste is desired to have the following properties.

■緻密で均一な被膜を形成するため、塗料中での分散が
良好であること。
■It must be well dispersed in the paint to form a dense and uniform film.

■不純物が少いこと。■Less impurities.

不純物が多いと半導体とのオーム接合性、耐腐食性、耐
環境性その他の電気特性に悪影響を及ぼすので、できる
だけ低レベルに抑える必要がある。
A large amount of impurities will adversely affect ohmic contact with semiconductors, corrosion resistance, environmental resistance, and other electrical properties, so it is necessary to keep the level as low as possible.

■結晶性が良好であること。■Have good crystallinity.

特に高温焼成タイプのペーストでは、結晶性が良くない
と焼成過程において金属粉末の焼結が早すぎるため溶け
たガラス質結合剤が基板側に移行せず、接着強度不良と
なったり、ガラスが膜表面に浮いて導電性や半田付は性
を阻害するなどの問題を引起こす。従って結晶性が良く
、結晶の方向が揃っていることが望ましい。
In particular, with high-temperature firing type pastes, if the crystallinity is not good, the metal powder will sinter too quickly during the firing process, and the molten glass binder will not transfer to the substrate side, resulting in poor bonding strength or the glass forming a film. Floating on the surface causes problems such as conductivity and inhibiting solderability. Therefore, it is desirable that the crystallinity is good and the directions of the crystals are aligned.

0粒径がほぼ0.1〜10順の範囲で、粒子形状が揃っ
ていること。
The particle size is approximately in the order of 0.1 to 10, and the particle shape is uniform.

従来の湿式還元法により製造された粉末は、種々の形状
、粒径のものがあるが、分散性、結晶性が共に良好でか
つ高純度の金属粉末が得られない。
Powders produced by conventional wet reduction methods have various shapes and particle sizes, but metal powders with good dispersibility and crystallinity and high purity cannot be obtained.

アトマイズ法では、生成する粉末の粒径が大きく、微粉
化が困難であるため、薄くて緻密な被膜が得られない。
In the atomization method, the particle size of the powder produced is large and pulverization is difficult, so a thin and dense coating cannot be obtained.

、又蒸発法では逆に粒径が小さすぎ、塗料化するのが困
難であると共に分散性の良いものが得られない。
In contrast, when using the evaporation method, the particle size is too small, making it difficult to form into a paint and making it impossible to obtain a product with good dispersibility.

従ってこれらの方法で得られた粉末では、厚膜ペースト
に要求される種々の特性を満足させるには限界があった
Therefore, the powders obtained by these methods have limitations in satisfying the various properties required for thick film pastes.

問題点を解決するための 本発明は、1種又は2種以上の金属塩を含む溶液を噴霧
して液滴にし、その液滴を該金属塩の分解温度より高く
かつ金属の融点より高い温度であって、しかも金属の融
点以下の温度で金属が酸化物を形成する場合にはその酸
化物の分解温度より高い温度で加熱することによって製
造された金属粉末を導電成分として用いることを特徴と
する厚膜ペーストである。尚本発明でいう金属粉末は、
単一金属の粉末、合金粉末及びこれらの混合粉末をも含
むものとする。
To solve the problem, the present invention is directed to spraying a solution containing one or more metal salts into droplets, and forming the droplets at a temperature higher than the decomposition temperature of the metal salt and higher than the melting point of the metal. In addition, when the metal forms an oxide at a temperature below the melting point of the metal, a metal powder produced by heating at a temperature higher than the decomposition temperature of the oxide is used as the conductive component. It is a thick film paste. The metal powder referred to in the present invention is
It also includes single metal powders, alloy powders, and mixed powders thereof.

作用 本発明の特徴は、導電成分として用いる金属粉末にある
。金属の種類としては例えば金、銀、白金、パラジウム
等の貴金属や銅、ニッケル、コバルト、アルミニウム、
モリブデン、タングステン等の卑金底又はこれらの合金
など従来からIll成分として使用されているものであ
ればよい。
Function The present invention is characterized by the metal powder used as the conductive component. Examples of metals include precious metals such as gold, silver, platinum, and palladium, as well as copper, nickel, cobalt, aluminum,
Any base metal base metal such as molybdenum, tungsten, or an alloy thereof, which has been conventionally used as an Ill component, may be used.

本発明の厚膜ペーストに使用される粉末を製造するにあ
たって、金属塩としては、加熱分解により目的とする金
属を析出するものであればいかなるものでも良く、−例
としてこれらの金属の硝酸塩、硫酸塩、塩化物、アンモ
ニウム塩、リン酸塩、カルボン酸塩、金属アルコラード
、樹脂酸塩などが挙げられる。単一金属について異なる
複数の塩を併用することもできる。2種以上の金属の塩
を混合使用しても良く、又複塩や錯塩を使用しても良い
。これら金属塩の1種又は2種以上を、水や、アルコー
ル、アセトン、エーテル等の有機溶剤あるいはこれらの
混合溶剤中に溶解し金属塩溶液をを成する。単一の金属
の塩溶液を用いれば純金属粉末が得られるが、合金を形
成する2種以上の金属を溶解した溶液を用いれば合金粉
末を製造することができる。尚混合する2種以上の金属
が合金を生成しないものであれば、混合粉末が得られる
こともある。金属塩溶液は、噴霧器により噴霧して液滴
とし、次いで金属塩の分解温度より高くかつ金属の融点
より高い温度であって、しかも金属の融点以下の温度で
金属が酸化物を形成する場合にはその酸化物の分解温度
より高い温度で加熱を行うことにより、球状で表面の平
滑な金属粉末が生成する。
In producing the powder used in the thick film paste of the present invention, any metal salt may be used as long as it precipitates the desired metal by thermal decomposition, such as nitrates of these metals, sulfuric acid, etc. Examples include salts, chlorides, ammonium salts, phosphates, carboxylates, metal alcoholades, resinates, and the like. A plurality of different salts of a single metal can also be used together. A mixture of salts of two or more metals may be used, or a double salt or a complex salt may be used. One or more of these metal salts are dissolved in water, an organic solvent such as alcohol, acetone, ether, or a mixed solvent thereof to form a metal salt solution. Pure metal powder can be obtained by using a salt solution of a single metal, but alloy powder can be produced by using a solution in which two or more metals forming an alloy are dissolved. If the two or more metals to be mixed do not form an alloy, a mixed powder may be obtained. The metal salt solution is atomized into droplets by an atomizer, and then at a temperature higher than the decomposition temperature of the metal salt and higher than the melting point of the metal, but below the melting point of the metal, when the metal forms an oxide. By heating at a temperature higher than the decomposition temperature of the oxide, a spherical metal powder with a smooth surface is produced.

尚、粉末の製法において加熱温度が金属の融点より低温
であると、球状粉末ができず、密度も低いのでペースト
用には好ましくない。従って少くとも融点より高温で加
熱する必要がある。望ましくは目的金属の融点より10
0℃以上高温で加熱を行うのがよい。又金属塩が分解す
る際、あるいは分解した後、金属の融点より低い温度で
酸化物を形成するような金属においては、少くとも該酸
化物が分解する温度まで加熱することが必要である。尚
、合金を形成する2種以上の金R塩を形成する場合には
、加熱温度は塩の分解温度以上であってかつ該金属を構
成成分とする合金の融点より高い温度であればよい。金
属粉末の粒径は金属塩の濃度、溶媒の種類及び混合比、
噴霧速度、噴霧液滴の大きさ、及び加熱温度に依存する
ので、これらの条件を適宜設定することにより容易にコ
ントロールすることができる。特に粒径に直接関係する
とみられる噴霧液滴のサイズについては、噴霧した液体
を更に固体の障害物や回転体に衝突させることによって
小さくすることができる。又溶媒の沸点が低いと加熱時
の沸騰により液滴の分裂が起こり易く、液滴が微細化す
るため、生成する金属粉末の粒径が小さくなると考えら
れる。
In addition, if the heating temperature in the powder manufacturing method is lower than the melting point of the metal, a spherical powder will not be produced and the density will be low, which is not preferable for pastes. Therefore, it is necessary to heat at least at a temperature higher than the melting point. Desirably 10% lower than the melting point of the target metal
Heating is preferably performed at a high temperature of 0°C or higher. In addition, for metals that form oxides at temperatures lower than the melting point of the metal when or after the metal salt decomposes, it is necessary to heat the metal to at least the temperature at which the oxide decomposes. In addition, when forming two or more types of gold R salts forming an alloy, the heating temperature may be a temperature higher than the decomposition temperature of the salt and higher than the melting point of the alloy containing the metal as a constituent component. The particle size of the metal powder depends on the concentration of the metal salt, the type and mixing ratio of the solvent,
Since it depends on the spray speed, the size of the spray droplets, and the heating temperature, it can be easily controlled by appropriately setting these conditions. In particular, the size of the sprayed droplets, which seems to be directly related to the particle size, can be reduced by further colliding the sprayed liquid with a solid obstacle or rotating body. Furthermore, if the boiling point of the solvent is low, droplets are likely to break up due to boiling during heating, and the droplets become finer, which is thought to reduce the particle size of the metal powder produced.

本発明の厚膜ペーストは、上記製法で得られた金属粉末
を導電成分として用いるもので、常法に従い、必要に応
じて無機結合剤やその他の添加剤を加え、有機ビヒクル
中に均一に分散させたものである。
The thick film paste of the present invention uses the metal powder obtained by the above manufacturing method as a conductive component, and is uniformly dispersed in an organic vehicle by adding an inorganic binder and other additives as necessary according to a conventional method. This is what I did.

上記製法で得られた粉末は結晶性が非常に良く、分散性
も極めて良好であるため、この粉末を導電成分としした
厚膜ペーストは、薄くて緻密かつ基板と強固に接着した
被膜を形成することができる。
The powder obtained by the above manufacturing method has very good crystallinity and excellent dispersibility, so thick film paste containing this powder as a conductive component forms a thin, dense film that firmly adheres to the substrate. be able to.

特に導体ペーストの場合、被膜表面に酸化物やガラス質
成分が少なくなるため、半田付は性、ワイヤボンディン
グ性、ダイボンディング性の優れたものが得られる。
Particularly in the case of a conductive paste, since there are fewer oxides and glassy components on the surface of the coating, it is possible to obtain products with excellent soldering properties, wire bonding properties, and die bonding properties.

UL 次に実施例及び比較例をあげて本発明を具体的に説明す
る。
UL Next, the present invention will be specifically explained with reference to Examples and Comparative Examples.

実施例1 AQNOs結晶をエタノール80%を含むエタノール−
水混合溶媒に溶解し、0.5mol/βの溶液を作成し
た。この溶液を二重管式噴霧器を用いて二流体ノズル内
筒より2.0ml/分の流量で流出させると同時に外筒
より101/分の流量で圧縮空気を流し、電気炉で11
00℃に加熱されたセラミック管中に溶液を噴霧したこ
のとき二流体ノズルの外側に二次流として20(7分の
割合で空気を流して、噴霧された液滴がうまく加熱ゾー
ンに導かれるようにする。液滴は加熱ゾーンを通って加
熱分解され、サイクロン及びガラスフィルターで捕集さ
れた。得られた粉末は最大粒径1.7周、最小粒径0.
5AIで、非常に結晶性が良く表面平滑な完全球形のA
g粉末であった。
Example 1 AQNOs crystals were added to ethanol containing 80% ethanol.
It was dissolved in a water mixed solvent to create a 0.5 mol/β solution. This solution was flowed out from the inner cylinder of the two-fluid nozzle at a flow rate of 2.0 ml/min using a double pipe sprayer, and at the same time compressed air was flowed from the outer cylinder at a flow rate of 10 ml/min.
The solution was sprayed into a ceramic tube heated to 00 °C. At this time, air was flowed outside the two-fluid nozzle at a rate of 20 (7 min) to successfully guide the sprayed droplets to the heating zone. The droplets were thermally decomposed through a heating zone and collected by a cyclone and a glass filter.The resulting powder had a maximum particle size of 1.7 laps and a minimum particle size of 0.
5AI, perfectly spherical A with very good crystallinity and smooth surface.
g powder.

この粉末を用い、以下の配合で導体ペーストを作成した
Using this powder, a conductor paste was prepared with the following formulation.

AQ粉末         100g ガラスフリット        5g Biz03         8Q 有機ビヒクル        30(J比較例1 加熱温度を900℃とする以外は実施例1と同様にして
、Aa粉末を製造した。球形の粒子は得られず、不定形
で最大粒径10周、最小粒径1肩であった。この粉末を
用い、実施例1と同一配合で導体ペーストを作成した。
AQ powder 100 g Glass frit 5 g Biz03 8Q Organic vehicle 30 (J Comparative Example 1 Aa powder was produced in the same manner as in Example 1 except that the heating temperature was 900°C. Spherical particles were not obtained, and particles were amorphous. The maximum particle size was 10 circles, and the minimum particle size was 1 round.Using this powder, a conductor paste was prepared with the same formulation as in Example 1.

比較例2 湿式還元法で作った最大粒径1.5肩、最小粒径0.5
^lのAg粉末を用い、実施例1と同一配合で導体ペー
ストを作成した。
Comparative Example 2 Maximum particle size 1.5 and minimum particle size 0.5 made by wet reduction method
A conductor paste was prepared using the same Ag powder as in Example 1.

比較試験 実施例1、比較例1及び比較例2で得た3種のペースト
をそれぞれアルミナ基板上に印刷し、800℃で焼成し
、通常の厚膜導体の評価方法で試験を行った結果を表1
に示す。
Comparative Test The three types of pastes obtained in Example 1, Comparative Example 1, and Comparative Example 2 were printed on alumina substrates, fired at 800°C, and tested using the usual evaluation method for thick film conductors. Table 1
Shown below.

(以下余白) 7/′ 表1 *接着強度は1.5nロバターンで評価した。(Margin below) 7/' Table 1 *Adhesive strength was evaluated using a 1.5n lobe pattern.

エージング強度は150℃24時間放置後の値である。The aging strength is the value after being left at 150°C for 24 hours.

表1から明らかなように、本発明の厚膜ペーストは優れ
た特性を示す。実施例1のペーストは、スクリーン印刷
のためには理想的な粘度特性を有しており、印刷性が良
好である。又従来より半田濡れ性と接着強度とは相反す
る特性として知られていたが、この結果かられかるよう
に、従来法である湿式還元法で製造した粉末を用いた場
合よりも半田濡れ性、接着強度共に優れていることがわ
かる。これは本発明で用いたAQ粉末が凝集がなく、ペ
ースト中での分散性に優れているため緻密な膜を作るこ
とができ、なおかつ個々の粒子の結晶性が良いのでペー
スト焼成過程で焼結を遅くすることができ、その結果ガ
ラスの基板への移行がスムーズに行われたためと思われ
る。
As is clear from Table 1, the thick film paste of the present invention exhibits excellent properties. The paste of Example 1 has ideal viscosity characteristics for screen printing and has good printability. In addition, it has been known that solder wettability and adhesive strength are contradictory properties, but these results show that solder wettability and adhesive strength are better than when using powder produced by the conventional wet reduction method. It can be seen that both adhesive strength is excellent. This is because the AQ powder used in the present invention has no agglomeration and has excellent dispersibility in the paste, making it possible to form a dense film.In addition, the individual particles have good crystallinity, so they can be sintered during the paste firing process. This is thought to be due to the fact that the transition from glass to substrate was smooth as a result.

実施例2 ACINO3及びPd(NO3)2を、メタノール50
%を含むメタノール−水混合溶媒に溶解し、0.5io
1/βの溶液を作った。但しAC1NO3とPd(NO
3)2の混合割合は、A(JとPdの重量比が8:2と
なるようにした。この溶液を、実施例1と同様にして、
電気炉で1200℃に加熱されたセラミック管中に噴霧
し、捕集した。得られた粉末は最大粒径2.5肩、最小
粒径1.5肩で結晶性の良い表面平滑な球状Ag/Pd
合金粉末であった。
Example 2 ACINO3 and Pd(NO3)2 were dissolved in methanol 50
Dissolved in methanol-water mixed solvent containing 0.5io
A 1/β solution was prepared. However, AC1NO3 and Pd(NO
3) The mixing ratio of 2 was such that the weight ratio of A(J and Pd) was 8:2.This solution was prepared in the same manner as in Example 1,
It was sprayed into a ceramic tube heated to 1200°C in an electric furnace and collected. The obtained powder is a spherical Ag/Pd with a maximum particle size of 2.5 mm and a minimum particle size of 1.5 mm, and a smooth surface with good crystallinity.
It was an alloy powder.

この合金粉末を用い、以下の配合で導体ベース]・を作
成した。
Using this alloy powder, a conductor base] was created with the following formulation.

△a /Pd合金粉末    100g有機ビヒクル 
       82g このペーストをセラミックシート上に印刷し、1100
℃で焼成したところ、膜厚1.2.oで穴の少ない緻密
な膜が得られた。比抵抗は約20μΩ・〔であった。
△a / Pd alloy powder 100g organic vehicle
82g Print this paste on a ceramic sheet and
When baked at ℃, the film thickness was 1.2. A dense film with few holes was obtained. The specific resistance was about 20 μΩ·[.

比較例3 湿式還元法で作った最大粒径1.5肩、最小粒径0.5
^1のへ〇粉末及び平均粒径0.2肩のPd粉末を用い
、以下の配合で導体ペーストを作成した。
Comparative Example 3 Maximum particle size 1.5 and minimum particle size 0.5 made by wet reduction method
A conductor paste was prepared using the powder of ^1 and Pd powder with an average particle size of 0.2 in the following formulation.

A11l粉末          80(JPd粉末 
         20゜ 有機ビヒクル        82a このペーストをセラミックシート上に印刷し、1100
℃で焼成したところ、膜厚1.2剌では連続膜が得られ
なかった。
A11l powder 80 (JPd powder
20° Organic Vehicle 82a Print this paste on a ceramic sheet and
When the film was fired at a temperature of 1.2 °C, a continuous film could not be obtained at a film thickness of 1.2 cm.

実施例3 l−IALJc14結晶をエダノールに溶解し、0゜5
mol/βの溶液を作成した。この溶液を、実施例2と
同様にして噴霧熱分解し、最大粒径1.0肩、最小粒径
0.541で結晶性の良い球状ALI粉末を得た。
Example 3 l-IALJc14 crystals were dissolved in edanol and heated to 0°5
A solution of mol/β was prepared. This solution was subjected to spray pyrolysis in the same manner as in Example 2 to obtain a spherical ALI powder with a maximum particle size of 1.0 and a minimum particle size of 0.541 and good crystallinity.

この粉末を用い、以下の配合で導体ペーストを作成した
Using this powder, a conductor paste was prepared with the following formulation.

へ〇粉末         100g ガラスフリット        3g cuo             1(]有機ビヒクル
        13(Jこのペーストをアルミナ基板
上に印刷し、900℃で焼成したところ、膜厚7^1で
緻密な膜が得られた。この股上にTUS法でソイ1フボ
ンデイングを行ったが、2000シヨツトでボンディン
グ不良は全くなかった。
〇 Powder 100g Glass frit 3g cuo 1 (] Organic vehicle 13 (J) When this paste was printed on an alumina substrate and fired at 900°C, a dense film with a film thickness of 7^1 was obtained. Soil 1F bonding was performed using the TUS method, and there were no bonding defects at all after 2000 shots.

効果 実施例からも明らかな通り、本発明のペーストは球状で
結晶性が良く、しかも高分散性の金属粉末を使用してい
るため、薄くて緻密かつ基板と強固に接着した被膜を形
成することができる。特に導体ペーストの場合、被膜表
面に酸化物やガラス質成分が少なくなるため、半田付は
性、ワイヤボンディング性、ダイボンディング性の優れ
たものが得られる。
As is clear from the effect examples, the paste of the present invention is spherical, has good crystallinity, and uses highly dispersible metal powder, so it can form a thin, dense film that firmly adheres to the substrate. Can be done. Particularly in the case of a conductive paste, since there are fewer oxides and glassy components on the surface of the coating, it is possible to obtain products with excellent soldering properties, wire bonding properties, and die bonding properties.

Claims (1)

【特許請求の範囲】 1 1種又は2種以上の金属塩を含む溶液を噴霧して液
滴にし、その液滴を該金属塩の分解温度より高くかつ金
属の融点より高い温度であつて、しかも金属の融点以下
の温度で金属が酸化物を形成する場合にはその酸化物の
分解温度より高い温度で加熱することによって製造され
た金属粉末を導電成分として用いることを特徴とする厚
膜ペースト。 2 金属粉末が単一金属の粉末、合金粉末及びこれらの
混合粉末から選ばれる特許請求の範囲第1項記載の厚膜
ペースト。
[Scope of Claims] 1. A solution containing one or more metal salts is sprayed into droplets, and the droplets are heated to a temperature higher than the decomposition temperature of the metal salt and higher than the melting point of the metal, Moreover, when the metal forms an oxide at a temperature below the melting point of the metal, the thick film paste is characterized in that a metal powder produced by heating at a temperature higher than the decomposition temperature of the oxide is used as a conductive component. . 2. The thick film paste according to claim 1, wherein the metal powder is selected from a single metal powder, an alloy powder, and a mixed powder thereof.
JP13990485A 1985-06-26 1985-06-26 Thick film paste Granted JPS622404A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13990485A JPS622404A (en) 1985-06-26 1985-06-26 Thick film paste

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13990485A JPS622404A (en) 1985-06-26 1985-06-26 Thick film paste

Publications (2)

Publication Number Publication Date
JPS622404A true JPS622404A (en) 1987-01-08
JPH0368484B2 JPH0368484B2 (en) 1991-10-28

Family

ID=15256329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13990485A Granted JPS622404A (en) 1985-06-26 1985-06-26 Thick film paste

Country Status (1)

Country Link
JP (1) JPS622404A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421854A (en) * 1992-10-05 1995-06-06 E. I. Du Pont De Nemours And Company Method for making palladium and palladium oxide powders by aerosol decomposition
US5439502A (en) * 1992-10-05 1995-08-08 E. I. Du Pont De Nemours And Company Method for making silver powder by aerosol decomposition
US6159267A (en) * 1997-02-24 2000-12-12 Superior Micropowders Llc Palladium-containing particles, method and apparatus of manufacture, palladium-containing devices made therefrom
US6277169B1 (en) 1997-02-24 2001-08-21 Superior Micropowders Llc Method for making silver-containing particles
US6338809B1 (en) * 1997-02-24 2002-01-15 Superior Micropowders Llc Aerosol method and apparatus, particulate products, and electronic devices made therefrom
US6699304B1 (en) 1997-02-24 2004-03-02 Superior Micropowders, Llc Palladium-containing particles, method and apparatus of manufacture, palladium-containing devices made therefrom
US10560988B2 (en) 2016-06-10 2020-02-11 Samsung Electronics Co., Ltd. Display module and method for coating the same

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101141781B1 (en) 2007-02-13 2012-05-03 모리나가 뉴교 가부시키가이샤 Method for producing fermented milk using novel lactic acid bacteria
EP2112219B1 (en) 2007-02-13 2013-05-22 Morinaga Milk Industry Co., Ltd. Novel lactic acid bacteria
JP2011514432A (en) * 2007-09-07 2011-05-06 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Multi-element alloy powder containing silver and at least two non-silver containing elements
CA2789985A1 (en) 2010-08-31 2012-03-08 Morinaga Milk Industry Co., Ltd. A method for producing a fermented food containing bifidobacteria

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5421854A (en) * 1992-10-05 1995-06-06 E. I. Du Pont De Nemours And Company Method for making palladium and palladium oxide powders by aerosol decomposition
US5439502A (en) * 1992-10-05 1995-08-08 E. I. Du Pont De Nemours And Company Method for making silver powder by aerosol decomposition
US6159267A (en) * 1997-02-24 2000-12-12 Superior Micropowders Llc Palladium-containing particles, method and apparatus of manufacture, palladium-containing devices made therefrom
US6277169B1 (en) 1997-02-24 2001-08-21 Superior Micropowders Llc Method for making silver-containing particles
US6338809B1 (en) * 1997-02-24 2002-01-15 Superior Micropowders Llc Aerosol method and apparatus, particulate products, and electronic devices made therefrom
US6635348B1 (en) 1997-02-24 2003-10-21 Superior Micropowders Llc Aerosol method and apparatus, particulate products, and electronic devices made therefrom
US6689186B1 (en) 1997-02-24 2004-02-10 Cabot Corporation Silver-containing particles, method and apparatus of manufacture, silver-containing devices made therefrom
US6699304B1 (en) 1997-02-24 2004-03-02 Superior Micropowders, Llc Palladium-containing particles, method and apparatus of manufacture, palladium-containing devices made therefrom
US7128852B2 (en) 1997-02-24 2006-10-31 Cabot Corporation Aerosol method and apparatus, particulate products, and electronic devices made therefrom
US7172663B2 (en) 1997-02-24 2007-02-06 Cabot Corporation Palladium-containing particles, method and apparatus of manufacture, palladium-containing devices made therefrom
US10560988B2 (en) 2016-06-10 2020-02-11 Samsung Electronics Co., Ltd. Display module and method for coating the same

Also Published As

Publication number Publication date
JPH0368484B2 (en) 1991-10-28

Similar Documents

Publication Publication Date Title
JP2650838B2 (en) Production method of palladium and palladium oxide powder by aerosol decomposition
JPS6331522B2 (en)
US6060165A (en) Metal powder and process for preparing the same
US5964918A (en) Process for preparing metal powder
KR101264964B1 (en) Electro-conducitve copper powder coated with anti-oxidizng material and method for preparing the same
JPS622404A (en) Thick film paste
KR102574302B1 (en) Silver alloy powder and manufacturing method thereof
EP0834369B1 (en) Process for preparing metal powder
JP7136970B2 (en) Silver powder containing phosphorus and conductive paste containing the silver powder
JP3645504B2 (en) Metal powder and method for producing the same
JP2018123427A (en) Silver alloy powder and manufacturing method therefor
JP7095542B2 (en) Compositions for thick film resistors, pastes for thick film resistors, and thick film resistors
CN113782251A (en) Electrode paste, electrode thick film and preparation method thereof
JP3727904B2 (en) Metal powder and method for producing the same
US3708313A (en) Metalizing compositions
WO2017115462A1 (en) Silver alloy powder and method for producing same
KR101046629B1 (en) Spherical Composite Powder of Ag and Glass
Wu et al. Preparation of fine copper powder with chemical reduction method and its application in MLCC
JPH06235006A (en) Laminated silver powder, flaky silver powder, their production, conductive paste composition and conductive adhesive composition
KR830001482B1 (en) Nickel Alloy Paste for Electric Conductor Formation
JPH0796681B2 (en) Method for producing palladium-coated silver powder
JP2002275502A (en) Method for manufacturing noble metal alloy powder, and gold-palladium alloy powder
JP2020198403A (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP2020198404A (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor
JP2021011415A (en) Composition for thick film resistor, paste for thick film resistor, and thick film resistor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term