JPS62237127A - Friction material - Google Patents

Friction material

Info

Publication number
JPS62237127A
JPS62237127A JP8066986A JP8066986A JPS62237127A JP S62237127 A JPS62237127 A JP S62237127A JP 8066986 A JP8066986 A JP 8066986A JP 8066986 A JP8066986 A JP 8066986A JP S62237127 A JPS62237127 A JP S62237127A
Authority
JP
Japan
Prior art keywords
friction material
resistance
fibers
thermal conductivity
metallic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8066986A
Other languages
Japanese (ja)
Inventor
Hiroshi Onishi
寛 大西
Masahiko Kitamura
昌彦 北村
Moriya Makuuchi
幕内 守也
Yutaka Shiozawa
豊 塩沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ASUKU KK
Taiheiyo Cement Corp
Original Assignee
ASUKU KK
Onoda Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ASUKU KK, Onoda Cement Co Ltd filed Critical ASUKU KK
Priority to JP8066986A priority Critical patent/JPS62237127A/en
Publication of JPS62237127A publication Critical patent/JPS62237127A/en
Pending legal-status Critical Current

Links

Landscapes

  • Braking Arrangements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To lower thermal conductivity while retaining wear-resistance and fade-resistance of the conventional semi-metallic friction material and to obtain the optimum and excellent friction material by using an inorganic binding material and reinforcing resin suitable for use as a friction material for a brake or a clutch. CONSTITUTION:A friction material is formed by 5-35% metallic fiber, 10-50% inorganic fiber or organic fiber or both of them, 0-30% organic binding material, 10-60% inorganic binding material and 10-60% filler by volume. In this material, in order to hold down the additional amount of metallic fiber which conventionally raises thermal conductivity as much as possible and reduce a decrease in heat resistance, wear-resistance, and fade-resistance due to a lowering of metallic fiber content, reinforcing fiber and inorganic binding material which has low thermal conductivity and is rich in heat-resistance are added. Accordingly, while wear-resistance and fade-resistance of the conventional semi- metallic friction material are retained, the thermal conductivity is lowered to obtain the optimum and excellent friction material for a brake or a clutch.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は自動車なとのブレーキやクラッチに使用する摩
擦材に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a friction material used in brakes and clutches of automobiles.

[従来の技術] 従来、自動車などのブレーキやクラッチに使用されてい
るf!!l擦材は石綿繊維を基材として装造されてきた
。すなわち、従来の摩擦材は補強繊維として10〜60
体積%の石綿繊維、結合材として15〜40体積%の熱
硬化性樹脂、及び充填材として種々の金属扮粒、無機粉
末及び有機粉末からなり、これらの成分を混き、成形及
び研摩して製造されていた。
[Prior Art] f! has been conventionally used in brakes and clutches of automobiles, etc. ! Rubber materials have been made using asbestos fibers as a base material. In other words, conventional friction materials have reinforcing fibers of 10 to 60
It consists of asbestos fiber of % by volume, thermosetting resin of 15-40% by volume as a binder, and various metal particles, inorganic powder and organic powder as a filler, and these components are mixed, molded and polished. It was manufactured.

ところが近年、石綿繊維が人体に有害であるとのことか
ら、石綿繊維を基材とした摩擦材は製造上及び使用上の
規制の対象となっており、石綿繊維に代わる新規な摩擦
材の開発が急務となっている。
However, in recent years, asbestos fibers have been found to be harmful to the human body, and friction materials based on asbestos fibers have become subject to regulations regarding production and use.Therefore, there is a need to develop new friction materials to replace asbestos fibers. is an urgent need.

最近、石綿繊維代替原料が模索され、補強性及び耐熱性
に浸れ、入手が容易で且つコストの面からも有望である
金属繊維、特にスチールファイバーを基材とするセミメ
タリック系摩擦材が開発され、主として自動車のブレー
キパッドとして使用される、ようになった。このセミメ
タリック摩擦材1?K 4才はスチールファイバー、鉄
粉などの金属成分と黒鉛金主成分とし、これに有機充填
材及び無機充填材と配なし、フェノール樹脂などの有機
結合材で固めたものである。
Recently, alternative raw materials for asbestos fibers have been sought, and semi-metallic friction materials based on metal fibers, especially steel fibers, which have good reinforcing properties and heat resistance, are easy to obtain, and are promising from a cost perspective, have been developed. It has come to be used primarily as brake pads for automobiles. This semi-metallic friction material 1? K 4 years old is made of metal components such as steel fiber and iron powder, and graphite gold as the main component, and is made of organic filler and inorganic filler, and is hardened with organic binder such as phenol resin.

[発明が解決しようとする問題点] 上述のセミメタリック摩擦材は熱伝導性の大きい金属成
分と黒鉛な多量に含有するため、石綿系摩擦材に比べて
優れた耐摩耗性及び耐フェード性を有するが、熱伝導性
が大き過ぎるためにブレーキやクラッチの摩擦材として
使用する際に熱的な問題を起こす欠点がある。
[Problems to be Solved by the Invention] The above-mentioned semi-metallic friction material contains metal components with high thermal conductivity and a large amount of graphite, so it has superior wear resistance and fade resistance compared to asbestos-based friction materials. However, it has the drawback of having excessively high thermal conductivity, which causes thermal problems when used as a friction material for brakes and clutches.

例えば、ディスクブレーキのブレーキパッドとして使用
する場き、特に高速からの急制動や降板時の連続制動に
よって、ブレーキディスクとブレーキパッドの摺動面に
多量の摩擦熱が発生し、セミメタリック材の熱伝導性が
高いために、この摩擦熱がパッド内部及びそのバックプ
レートを通過してブレーキキャリパ−の油圧シリンダー
機構内に順次伝導される。この熱伝導に帰因する高温に
より、ピストンのシール部のゴムブーツやゴムリングが
劣化してブレーキ液の漏れが発生する。また、ブレーキ
液が高温のなめに沸騰し、いわゆるペーパーロック現象
を生じ、ブレーキが効がなくなり、非常に危険となるな
どの問題がある。
For example, when used as a brake pad for a disc brake, a large amount of frictional heat is generated on the sliding surface of the brake disc and brake pad due to sudden braking from high speeds or continuous braking when dismounting, and the semi-metallic material is heated. Due to its high conductivity, this frictional heat is in turn conducted through the interior of the pad and its back plate into the hydraulic cylinder mechanism of the brake caliper. The high temperature caused by this heat conduction causes the rubber boots and rubber rings of the piston seal to deteriorate, causing brake fluid to leak. In addition, the brake fluid boils at a high temperature, causing a so-called paper lock phenomenon, which makes the brakes ineffective and extremely dangerous.

従来、この問題に対処するために、ブレーキパッドとブ
レーキキャリパーの間に何等かの断熱層を設置する方法
が取られている。すなわち、ブレーキパッドのセミメタ
リック京擦材層とバックブレートの間にヒートバリヤ一
層を一体同時成形して設置する方法や、インシュレータ
ーをパッドのバックプレー1・の裏側に張り付ける方法
などが行なわれている。しかし、これらの断熱層は石綿
系材料に依存しているのが現状であり、前述の石綿規制
の観点から好ましいものとは言い難い。更に、材料費や
加工工程数の増加に伴いコストの上昇を招き、経済性の
点からも問題となる。
Conventionally, a method of dealing with this problem has been to install some kind of heat insulating layer between the brake pad and the brake caliper. In other words, methods include a method in which a heat barrier layer is integrally molded and installed between the semi-metallic material layer of the brake pad and the back plate, and a method in which an insulator is pasted on the back side of the back plate 1 of the pad. . However, these heat insulating layers currently rely on asbestos-based materials, which cannot be said to be preferable from the viewpoint of the asbestos regulations mentioned above. Furthermore, an increase in the cost of materials and the number of processing steps results in an increase in cost, which also poses a problem from an economic point of view.

更に、セミメタリック摩擦材の熱的問題を解決するため
に、摩擦材の材料組成に関する種々の提案がなされてい
る。すなわち、セミメタリック摩擦材の熱伝導性は材料
組成中の金属繊維と黒鉛の旦によって変化し、金属繊維
または黒鉛またはそれら両者の配合量を減少すれば、熱
伝導性が低下して上記の熱的問題は解消するが、セミメ
タリック摩擦材の優秀な耐摩耗性と耐フェード性は著し
く損なわれる。
Furthermore, in order to solve the thermal problems of semi-metallic friction materials, various proposals regarding the material composition of the friction materials have been made. In other words, the thermal conductivity of semi-metallic friction materials changes depending on the amount of metal fibers and graphite in the material composition, and if the amount of metal fibers, graphite, or both is reduced, the thermal conductivity decreases and the above-mentioned thermal conductivity decreases. However, the excellent wear resistance and fade resistance of semi-metallic friction materials are significantly impaired.

そこで、セミメタリック摩擦材の材料組成中の金属繊維
と黒鉛の代わりに石綿繊維に匹敵する強度及び低熱伝導
性を兼備した代替繊維及び固体潤滑材が種々提案されて
いる0例えば、補強繊維としてはガラス繊維、スラグウ
ール、セラミック繊維、カーボンファイバー、耐熱有機
繊維などが提案されており、また、固体潤滑材としては
金属硫化物、ポリイミド樹脂、フッ素樹脂などが提案さ
れているが、上述の成分はいずれも相手ディスクを損傷
させなり、高価であったり、製造工程中に均一な混合が
難しかったり、耐摩耗性や耐フェード性に不足するなど
の難点があり、いずれも実用性に欠けている。
Therefore, in place of metal fibers and graphite in the material composition of semi-metallic friction materials, various alternative fibers and solid lubricants have been proposed that have strength comparable to asbestos fibers and low thermal conductivity.For example, as reinforcing fibers, Glass fibers, slag wool, ceramic fibers, carbon fibers, heat-resistant organic fibers, etc. have been proposed, and metal sulfides, polyimide resins, fluorine resins, etc. have been proposed as solid lubricants, but the above components are Both methods damage the mating disk, are expensive, are difficult to mix uniformly during the manufacturing process, and lack wear resistance and fade resistance, and are therefore impractical.

従って、本発明の目的は上記問題点を解決し、セミメタ
リンク摩擦材の耐摩耗性と耐フェード性を生かし且つ熱
伝導性を低下させ、ブレーキやクラッチの摩擦材として
最適且つ優秀な摩擦材を提供するにある。
Therefore, the purpose of the present invention is to solve the above-mentioned problems, to make use of the wear resistance and fade resistance of semi-metallic friction materials, and to reduce thermal conductivity, thereby creating a friction material that is optimal and excellent as a friction material for brakes and clutches. is to provide.

[問題点を解決するための手段〕 即ち、本発明は金属繊維5〜35木間%、無機繊維また
は有機繊維またはそれら両者10〜50木積%、有機結
合材O〜30体猜%、無機結き材10〜60体積%及び
充填材10〜60体積%よりなる摩擦材にある。
[Means for Solving the Problems] That is, the present invention uses 5 to 35% metal fibers, 10 to 50% inorganic fibers or organic fibers, 10 to 50% organic binders, 0 to 30% organic binders, and inorganic binders. The friction material is composed of 10 to 60% by volume of filler and 10 to 60% by volume of filler.

[作 用] 本発明の摩擦材は従来のセミメタリック摩擦材の熱伝導
性を高める原因となっている金属繊維の添加量をできる
だけ抑え、金属繊維含量の低下による耐熱性、耐摩耗性
及び耐フェード性の減少を最低限にするために、熱伝導
性が低く、しかも耐熱性に富む補強繊維(有機繊維及び
/または無機繊維)及び無機結き材を添加するものであ
る。
[Function] The friction material of the present invention suppresses as much as possible the amount of metal fibers added, which is a cause of increasing the thermal conductivity of conventional semi-metallic friction materials, and improves heat resistance, wear resistance, and resistance due to the reduction in metal fiber content. In order to minimize the decrease in fading properties, reinforcing fibers (organic fibers and/or inorganic fibers) with low thermal conductivity and high heat resistance and an inorganic binder are added.

本発明の摩擦材に使用する金属繊維はセミメタリック摩
擦材に従来使用されていた金属繊維のいずれであっても
よく、例えばスチールファイバー、ステンレス繊維、青
銅ファイバー等を使用することができる。これらの繊維
は単独で、または2種以上を併用することもできる。こ
の金属繊維は摩擦材の強靭性と耐熱性を高めることによ
り耐久性を与えるために使用する。また、摩擦材の熱伝
導性を高めることにより摩擦摺動面で発生する多量の摩
擦熱を速やかに拡散させ、摩擦材の摺動面の温度上昇を
防止して摩擦材の摺動部分の熱的、化学的劣化を防ぎ、
耐摩耗性や耐フェード性を向上するために使用するもの
である。しかし、金属繊維を多量に使用すれば前述の如
くブレーキの熱的問題が発生する。金属繊維の添加配き
量は熱的問題を所望の程度に制御するように適宜選択す
ることができるが、通常最終摩擦材の5〜35体積%の
範囲である。
The metal fibers used in the friction material of the present invention may be any of the metal fibers conventionally used in semi-metallic friction materials, such as steel fibers, stainless steel fibers, bronze fibers, etc. These fibers can be used alone or in combination of two or more. This metal fiber is used to provide durability by increasing the toughness and heat resistance of the friction material. In addition, by increasing the thermal conductivity of the friction material, a large amount of frictional heat generated on the friction sliding surface can be quickly diffused, preventing a temperature rise on the sliding surface of the friction material, and increasing the heat of the sliding part of the friction material. prevent physical and chemical deterioration,
It is used to improve wear resistance and fade resistance. However, if a large amount of metal fiber is used, thermal problems of the brake will occur as described above. The amount of metal fibers added can be selected to control thermal problems to the desired degree, but typically ranges from 5 to 35 percent by volume of the final friction material.

本発明の摩擦材には上述の熱的問題を解決すると共に金
属繊維減量による強度の低下を補うなめに金属繊維以外
の補強繊維を金属繊維と併用する。
In the friction material of the present invention, reinforcing fibers other than metal fibers are used in combination with metal fibers in order to solve the above-mentioned thermal problem and compensate for the decrease in strength due to the reduction in metal fibers.

この補強繊維は石綿繊維以外の無機繊維または有機繊維
またはそれら両者であり、熱伝導性が低く、耐熱性に富
み、強度の高い繊維例えばグラスファイバー、ロックウ
ール(PMF)、ワラストナイト、チタン酸カリ繊維、
アラミド繊維[例えば商標名ケブラー(デュポン社製)
]などが好ましい。有機繊維及び/または無機繊維の添
加配合1は、上述の熱的問題、補強性、成形性及び金属
繊維の添加配合量等に依存するが、最終摩擦材の10〜
50体積%である。なお、有機繊維及び無機繊維はそれ
ぞれを単独で使用することもでき、また、2種以上を併
用することもできる。
The reinforcing fibers are inorganic fibers or organic fibers other than asbestos fibers, or both, and have low thermal conductivity, high heat resistance, and high strength, such as glass fiber, rock wool (PMF), wollastonite, and titanic acid. potash fiber,
Aramid fibers [e.g. trade name Kevlar (manufactured by DuPont)
] etc. are preferable. The amount of addition of organic fibers and/or inorganic fibers 1 depends on the above-mentioned thermal problems, reinforcing properties, formability, amount of metal fibers added, etc.
It is 50% by volume. In addition, each of the organic fibers and inorganic fibers can be used alone, or two or more types can be used in combination.

金属繊維+有機繊維及び/または無機繊維のき計部加配
り量は通常最終摩擦材の15〜60体積%程度であり、
好ましくは20〜40体積%である。合計部加配か量が
15体積%未満であると摩擦材の補強が不充分になるた
めに好ましくなく、また、60体積%を超えると成形が
困難になるために好ましくない。
The amount of metal fibers + organic fibers and/or inorganic fibers is usually about 15 to 60% by volume of the final friction material,
Preferably it is 20 to 40% by volume. If the total addition amount is less than 15% by volume, reinforcement of the friction material becomes insufficient, which is undesirable, and if it exceeds 60% by volume, molding becomes difficult, which is not preferred.

上述したように、自動車用ブレーキを使用する場き、高
速からの急制動や降板時の連続制動などのような苛酷使
用の場きには多量の牽擦熱が発生する。従来の摩擦材は
有機結合材例えばフェノール樹脂を始め、有vi物含量
が多いので、多量に発生するRIJ?!l!熱によりこ
れらの有機物が劣1ヒ・分解する。結き材が熱により劣
化・分解すれば、摩擦材の結合が弱くなり、激しい摩耗
を生じ、また、分解ガスが)↑擦摺動面に存在し、気体
潤滑を生ぜしめ、制動力の、低下すなわちフェード現象
が発現する。これを防ぐ方法として従来は有機結合材の
旦を減らして分解ガス源を減らしたり、金属成分や思鉛
のような熱伝導性物質分添加することにより多量に発生
する摩擦熱を速やかに摩擦摺動面から拡散・除去して摺
動面の異常な温度上昇を防いでいた。しかし、この方法
では摩擦材自体の熱伝導性が大きくなりすぎ、上述のよ
うなペーパーロックの原因となり、満足な摩擦材が得ら
れない。本発明の摩擦材てはこれらの欠点を除去するた
めに、熱に強く、熱伝導性の低い無機結6材を単独で使
用するか、または上述の有機結α材と併用するものであ
る。
As mentioned above, when using automobile brakes, a large amount of frictional heat is generated when the brakes are subjected to severe use such as sudden braking from high speeds or continuous braking when exiting the vehicle. Conventional friction materials contain organic binders, such as phenolic resins, and contain a large amount of organic matter, resulting in a large amount of RIJ? ! l! Heat degrades these organic substances. If the binder deteriorates and decomposes due to heat, the bond between the friction materials becomes weaker, causing severe wear, and decomposition gas exists on the sliding surface, causing gas lubrication and reducing braking force. A decrease or fade phenomenon occurs. Conventionally, methods to prevent this have been to reduce the amount of organic binder used to reduce the source of decomposed gas, or to add thermally conductive substances such as metal components and lead to quickly remove the large amount of frictional heat generated by friction sliding. It was diffused and removed from the sliding surface to prevent abnormal temperature rises on the sliding surface. However, in this method, the thermal conductivity of the friction material itself becomes too high, causing paper lock as described above, and a satisfactory friction material cannot be obtained. In order to eliminate these drawbacks, the friction material of the present invention uses an inorganic bonding material that is strong against heat and has low thermal conductivity alone or in combination with the above-mentioned organic bonding material.

本発明の摩擦材に使用する無機結き材としてはシリカ系
、アルミナ系、ジルコニア系、りん酸塩系、硼酸系など
の硬化剤または焼成によって反応硬化する無機結合材等
を挙げることができ、特にりん酸アルミニウムを土木と
したりん酸塩系結き村が最適である。無機結合材の添加
配合量は有機結合材の添加配き量とら関連するが一1通
常最終摩擦材の10〜60体積%である。無機結合材の
添加配な量が10体積;゛6未満であると結6カが弱く
なり、また、耐熱性も低下するために好ましくなく、ま
た、60体積%を超えると摩擦材が硬く且つ脆くなるた
めに好ましくない。
Examples of the inorganic binder used in the friction material of the present invention include silica-based, alumina-based, zirconia-based, phosphate-based, and boric acid-based hardening agents, and inorganic binders that are reactively hardened by firing. In particular, phosphate-based knots made of aluminum phosphate are most suitable. The amount of the inorganic binder added is related to the amount of the organic binder added, but is usually 10 to 60% by volume of the final friction material. If the amount of the inorganic binder added is less than 10% by volume, the bond will become weak and the heat resistance will also decrease, which is not preferable, and if it exceeds 60% by volume, the friction material will become hard and Undesirable because it becomes brittle.

本発明の摩擦材には慣用の有機結合材を使用することが
できる。有機結合材としては例えばフェノール樹脂など
の熱硬化性樹脂を挙げることができる。有機結合材の添
加配合量は上述の無機結き材の添加配合量とも関連する
が、通常O〜30体積%である。有機結合材の添加配合
量が30体積%を超えると摩擦材の耐熱性が低下するた
めに好ましくない。
Conventional organic binders can be used in the friction material of the present invention. Examples of organic binders include thermosetting resins such as phenolic resins. The amount of the organic binder added is related to the amount of the inorganic binder mentioned above, but is usually 0 to 30% by volume. If the amount of the organic binder added exceeds 30% by volume, it is not preferable because the heat resistance of the friction material decreases.

有機結合材と無機結き材のき計部加配α量は通常最終摩
擦材の10〜60体積%であり、好ましくは20〜60
体積%である。このき計量が10体積%未満であると結
合力が弱いために好ましくなく、また、60体積%を超
えると耐熱性を低下させたり、摩擦材を脆くするために
好ましくない。
The amount of additive α of the organic binder and the inorganic binder is usually 10 to 60% by volume of the final friction material, preferably 20 to 60% by volume.
It is volume %. If this amount is less than 10% by volume, the bonding force will be weak, which is undesirable, and if it exceeds 60% by volume, it will be undesirable because it will reduce the heat resistance or make the friction material brittle.

本発明の摩擦材には有機系充填材及び/または無機系充
填材を使用することができる。有機系充填材としては例
えばカシューダスト、ラバーダストなどを使用すること
ができ、ブレーキ鳴きや低温摩耗性を向上することがで
きるが、多量に使用すると上述の有機結り材と同様の欠
点を有しているために好ましくない。また、無機系充填
材としてはPbS、5b2S、、MoS2などの硫(ヒ
物、SiO2、A I203、Cao 、 F e20
 z、M3Cなどの酸化物、Ca(OI()2、CaC
Oz、Ba5O,などの塩類、黒鉛、カーボンブラック
、タルク、マイカなど、及び金属としてFe、 Cu、
Zn、Sn、真鍮、青銅、AI、pbまたはこれらの合
金の粉粒などを1吏用することができる。充填材は摩擦
係数の調整、摩耗の低下、コストの低減等の目的で使用
するものであり、目的に応じて上述の充填材を2種以上
併用することができる。充填材の総量は目的により種々
変化させることができるが、通常10〜60体積%の範
囲内である。
Organic fillers and/or inorganic fillers can be used in the friction material of the present invention. For example, cashew dust, rubber dust, etc. can be used as the organic filler, and can improve brake squeal and low-temperature wear resistance, but if used in large quantities, they have the same drawbacks as the organic binder mentioned above. undesirable because of the In addition, as inorganic fillers, sulfur such as PbS, 5b2S, MoS2, SiO2, AI203, Cao, Fe20
z, oxides such as M3C, Ca(OI()2, CaC
Salts such as Oz, Ba5O, graphite, carbon black, talc, mica, etc., and metals such as Fe, Cu,
Powder particles of Zn, Sn, brass, bronze, AI, PB, or an alloy thereof can be used. The filler is used for the purpose of adjusting the coefficient of friction, reducing wear, reducing cost, etc., and two or more of the above-mentioned fillers can be used in combination depending on the purpose. The total amount of filler can be varied depending on the purpose, but is usually within the range of 10 to 60% by volume.

本発明の摩擦材は従来の摩擦材の?!逍設(Iii及び
製造工程分用いて製造することができる。例えば、各J
g、料を均一に混りした陵、所定量を秤量し、金型に投
入し、熱プレスにて温度100〜300℃、圧力100
〜500 kgl c積2、プレス時間5〜30分間で
成形し、次に150〜350℃で1〜8時間焼成し、次
にJり擦面を所定の厚みに研1.K Lで製造すること
ができる。
Is the friction material of the present invention different from conventional friction materials? ! For example, each J
g. Weigh a predetermined amount of the material mixed uniformly, put it into a mold, and press it with a heat press at a temperature of 100 to 300°C and a pressure of 100°C.
~500 kgl c volume 2, pressed for 5 to 30 minutes, then fired at 150 to 350°C for 1 to 8 hours, and then polished to a predetermined thickness. It can be manufactured at KL.

[実 施 例] 丸1眞 以下の第1表に示す配き割きをもつ各原料を均一に混合
した後、所定量を秤量し、金型に投入し、熱ブレスにて
温度150℃、圧力300 kgl am2、ブレス時
間10分間でディスクバットを成形し、次に220℃で
4時間焼成し、次に摩擦面を所定の厚みに研摩して供試
試料を製造した。なお、第1表に示す比較品の配合は現
行の代表的セミメタリック摩擦材の配合である。
[Example] After uniformly mixing each raw material having the distribution shown in Table 1 below, a predetermined amount was weighed, put into a mold, and heated with a heat press at a temperature of 150°C and a pressure. A disk bat was molded at 300 kgl am2 for 10 minutes, then fired at 220° C. for 4 hours, and then the friction surface was polished to a predetermined thickness to produce a test sample. The formulations of the comparative products shown in Table 1 are the formulations of current typical semi-metallic friction materials.

得られた供試試料を用いてJASOC−406に準じた
慣性式ダイナモメータ−による摩擦性能試験を行なった
。この時のフェード試験の最低摩擦係数とパッド裏面の
温度及び試験後の摩1f、量を測定し、第1表に併記す
る。
Using the obtained test sample, a friction performance test was conducted using an inertial dynamometer according to JASOC-406. At this time, the lowest friction coefficient of the fade test, the temperature of the back surface of the pad, and the amount of friction 1f after the test were measured and are also listed in Table 1.

呆−よ−人 第1表より本発明品1及び2は共に比較品と比し裏面温
度が35〜60℃も低下し、熱伝導性が改善されている
ことがわかる。ただし、本発明品2は本発明品1に比べ
金属繊維の量が多いので、これに伴って裏面温度が若干
高くなっている。また、本発明品1及び2のフェード最
低摩擦係数及び摩耗量は比較品のそれらに優るとも劣ら
ない良好な値を示している。
From Table 1, it can be seen that the back surface temperature of both invention products 1 and 2 is lowered by 35 to 60° C. compared to the comparative product, and the thermal conductivity is improved. However, since the product 2 of the present invention has a larger amount of metal fibers than the product 1 of the present invention, the back surface temperature is accordingly slightly higher. In addition, the minimum fade friction coefficient and wear amount of products 1 and 2 of the present invention are as good as, if not better than, those of the comparative product.

[発明の効果] 上述の如く、本発明の摩擦材は無機結き材及び用途に適
した補強繊維(有機繊維及び/または無機繊維)を使用
しているので、従来のセミメタリックR擦材の耐摩耗性
と耐フェード性を保持しつつ、熱伝導性を低下させるこ
とができ、それによってa適且つ1最禿なブレーキやク
ラッチの摩擦材を提供することができる。
[Effects of the Invention] As described above, the friction material of the present invention uses an inorganic binder and reinforcing fibers (organic fibers and/or inorganic fibers) suitable for the application, so it is superior to conventional semi-metallic R friction materials. Thermal conductivity can be lowered while maintaining wear resistance and fade resistance, thereby providing the most suitable and thinnest friction material for brakes and clutches.

特3γ出願人 小野田セメンl−株式会社同   上 
朝日石綿工業株式会社 代  理  人  曽  我  道  照 (:1. 
・、1
Special 3γ Applicant: Onoda Semen L-Co., Ltd. Same as above.
Asahi Asbestos Industries Co., Ltd. Managing Director: Teru Soga Michi (:1.
・,1

Claims (1)

【特許請求の範囲】[Claims]  金属繊維5〜35体積%、無機繊維または有機繊維ま
たはそれら両者10〜50体積%、有機結合材0〜30
体積%、無機結合材10〜60体積%及び充填材10〜
60体積%よりなる摩擦材。
Metal fibers 5-35% by volume, inorganic fibers or organic fibers or both 10-50% by volume, organic binder 0-30%
volume%, inorganic binder 10-60 volume% and filler 10-60% by volume
Friction material consisting of 60% by volume.
JP8066986A 1986-04-08 1986-04-08 Friction material Pending JPS62237127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8066986A JPS62237127A (en) 1986-04-08 1986-04-08 Friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8066986A JPS62237127A (en) 1986-04-08 1986-04-08 Friction material

Publications (1)

Publication Number Publication Date
JPS62237127A true JPS62237127A (en) 1987-10-17

Family

ID=13724766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8066986A Pending JPS62237127A (en) 1986-04-08 1986-04-08 Friction material

Country Status (1)

Country Link
JP (1) JPS62237127A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488159A2 (en) * 1990-11-28 1992-06-03 Akebono Brake Industry Co., Ltd. Non-asbestos friction material
GB2295621A (en) * 1994-12-01 1996-06-05 T & N Technology Ltd Brake pads comprising aluminium tripolyphosphate
WO1996017181A1 (en) * 1994-12-01 1996-06-06 T & N Technology Limited Brake pads
EP2166058A4 (en) * 2007-06-20 2011-12-07 Hitachi Chemical Co Ltd Friction material composition, and friction material using the same
JP2015059193A (en) * 2013-09-20 2015-03-30 ニチアス株式会社 Dry friction material, clutch device and brake device
US10138969B2 (en) 2013-03-22 2018-11-27 Nisshinbo Brake, Inc. Friction material

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0488159A2 (en) * 1990-11-28 1992-06-03 Akebono Brake Industry Co., Ltd. Non-asbestos friction material
US5217528A (en) * 1990-11-28 1993-06-08 Akebono Brake Industry Co., Ltd. Non-asbestos friction material
GB2295621A (en) * 1994-12-01 1996-06-05 T & N Technology Ltd Brake pads comprising aluminium tripolyphosphate
WO1996017181A1 (en) * 1994-12-01 1996-06-06 T & N Technology Limited Brake pads
EP2166058A4 (en) * 2007-06-20 2011-12-07 Hitachi Chemical Co Ltd Friction material composition, and friction material using the same
US10138969B2 (en) 2013-03-22 2018-11-27 Nisshinbo Brake, Inc. Friction material
JP2015059193A (en) * 2013-09-20 2015-03-30 ニチアス株式会社 Dry friction material, clutch device and brake device

Similar Documents

Publication Publication Date Title
US7297728B2 (en) Friction material
US20190277361A1 (en) Friction material
WO2017183155A1 (en) Friction material composition, and friction material and friction member each obtained therefrom
US7338987B2 (en) Friction material composition and friction material using the same
JPWO2019082350A1 (en) Friction member, friction material composition for underlaying material and friction material
JP6043642B2 (en) Brake friction material
US11060577B2 (en) Friction material
JPS62237127A (en) Friction material
KR101035240B1 (en) A low-steel type friction material and a brake for vehicle comprising the low-steel type friction material
JP2806499B2 (en) Friction material
JPH0711238A (en) Frictional material composition
JPH04106183A (en) Non-asbestos friction material
WO2021015002A1 (en) Friction material
WO2021015003A1 (en) Friction material
JPH04139290A (en) Production of friction material
JP2827136B2 (en) Non-asbestos friction material
JPH05279656A (en) Friction material
JPS5813684A (en) Friction material
JP2696215B2 (en) Asbestos-free friction material
JPS6215281A (en) Friction material composition
JP2765301B2 (en) Non-asbestos disc pad
JPH04306288A (en) Non-asbestos friction material
JP3672047B2 (en) Non-asbestos disc pad
JPH05202352A (en) Friction material
JP3553629B2 (en) Friction material