JPS62222846A - Manufacture of lint metallic composite material - Google Patents

Manufacture of lint metallic composite material

Info

Publication number
JPS62222846A
JPS62222846A JP61065986A JP6598686A JPS62222846A JP S62222846 A JPS62222846 A JP S62222846A JP 61065986 A JP61065986 A JP 61065986A JP 6598686 A JP6598686 A JP 6598686A JP S62222846 A JPS62222846 A JP S62222846A
Authority
JP
Japan
Prior art keywords
powder
composite material
sheet
binder
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61065986A
Other languages
Japanese (ja)
Other versions
JPH0627020B2 (en
Inventor
元田 高司
健一 青田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP61065986A priority Critical patent/JPH0627020B2/en
Publication of JPS62222846A publication Critical patent/JPS62222846A/en
Publication of JPH0627020B2 publication Critical patent/JPH0627020B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は金属粉末を用いた長繊維金属複合材料、特に難
加工性のTi基、 Ni基複合材料の製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for producing long fiber metal composite materials using metal powder, particularly difficult-to-process Ti-based and Ni-based composite materials.

(従来の技術) 現在、長繊維金属複合材料は通常、0.05m〜ll曹
厚の金属箔と、ドラムに繊維フィラメントを一定間隔に
巻付け、樹脂固定する、所謂、ドラムワインディング法
で配列形成した繊維マットとを所定の大きさに切り出し
、交互に積層し、型に嵌め真空中で脱脂後、真空ホット
プレス、熱間静水圧プレス(HIP)又は一旦真空ホッ
トプレスで予備固化し、後、HTP固化する箔冶金法で
製造されている。
(Prior art) Currently, long fiber metal composite materials are usually formed in an array by the so-called drum winding method, in which metal foil with a thickness of 0.05 m to 11 mm and fiber filaments are wound around a drum at regular intervals and fixed with resin. The resulting fiber mats are cut to a predetermined size, stacked alternately, fitted into a mold, degreased in a vacuum, pre-solidified using a vacuum hot press, hot isostatic press (HIP) or a vacuum hot press, and then Manufactured using HTP hardening foil metallurgy.

しかし一般に金属は合金化されると共に展延性が乏しく
なり、特に高合金化されたTi合金、 Ni合金では薄
い箔状に加工できなくなるという問題に遭遇する。この
うち、Ti合金にあっては合金化された2相(α相β相
)合金はTi−6Ajl−4V合金箔が実験用Ti合金
基複合材料用として作られているが、価格が高く工業的
に採算がとれるものではない。
However, metals generally become less malleable as they are alloyed, and particularly highly alloyed Ti alloys and Ni alloys encounter the problem that they cannot be processed into thin foil shapes. Among these Ti alloys, Ti-6Ajl-4V alloy foil is produced as a two-phase alloyed (α phase β phase) alloy for use in experimental Ti alloy matrix composite materials, but it is expensive and is not suitable for industrial use. It is not something that can be economically profitable.

またNi基基台合金至っては、多量にγ (NizAβ
・Ti)を含む合金は変形抵抗が高(箔に加工すること
は困難である。
In addition, Ni-based alloys contain a large amount of γ (NizAβ
・Alloys containing Ti) have high deformation resistance (difficult to process into foil).

従って、前記箔冶金法は箔加工が困難な上記Ti合金、
Ni基合金には適していない。
Therefore, the foil metallurgy method is suitable for the Ti alloy, which is difficult to process into foil.
Not suitable for Ni-based alloys.

ところが、近時、耐熱合金祠料の利用拡大に伴ってTi
合金、N1pf6合金の果たす機能的役割は大きく、こ
れらを含む複合材料の開発は重要な関心事の1つである
However, with the recent expansion in the use of heat-resistant alloy abrasives, Ti
The functional role played by the N1pf6 alloy is significant, and the development of composite materials containing them is one of the important concerns.

(発明が解決しようとする問題点) そこで、本発明者らは、上述の如き趨勢に対処し、Ti
基、 Ni基複合材料の開発に取り組み、これに適した
製造方法の検討を行った結果、Ti合金。
(Problems to be Solved by the Invention) Therefore, the present inventors have addressed the above-mentioned trends and
As a result of working on the development of a Ni-based composite material and investigating a manufacturing method suitable for this material, we developed a Ti alloy.

Ni基合金の金属粉末のIII用化に到達した。We have achieved the use of Ni-based alloy metal powder for III applications.

金属粉末の製造方法は従来より機械的方法、物理的方法
などがあって各金属粉末の製造に多用されているが、T
i、 Ti合金、Ni5合金などにおいても物理的な回
転電極法、不活性ガスアトマイズ法などがあり、回転電
極法は粉末となる素材を電極とし、回転させながらアー
クあるいはプラズマを当てて溶融部を回転の遠心力で飛
ばして粉末を作る方法で、主にTi、 Ti合金粉末の
生産に利用されており、一方、不活性ガスアトマイズ法
は溶融した金属を不活性ガスを用いて噴霧化し、粉末を
得る方法でNi基合金などが多くこれにより生産されて
いる。
Conventionally, methods for producing metal powder include mechanical methods and physical methods, which are often used in the production of various metal powders, but T
For Ti alloys, Ni5 alloys, etc., there are physical rotating electrode methods, inert gas atomization methods, etc. In the rotating electrode method, the powder material is used as an electrode, and arc or plasma is applied while rotating to rotate the molten part. This method uses centrifugal force to create powder, and is mainly used to produce Ti and Ti alloy powder.On the other hand, the inert gas atomization method atomizes molten metal using an inert gas to obtain powder. Many Ni-based alloys are produced using this method.

従って、何れにしても、Tie、Ni基合金など箔に加
工困難な材料といえども粉末の生産は従来より行われて
いる。
Therefore, in any case, powder production of materials such as Tie and Ni-based alloys, which are difficult to process into foil, has been carried out in the past.

本発明は、かかるTi合金、 Ni基合金の粉末に着目
し、該粉末を箔同様のシートに形成することにより、こ
れを繊維フィラメント配列マットと交互に積層し、従来
、困難視されていたTi基、 Ni基複合材料を製造す
ることを目的とするものである。
The present invention focuses on powders of such Ti alloys and Ni-based alloys, and forms the powders into sheets similar to foils, which are alternately laminated with fiber filament array mats. The purpose is to produce a Ni-based composite material.

(問題点を解決するだめの手段) filち、上記目的に適合する本発明方法の特徴とする
ところは、上記Ti合金、Ni基合金などの金属粉末を
バインダーを用いて所望の厚さに成形してなるシートを
用い、これと繊維フィラメントを一定間隔に配列しバイ
ンダー固定した繊維マットとを交互に積層し、予備成形
体とした後、該予備成形体を真空中で脱脂し、次いで真
空ホットプレス。
(Means for Solving the Problems) The feature of the method of the present invention that meets the above objectives is that the metal powder such as the Ti alloy or Ni-based alloy is molded to a desired thickness using a binder. This and a fiber mat in which fiber filaments are arranged at regular intervals and fixed with a binder are alternately laminated to form a preform.The preform is degreased in a vacuum, and then heated in a vacuum hot press.

HIP処理するか、あるいは一旦、真空ホットプレスで
予備固化し、後、HIP処理により固化して長繊維金属
複合材料を製造する粉末シート法による上記複合材料の
製造方法である。
This is a method for producing the above-mentioned composite material using a powder sheet method in which a long fiber metal composite material is produced by HIP treatment or by first pre-solidifying with a vacuum hot press and then solidifying by HIP treatment.

ここで、前記金属粉末シートの成形は、例えばポリエス
テルフィルムなどの離型紙上に所要の合金粉末とバイン
ダーとを混合したものをナイフェツジを用いて成形する
が、合金粉末は成形後の粉末シーHEの70%以下の粒
径のものを用いる。
Here, the metal powder sheet is formed by forming a mixture of the required alloy powder and a binder on a release paper such as a polyester film using a knife, but the alloy powder is formed in the powder sheet HE after forming. Use particles with a particle size of 70% or less.

具体的にはシート成形に用いる粉末粒子径はシート厚さ
を制限するため、繊維体積率を考えると、0.5++宵
以下が好適である。
Specifically, since the powder particle diameter used for sheet molding limits the sheet thickness, in consideration of the fiber volume fraction, a diameter of 0.5++ or less is suitable.

又、下限については特に制限はないが、固化成形体の酸
素、窒素のトラップ量は粒子径が小さい程、高くなるた
めに10μ以上とするのが良好である。
The lower limit is not particularly limited, but the smaller the particle diameter, the higher the amount of oxygen and nitrogen trapped in the solidified compact, so it is preferable to set it to 10 μm or more.

第1図はかかる合金粉末の粒径と、粉末シート厚との関
係(粉末−バインダー混合体粘度70゜000〜130
,000CP)を示しており、粉末シート厚を最大限1
龍とした場合において粉末の最大粒径は精々0.6f1
位までが好ましく、もし、粉末粒径が成形後の粉末シー
ト厚の70%を超える大きさのものを含むような場合に
おいては離型紙とナイフェツジの隙間に粉末が詰まり、
筋状の欠陥を往じるので好ましくない。
Figure 1 shows the relationship between the particle size of the alloy powder and the powder sheet thickness (powder-binder mixture viscosity 70°000-130°
,000CP), and the maximum powder sheet thickness is 1
In the case of dragon, the maximum particle size of the powder is at most 0.6f1
If the particle size of the powder exceeds 70% of the thickness of the powder sheet after molding, the powder will clog the gap between the release paper and the knife.
This is not preferable because it causes streak defects.

又、成形時における上記バインダーと粉末との混合体の
粘度もシート製造に影響があり、通常、50,000C
P〜150,000CPの範囲が効果的である。
In addition, the viscosity of the mixture of binder and powder during molding also affects sheet production, and is usually 50,000C.
A range of P to 150,000 CP is effective.

第2図はこの合金粉末の粒径と粘度との関係を示してお
り、50,000CP以下では成形時に合金粉末とバイ
ンダーが分離する傾向が強くなり、低粒子密度の縞模様
を生じる。
FIG. 2 shows the relationship between the particle size and viscosity of this alloy powder. Below 50,000 CP, there is a strong tendency for the alloy powder and binder to separate during compaction, resulting in a striped pattern with low particle density.

一方、150,000CP以上になると混合体の粘度が
高くなりずぎ、シー1−表面の肌荒れや混合体のとぎれ
たシートができる。
On the other hand, if it exceeds 150,000 CP, the viscosity of the mixture becomes too high, resulting in a rough surface of the sheet 1 and a broken sheet of the mixture.

又、上記粉末シートはナイフェツジで成形後、乾燥する
が、この乾燥ば60 ’C以下で行うのがよく、それ以
上ではシートと離型紙間に気泡を生じ表面が凹凸になる
恐れがあるので望ましくない。
Further, the above powder sheet is dried after being molded with a knife, but this drying is preferably carried out at a temperature of 60'C or lower, as air bubbles may form between the sheet and the release paper and the surface may become uneven if the temperature is higher than that. do not have.

なお、上記本発明方法において用いるバインダーとして
は通常、アクリル樹脂を有機溶剤で溶かしたアクリル樹
脂系バインダーである。溶剤としてはトルエン、アセト
ン等の蒸気圧が高いものよりも、ソルヘッソ150 (
商品名)のような蒸気圧が低いものの方が乾燥速度がゆ
るやかで、乾燥後のシート表面肌が良好である。
The binder used in the method of the present invention is usually an acrylic resin binder prepared by dissolving an acrylic resin in an organic solvent. As a solvent, Solheso 150 (
Products with low vapor pressure, such as (trade name), have a slower drying rate and have a better surface texture after drying.

一方、用いられる繊維マットは長繊維フィラメントを一
定間隔に配列し、バインダーで固定したものであるが、
繊維としてばSiC繊維が最も一般的に使用される。
On the other hand, the fiber mat used is one in which long fiber filaments are arranged at regular intervals and fixed with a binder.
SiC fibers are most commonly used as fibers.

SiC繊維としては炭素繊維又はタングステン線の表面
に熱分解SiCをCVD法により蒸着し、80〜100
μのSiCフィラメントとした繊維、 SiCウィスカ
ー、ポリカルボシランより立体重合することにより製造
したSiC繊維等が考えられるが、夫々の特性を勘案し
て使用する。
As SiC fibers, pyrolytic SiC is deposited on the surface of carbon fibers or tungsten wires using the CVD method.
Fibers made of μ SiC filaments, SiC whiskers, SiC fibers produced by stereopolymerization of polycarbosilane, etc. are conceivable, but each should be used in consideration of their characteristics.

又、固定するバインダーとしては前述したアクリル樹脂
系バインダーの使用が実用的である。
Further, as the binder for fixing, it is practical to use the above-mentioned acrylic resin binder.

以上のようにして夫々得られた粉末シートと繊維マット
は各々所望の寸法に切断の上、交互に重ね、バインダー
で貼り合わせて一体に乾燥し、予備成形体として爾後の
プレス処理に付す。
The powder sheet and fiber mat thus obtained are each cut into desired dimensions, stacked alternately, bonded together with a binder, dried together, and subjected to subsequent press treatment as a preform.

プレス処理としては真空下でホットプレス又はHIP処
理あるいは予めホットプレスにより予備固化した後、H
IP処理することの何れかの方式が実施可能であるが、
最も効果的な方法は最後のホットプレスにより予備同化
後、HI P処理する方式である。
As for the press treatment, after hot press or HIP treatment under vacuum or pre-solidification by hot press in advance, H
Any method of IP processing can be implemented, but
The most effective method is to perform HIP treatment after preliminary assimilation using a final hot press.

このようにして固化成形された複合材料の繊維体積率は
粉末シートの粒子の見掛は密度、厚さ。
The fiber volume fraction of the composite material solidified and molded in this way is the apparent density and thickness of the particles in the powder sheet.

繊維径、繊維間隔などによって決まる。このうちシート
厚さ、繊維径、繊維間隔は前もって決められるので、粉
末シーI・成形体の粒子の見掛は密度を測定しておけば
固化成形後の複合材料の体積率を容易に設計することが
可能となる。
Determined by fiber diameter, fiber spacing, etc. Among these, the sheet thickness, fiber diameter, and fiber spacing are determined in advance, so if the apparent density of the particles of the powder sheet I/formed body is measured, the volume fraction of the composite material after solidification and molding can be easily designed. becomes possible.

(実施例) 以下、本発明方法の具体的な実施例を掲げる。(Example) Specific examples of the method of the present invention are listed below.

後記表の試料1〜6に従って夫々本発明方法を適用して
各繊維金属複合材料を実験的に製造した。
Each fiber-metal composite material was experimentally manufactured by applying the method of the present invention according to Samples 1 to 6 in the table below.

一方、比較のため従来の箔冶金法により複合材料を製造
し、試料7として併記した。
On the other hand, for comparison, a composite material was manufactured by a conventional foil metallurgy method and is also shown as sample 7.

実験に用いた本発明法の各粉末はそれぞれの粒径以下に
ふるい供試材とした。
Each powder of the method of the present invention used in the experiment was sieved to a particle size smaller than the respective particle size and used as a test material.

粉末・バインダー混合体の粘度は粉末・バインダー溶媒
量により調整した。ホットプレスは加熱前からQ、5k
g/m2を加え、加熱による樹脂の軟化などによる収縮
と、樹脂の気化による噴出による配列繊維の規則性の乱
れを防いだ。
The viscosity of the powder/binder mixture was adjusted by adjusting the amount of powder/binder solvent. Hot press Q, 5k before heating
g/m2 was added to prevent shrinkage due to softening of the resin due to heating and disturbance of the regularity of the arranged fibers due to ejection due to vaporization of the resin.

又、0−5kg/am”の加圧は繊維に傷を付けていな
い。なお、加熱は200℃〜600℃で樹脂の気化が起
こるため3℃〜5°C/minのゆるやかな加熱速度で
実施した。
In addition, the pressure of 0-5 kg/am" did not damage the fibers. Since the resin vaporizes at 200°C to 600°C, heat at a gentle heating rate of 3°C to 5°C/min. carried out.

加圧力は900℃、  5kg/wm” 、  15〜
30分では未だ十分に固化しないが、950℃、10k
g/n”、120分では十分固化していた。
Pressure pressure is 900℃, 5kg/wm”, 15~
Although it is still not fully solidified in 30 minutes, it is hardened at 950℃ and 10K.
g/n'' and 120 minutes, it was sufficiently solidified.

以下に各実施例を表記する。Each example will be described below.

(以下 余白) 上記表において各プレス処理と素材供試材の評価を繊維
体積率と引張強さで行い、その結果を第3図に示ず。
(Hereinafter, blank space) In the table above, each press treatment and material sample were evaluated in terms of fiber volume percentage and tensile strength, and the results are not shown in FIG. 3.

図中、O印はTi−6八n −4V /SiC複合材料
In the figure, O mark indicates Ti-68n-4V/SiC composite material.

△印はTi −6Aff −2Sn −4Zr −6M
o/SiC複合材料であり、黒印は試験温度が室温の場
合、他は試験温度450℃の場合である。
△ mark is Ti -6Aff -2Sn -4Zr -6M
o/SiC composite material, the black mark indicates the case where the test temperature was room temperature, and the others indicate the case where the test temperature was 450°C.

上記表ならびに第3図の結果より試料11kL2の試験
条件を除いてTi−6AP−4V/SiC複合材料はプ
ロセス及び粉末とフォイル(箔)の差が十分に認められ
ないが、通常、箔冶金法でできないTi−6八j! −
25n −42r−6Mo/SiC複合材料は本発明方
法によって製造され、しかも前記本発明方法により製造
したTi−6へ7!−4VZSiC複合材料より室温、
450℃ともに高い値が得られている。
From the results in the above table and Figure 3, except for the test conditions of sample 11kL2, there are no sufficient differences in process and powder and foil for the Ti-6AP-4V/SiC composite material, but foil metallurgy is usually used. Ti-68j that can't be done! −
The 25n-42r-6Mo/SiC composite material was produced by the method of the present invention, and moreover, the Ti-6 composite material was produced by the method of the present invention. -4VZSiC composite material at room temperature,
High values were obtained at both 450°C.

(発明の効果) 本発明は以上のように金属粉末をバインダーを用いて所
望の厚さに成形した粉末シートと、繊維を一定間隔に配
列しバインダー固足した繊維マツトとを交互に積層し予
備成形体とした後、これを真空下でホットプレス、HI
Pあるいはホットプレスで予備固化した後、HI Pを
行って同化成形する方法であり、箔状加工が困難な合金
素材に対しても制限な(実施することが可能となり、従
来の箔冶金法に比べて合金の種類に制約を受けることな
く繊維金属複合材料を製造することができる実効を有し
、従来難加工性のため製造が困難とみられていたTi基
、Ni基複合材料を容易、かつ工業的に製造し得る顕著
な効果を有する。
(Effects of the Invention) As described above, the present invention is made by alternately laminating a powder sheet formed by molding metal powder to a desired thickness using a binder and a fiber mat having fibers arranged at regular intervals and fixed with a binder. After forming a molded product, it is hot pressed under vacuum and HI
This is a method of pre-solidifying with P or hot press, followed by HIP and assimilation forming, and it is possible to perform it without restrictions even on alloy materials that are difficult to process into foil, and it is no longer compatible with the conventional foil metallurgy method. In comparison, it is effective in manufacturing fiber-metal composite materials without being restricted by the type of alloy, and it is easy to manufacture Ti-based and Ni-based composite materials, which were previously thought to be difficult to manufacture due to their difficult workability. It has remarkable effects and can be manufactured industrially.

しかも、本発明粉末シート法によるものは、その特性に
おいて従来の箔冶金法によるものと何ら遜色なく、十分
、所期の機能特性を有すると共に、箔冶金法で得られな
い複合材料の特性においても充分、優れた性質を発揮し
、今後の各分野への広汎な利用に大きく期待される。
Moreover, the properties of the powder sheet method of the present invention are comparable to those of the conventional foil metallurgy method, and they have sufficient desired functional properties, as well as the properties of composite materials that cannot be obtained with the foil metallurgy method. It exhibits sufficient and excellent properties and is highly expected to be widely used in various fields in the future.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法におりる粉末シートのシート厚と粉
末粒径との関係を示す図表、第2図は粉末−バインダー
混合体の粘度と粉末粒径との関係を示す図表、第3図は
実施例におけるTi合金/5iC(CVI))複合材料
の繊維体積率、引張強さを示す評価図表である。
Fig. 1 is a chart showing the relationship between the sheet thickness of the powder sheet and the powder particle size according to the method of the present invention, Fig. 2 is a chart showing the relationship between the viscosity of the powder-binder mixture and the powder particle size, and Fig. 3 is a chart showing the relationship between the viscosity of the powder-binder mixture and the powder particle size. The figure is an evaluation chart showing the fiber volume fraction and tensile strength of the Ti alloy/5iC (CVI) composite material in Examples.

Claims (1)

【特許請求の範囲】 1、金属粉末をバインダーを用いて所望の厚さに成形し
た金属粉末シートと、繊維フィラメントを一定間隔に配
列し、バインダー固定した配列繊維マットとを交互に積
層し、予備成形体を得た後、該予備成形体を真空下でホ
ットプレス又は熱間静水圧プレスあるいはホットプレス
で予備固化したのち、熱間静水圧プレスを行って固化成
形することを特徴とする長繊維金属複合材料の製造方法
。 2、金属粉末シートがシート厚の70%以下の粒径の金
属粉末を用いて成形されたシートである特許請求の範囲
第1項記載の長繊維金属複合材料の製造方法。 3、金属粉末シートが粘度50,000CP〜150,
000CPの粉末−バインダー混合体により成形される
特許請求の範囲第1項又は第2項記載の長繊維金属複合
材料の製造方法。 4、金属粉末がTi合金粉末、Ni基合金粉末から選ば
れた粉末である特許請求の範囲第1項、第2項又は第3
項記載の長繊維金属複合材料の製造方法。
[Claims] 1. A metal powder sheet formed by molding metal powder to a desired thickness using a binder and an arrayed fiber mat in which fiber filaments are arranged at regular intervals and fixed with a binder are laminated alternately, and a preliminary After obtaining a molded body, the preformed body is presolidified by hot pressing, hot isostatic pressing, or hot pressing under vacuum, and then hot isostatic pressing is performed to solidify the long fiber. Method for manufacturing metal composite materials. 2. The method for producing a long fiber metal composite material according to claim 1, wherein the metal powder sheet is a sheet formed using metal powder having a particle size of 70% or less of the sheet thickness. 3. The metal powder sheet has a viscosity of 50,000CP to 150,
A method for producing a long fiber metal composite material according to claim 1 or 2, wherein the long fiber metal composite material is molded using a powder-binder mixture of 000CP. 4. Claim 1, 2 or 3, wherein the metal powder is a powder selected from Ti alloy powder and Ni-based alloy powder.
A method for producing a long fiber metal composite material as described in .
JP61065986A 1986-03-26 1986-03-26 Method for producing long-fiber metal composite material Expired - Lifetime JPH0627020B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61065986A JPH0627020B2 (en) 1986-03-26 1986-03-26 Method for producing long-fiber metal composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61065986A JPH0627020B2 (en) 1986-03-26 1986-03-26 Method for producing long-fiber metal composite material

Publications (2)

Publication Number Publication Date
JPS62222846A true JPS62222846A (en) 1987-09-30
JPH0627020B2 JPH0627020B2 (en) 1994-04-13

Family

ID=13302843

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61065986A Expired - Lifetime JPH0627020B2 (en) 1986-03-26 1986-03-26 Method for producing long-fiber metal composite material

Country Status (1)

Country Link
JP (1) JPH0627020B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015008572A1 (en) * 2013-07-19 2017-03-02 国立大学法人 名古屋工業大学 Metal polishing pad and manufacturing method thereof
CN111734718A (en) * 2020-07-30 2020-10-02 西南交通大学 Continuous fiber reinforced composite material connecting structure and preparation method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015008572A1 (en) * 2013-07-19 2017-03-02 国立大学法人 名古屋工業大学 Metal polishing pad and manufacturing method thereof
CN111734718A (en) * 2020-07-30 2020-10-02 西南交通大学 Continuous fiber reinforced composite material connecting structure and preparation method thereof

Also Published As

Publication number Publication date
JPH0627020B2 (en) 1994-04-13

Similar Documents

Publication Publication Date Title
US4499156A (en) Titanium metal-matrix composites
US4809903A (en) Method to produce metal matrix composite articles from rich metastable-beta titanium alloys
JPH04501137A (en) Titanium diboride/titanium alloy metal matrix/microcomposite fired products
JPH0153324B2 (en)
JPH05318085A (en) Method for incorporating hard wear resisting surface layer in metal article and article produced by said method
US3840350A (en) Filament-reinforced composite material and process therefor
JP2010515829A (en) Ceramic composite molded body and / or powder metallurgy composite molded body and method for producing the same
US5030277A (en) Method and titanium aluminide matrix composite
JP2007521389A (en) Method for sintering aluminum material and aluminum alloy material
JPH0388785A (en) Ceramic preform of high mechanical strength, its manufacture and metal-matrix complex obtained from said ceramic preform
JPS62222846A (en) Manufacture of lint metallic composite material
EP0540214B1 (en) Process for the preparation of fibre reinforced metal matrix composites and novel preforms therefor
JPH02259028A (en) Manufacture of molding of electronic compounds having various compositions
JP3618106B2 (en) Composite material and method for producing the same
JP2704580B2 (en) Manufacturing method of metal fiber sintered sheet
JP3370800B2 (en) Manufacturing method of composite material
JPS63223104A (en) Production of sintered hard alloy product
JPS5893834A (en) Manufacture of inorganic fiber reinforced metallic composite material
JP3059958B2 (en) Manufacturing method of sintered alloy member
JP2002275505A (en) Method for producing soft magnetic compact and soft magnetic compact
JP2732256B2 (en) Ceramic sintered body and method for producing the same
JPH04224601A (en) Manufacture of titanium-based composite material
JPS6357734A (en) Fiber reinforced metal and its production
JP2973390B2 (en) Method for producing metal in which fine particles of metal or metal oxide are dispersed
JP2024030381A (en) sputtering target material

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term