JPS62222636A - Exposure unit and exposure method - Google Patents
Exposure unit and exposure methodInfo
- Publication number
- JPS62222636A JPS62222636A JP61067584A JP6758486A JPS62222636A JP S62222636 A JPS62222636 A JP S62222636A JP 61067584 A JP61067584 A JP 61067584A JP 6758486 A JP6758486 A JP 6758486A JP S62222636 A JPS62222636 A JP S62222636A
- Authority
- JP
- Japan
- Prior art keywords
- light
- photoresist
- wafer
- exposure
- mark
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims description 3
- 230000003287 optical effect Effects 0.000 claims description 22
- 108091008695 photoreceptors Proteins 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 7
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 30
- XKRFYHLGVUSROY-UHFFFAOYSA-N argon Substances [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 abstract description 6
- 229910052786 argon Inorganic materials 0.000 abstract description 6
- 230000001678 irradiating effect Effects 0.000 abstract description 4
- 230000001105 regulatory effect Effects 0.000 abstract 3
- 239000000758 substrate Substances 0.000 description 20
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 4
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Length Measuring Devices By Optical Means (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は、位置合わせを行なってから感光体を露光する
ための露光装置、特に半導体露光装置に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION [Technical Field to which the Invention Pertains] The present invention relates to an exposure apparatus for exposing a photoreceptor after alignment, and particularly to a semiconductor exposure apparatus.
(従来技術〕
従来この種の露光装置では、感光体を塗布しである、例
えば半導体ウェハ上面の段差構造をした位置合わせ用マ
ークに位置合わせ用の光をあて、この時の回折、散乱光
を受光し、それから得られる位置情報をもとに位置合わ
せを行っていた。ところが、位2合わせ用マークの上に
塗布された感光体層、例えは感光樹脂(フォトレジスト
)層が、位置合わせ用マークに関して左右非対称になっ
ていると、このマークに光をあてた時に回折散乱光の方
向も左右異なって偏向されて位置検出に誤差をおよばず
おそれかあった。又、位置合わせ時にこのマークにあて
る位置合わせ月光か露光用の光とほぼ同し波長であった
場合、このマークに位U合わせ月光をあてても感光樹脂
に光が吸収されてしまって位置検出用の回折散乱光の光
量が不足するという問題もあった。(Prior art) Conventionally, in this type of exposure apparatus, alignment light is applied to alignment marks with a step structure on the top surface of a semiconductor wafer coated with a photoconductor, and the diffraction and scattered light at this time is emitted. The system receives light and performs alignment based on the positional information obtained from it.However, the photoreceptor layer, for example, a photosensitive resin (photoresist) layer coated on the alignment mark, If the mark is asymmetrical, when light is applied to this mark, the direction of the diffracted and scattered light will be deflected in different directions on the left and right, which could lead to errors in position detection.Also, when aligning the mark, If the alignment moonlight to be applied has almost the same wavelength as the exposure light, even if the alignment moonlight is applied to this mark, the light will be absorbed by the photosensitive resin and the amount of diffracted and scattered light for position detection will decrease. There was also the problem of shortages.
(発明の目的)
本発明の目的は前述したような、露光装置における位置
合わせ時の感光樹脂の悪影響を除去することにある。(Object of the Invention) An object of the present invention is to eliminate the adverse effects of the photosensitive resin during alignment in an exposure apparatus, as described above.
〔実施例)
1はアルゴンイオンレーザ光源、2は5HG(5eco
nd llarmanics Generator=第
2高調派発生素子)、3はポリゴンミラー、4はf・θ
レンズ、5はダハプリズム、6−1.6−2は1扁向ビ
ームスプリツタ、7−1.7−2は対物レンズ、8は可
倒ミラー、9−1.9−2はストッパ、10−1.10
−2はフォトディテクタ、11はKrFエキシマレーザ
光源、12は開口部材、13はリレーレンズ、14は基
板、15は投影光学系、16はウェハ、+4a−1,1
4a −2,16a−1,16a−2は位置合わせマー
ク、17は光量調整機構である。波長496.5mm近
傍で発振するアルゴンイオンレーザ光源1より出射した
ビームは5HG2を通って波長が半分になり約248.
2mm近傍波長の光となる。このレーザビームは回転す
るポリゴンミラー3及びf・θレンズ4を経由し、両者
の作用によってダハプリズム5で時間的に左右に振り分
けられた後、偏光ビームスプリッタ6−1.6−2と対
物レンズ7−1.7−2を介して、基板14#看、さら
に投影光学系15を介して粗位置合わせされそ載置され
ているウェハ16上を走査される。この時可倒ミラー8
は図中の破線の位置にある。基板14及びウェハ16上
の1チツプ領域ごとにはそれぞれ段差構造をしだ位置合
わせマーク14a、+6aがあり、段差部における散乱
光だけが、ストッパー9−1.9−2を通過してフォト
ディテクタ10−1.10−2に入射することによって
、マークの位置を検知し、図示されていないコンピュー
タの制御による基板とウェハの相対位置移動により自動
位置合わせな行なう。[Example] 1 is an argon ion laser light source, 2 is a 5HG (5eco
nd llarmanics Generator = second harmonic generation element), 3 is a polygon mirror, 4 is f・θ
Lens, 5 is a roof prism, 6-1.6-2 is a 1-plane beam splitter, 7-1.7-2 is an objective lens, 8 is a foldable mirror, 9-1.9-2 is a stopper, 10- 1.10
-2 is a photodetector, 11 is a KrF excimer laser light source, 12 is an aperture member, 13 is a relay lens, 14 is a substrate, 15 is a projection optical system, 16 is a wafer, +4a-1, 1
4a-2, 16a-1, 16a-2 are alignment marks, and 17 is a light amount adjustment mechanism. The beam emitted from the argon ion laser light source 1, which oscillates at a wavelength of around 496.5 mm, passes through 5HG2 and has a wavelength halved to approximately 248.5 mm.
The light has a wavelength around 2 mm. This laser beam passes through a rotating polygon mirror 3 and an f/θ lens 4, and is temporally distributed to the left and right by a roof prism 5 by the action of both, and then is sent to a polarizing beam splitter 6-1, 6-2 and an objective lens 7. -1.7-2, the substrate 14# is scanned, and then the wafer 16, which is roughly aligned and placed via the projection optical system 15, is scanned. At this time, the foldable mirror 8
is located at the position of the broken line in the figure. Each chip area on the substrate 14 and wafer 16 has a positioning mark 14a, +6a with a stepped structure, and only the scattered light at the stepped portion passes through the stopper 9-1, 9-2 and reaches the photodetector 10. -1.10-2, the position of the mark is detected, and automatic alignment is performed by moving the relative positions of the substrate and wafer under the control of a computer (not shown).
上述したこの自動位置合ねせを行なう前に、可停
倒ミラー8を図中の実線位置にしておき、感光艙(以下
フォトレジストで総称する)除去用のKrFエキシマレ
ーザ光源11(波長248.5mm近傍)からの光がウ
ェハ16を照射するようにする。エキシマレーザ光源1
1からの光は、開口部材12、切換式のNDフィルタ等
である光量調整機構17、リレーレンズ13などを介し
て可倒ミラー8を経てダハプリズム5に入射し左右に振
り分けられ、位置合わせ用マークを照射する。開口部材
12の構造の1例を第2図に示す。18−1.18−2
は開口12上の開口部である。このように間口部材12
にダハプリズムで分けられたビームそれぞれにために2
つの開口部が設けられている。ここで開口12とウェハ
16の上面とは結像関係となっている。このためウェハ
上面では開口部を位置合わせマーク16a−1,16a
−2上に結像させて位置合わせマーク及びその周辺の
みにエキシマレーザ光を照射できる。位置合わせ用光学
系を一部エキシマレーザ光照射用にも使っているので装
置を小型化できる。開口部材12上の間口部+8−1.
18−2の大ぎさはウェハ16上の開口部の像領域が位
置合わせマーク16a−1,16a−2を十分含められ
るように大きくすべとであるが、これからパターン等を
焼付ける部分を含めないように大きさを制限する事が望
ましい。開口部像を粗位置合わせ状態でウェハ上に作る
時常に位置合わせマーク+6a−1゜16a−2を含む
よう開口部の位置と大きさを調整しておく。エキシマレ
ーザ光源11の照射光量はレジスト毎に光量調整機構1
7によって調整する。焼付露光用光として用いられるエ
キシマレーザ光のような短波長電磁波をPMMAのよう
なフォトレジストに高照射パワー密度で照射するとフォ
トレジストが除去される効果がある。そこで光量調整機
構17により、エキシマレーザ光の光量を適当な大ぎさ
に調整し、前述の光学系を経由してウェハ16−「にエ
キシマレーザ光τ原11で露光すればウェハ16上面の
位置合わせマーク16a−1,+6a−2とその周囲の
上に塗布されたフォトレジストを除去できる。この為こ
の後可倒レンズ8を図中の破線の位置におきアルゴンイ
オンレーザ光走査を行っても、ウェハ16上面の位置合
わせマーク付近にフォトレジストが除去されているので
前述したフォトレジスト層の不均一による位置検出誤差
やフォトレジストの光吸収による散乱光不足の問題がな
い。エキシマレーザ光照射域はアルゴンイオンレーザ光
の走査領域とほぼ同じ位置にあるので本実施例のように
位置合わせ用光学系とエキシマレーザ等によるレジスト
除去用光学系を共通にでき、装置の簡素化が可能である
。可倒ミラー8はハーフミラ−に置き換えてもよい。本
実施例ではアライメント用光(約248.2mm)とフ
才l・レジスト除去用光(約248.5+nm)に似た
波長のものを用いているので、レジスト除去用照射の際
、基板上のフォトレジスト除去用光照射領域に位置合わ
せマーク14a−1,14a−2が含まれていると、位
置合わせマーク+4a−1,14a−2の投影像がウェ
ハ16上にでき、その部分のフォトレジストが除去され
ず、この残ったフォトレジスト部分が位置合わせ時に位
置情報のm犬なノイズ成分となりつる。そこでフォトレ
ジスト除去用光照射の際には位置合わせマーク14a−
1,14a−2が基板上のフォトレジスト除去用光照射
領域にこないように基板14をずらすか、完全に取り除
いた状態にし、位置合わせ時にこの光学系と位置合わせ
マーク14a−1,14a−2,16a−1゜16a−
2による位置合わせが可能な位置へ基板14を移動する
。この間の基板の移動は図示されない基板移動機構によ
り行なわれる。基板位置の測定にはXY干渉計を用いれ
ばレジスト除去光照射後に位置合わせを行なうのに充分
な精度の基板移動制御ができる。基板上の位置合わせマ
ーク+4a−1,14a−2の投影像をフォトレジスト
除去時にウェハ上に生じさせない方法としてはこの他の
エキシマレーザ光の波長を位置合わせ月光のものとは変
えて基板上の位置合わせマーク14a−1,14a−2
をウェハ16上に結像させないようにディフォーカスす
る方法もある。この場合レジスト除去用光学系、例えば
リレーレンズ13を、該波長を変えたエキシマレーザ光
で開口部18の像を位置合わせ用光学系の一部を経由し
てウェハ16上に結像するように調節する。Before performing this automatic positioning described above, the collapsible mirror 8 is placed at the solid line position in the figure, and the KrF excimer laser light source 11 (wavelength 248. The wafer 16 is irradiated with light from a distance of about 5 mm). Excimer laser light source 1
The light from 1 passes through an aperture member 12, a light amount adjustment mechanism 17 such as a switchable ND filter, a relay lens 13, etc., passes through a collapsible mirror 8, enters a roof prism 5, and is distributed to the left and right, and is divided into alignment marks. irradiate. An example of the structure of the opening member 12 is shown in FIG. 18-1.18-2
is the opening above the opening 12. In this way, the frontage member 12
The beams are divided by a roof prism into two beams each.
Two openings are provided. Here, the opening 12 and the upper surface of the wafer 16 are in an imaging relationship. Therefore, on the upper surface of the wafer, the openings are aligned with the alignment marks 16a-1 and 16a.
By forming an image on -2, it is possible to irradiate only the alignment mark and its surroundings with excimer laser light. Since part of the positioning optical system is also used for excimer laser beam irradiation, the device can be made smaller. Frontage portion on opening member 12 +8-1.
The size of 18-2 should be large enough so that the image area of the opening on the wafer 16 can sufficiently include the alignment marks 16a-1 and 16a-2, but does not include the part where the pattern etc. will be printed. It is desirable to limit the size. When creating an aperture image on a wafer in a roughly aligned state, the position and size of the aperture are adjusted so as to always include the alignment mark +6a-1°16a-2. The amount of light irradiated by the excimer laser light source 11 is adjusted by the light amount adjustment mechanism 1 for each resist.
Adjust by 7. Irradiating a photoresist such as PMMA with short-wavelength electromagnetic waves such as excimer laser light used as light for printing exposure at high irradiation power density has the effect of removing the photoresist. Therefore, the light intensity of the excimer laser beam is adjusted to an appropriate level by the light intensity adjustment mechanism 17, and the wafer 16-' is exposed to the excimer laser beam τ source 11 via the above-mentioned optical system, thereby aligning the upper surface of the wafer 16. The photoresist coated on the marks 16a-1, +6a-2 and their surroundings can be removed.For this reason, even if the collapsible lens 8 is then placed at the position indicated by the broken line in the figure and argon ion laser beam scanning is performed, Since the photoresist is removed near the alignment mark on the top surface of the wafer 16, there is no problem of position detection errors due to non-uniformity of the photoresist layer or lack of scattered light due to light absorption by the photoresist as described above.The excimer laser beam irradiation area is Since it is located at almost the same position as the scanning area of the argon ion laser beam, the alignment optical system and the resist removal optical system using an excimer laser or the like can be used in common, as in this embodiment, and the apparatus can be simplified. Possible. The tilting mirror 8 may be replaced with a half mirror.In this embodiment, light with a wavelength similar to that of alignment light (about 248.2 mm) and resist removal light (about 248.5+nm) is used. Therefore, during resist removal irradiation, if the alignment marks 14a-1 and 14a-2 are included in the photoresist removal light irradiation area on the substrate, the projected images of alignment marks +4a-1 and 14a-2 is formed on the wafer 16, and the photoresist in that part is not removed, and this remaining photoresist part becomes a noise component of position information during alignment.Therefore, when irradiating light for photoresist removal, the position Alignment mark 14a-
The substrate 14 is shifted or completely removed so that the optical system and the alignment marks 14a-1 and 14a-2 do not come into the light irradiation area for photoresist removal on the substrate. , 16a-1゜16a-
The substrate 14 is moved to a position where alignment according to 2 is possible. During this time, the substrate is moved by a substrate moving mechanism (not shown). If an XY interferometer is used to measure the substrate position, it is possible to control substrate movement with sufficient accuracy for positioning after resist removal light irradiation. Another way to prevent the projection images of the alignment marks +4a-1 and 14a-2 on the substrate from occurring on the wafer when removing the photoresist is to change the wavelength of the excimer laser light from that of the alignment moonlight and to create a projected image of the alignment marks +4a-1 and 14a-2 on the substrate. Positioning marks 14a-1, 14a-2
There is also a method of defocusing so as not to form an image on the wafer 16. In this case, the resist removal optical system, for example, the relay lens 13, is configured to use excimer laser light with a different wavelength to form an image of the aperture 18 on the wafer 16 via a part of the alignment optical system. Adjust.
フォトレジスト除去用光照射時にフォトディテクタ10
−1.10−2にシャッタをつけたり検出光学系の一部
を遮断したりして散乱光がフォトディテクタをいためな
いようにしてもよい。Photodetector 10 when irradiating light for photoresist removal
-1.10-2 may be provided with a shutter or a portion of the detection optical system may be blocked to prevent scattered light from damaging the photodetector.
第3図は本発明を適用した露光装置の第2の実施例の位
置合わせ用光学系の該略図である。図中19は可151
ミラーであり、可倒ミラー8,19は連動して実線の位
置及び破線の位置になる。FIG. 3 is a schematic diagram of a positioning optical system of a second embodiment of an exposure apparatus to which the present invention is applied. 19 in the diagram is acceptable 151
The foldable mirrors 8 and 19 are interlocked to take the position shown by the solid line and the position shown by the broken line.
第2の実施例の第1の実施例との差は基板14上の位置
合わせマーク+4a−1,14a−2の透過光ではなく
反射光を用いて基板14とウェハ16の位置合わせを行
なっている点である。第3ト
図のように位置合わせ円売及びフォトレジスト除去時光
は基板14を透過せず、迂回してウェハ16上に照射さ
れる。位置合わせを行う際、可倒ミラー8,19は図中
破線の位置にあり、位置合わせ円売(アライメント光)
は基板14を迂回した後、ミラー19によって基板上の
位置合わせマーク14a−1,14a’−2付近に入射
し、その反射光がウェハ上の位置合わせマーク16a−
1,16a−2付近に、入射する。この時の位置合わせ
マーク14a、16aの段差部における散乱光だけがフ
ォトディテクター0−1.10−2に入射するのは第1
の実施例と同じである。The difference between the second embodiment and the first embodiment is that the substrate 14 and the wafer 16 are aligned using reflected light rather than transmitted light from alignment marks +4a-1 and 14a-2 on the substrate 14. The point is that there is. As shown in FIG. 3, during alignment and photoresist removal, the light does not pass through the substrate 14 and is irradiated onto the wafer 16 through a detour. When performing alignment, the collapsible mirrors 8 and 19 are at the position indicated by the broken line in the figure, and the alignment light (alignment light)
After bypassing the substrate 14, the light is incident near the alignment marks 14a-1 and 14a'-2 on the substrate by the mirror 19, and the reflected light hits the alignment marks 16a-1 and 14a'-2 on the wafer.
It is incident near 1, 16a-2. At this time, only the scattered light at the stepped portions of the alignment marks 14a and 16a enters the photodetector 0-1.10-2.
This is the same as the embodiment.
この位置合わせを行なう前に、可倒レンズ8と19を図
中の実線の位置におき、フォトレジスト除去用のKrF
エキシマレーザ光源11からの光がウェハ16を照射す
るようにする。可倒ミラー19が実線位置にあればフォ
トレジスト除去用光は位置合わせ用マーク14a−1,
14a−2付近を経由する事がないので、ウェハ16上
に位2合わせ用マーク+4a−1,14a−2の投影像
はできず、従ってフォトレジスト除去用光照射領域にフ
ォトレジストの残る部分が生じない。Before performing this positioning, place the collapsible lenses 8 and 19 at the positions indicated by the solid lines in the figure, and use KrF for photoresist removal.
The light from the excimer laser light source 11 is made to irradiate the wafer 16. If the collapsible mirror 19 is at the solid line position, the photoresist removal light will be directed to the alignment marks 14a-1,
14a-2, the projected image of alignment marks +4a-1 and 14a-2 cannot be formed on the wafer 16, and therefore, the remaining portion of the photoresist is left in the photoresist removal light irradiation area. Does not occur.
第1、第2の実施例では位置合わせ用光学系とフォトレ
ジスト除去用光学系を1部併用したが、両者を完全に別
々に設けてもよい。その際は第4図に示すようにウェハ
16の位置合わせマーク上に可倒ミラー20を設けてフ
ォトレジスト除去用光をウェハ16に照射するように構
成してもよい。また、最近は超LSIの微細化に伴い、
遠紫外域で高出力のエキシマレーザを転写露光用に使用
することが各所で研究されているが、その場合第1図、
第3図中のエキシマレーザ光源11を基板パターン焼付
露光用光源とし、焼付露光用光学系中に可倒ミラーを設
け、フォトレジスト除去時に、可倒ミラーを作用させて
エキシマレーザ光ヲ前述のフォトレジスト除去用光学系
に導入するようにしてもよく、この場合、経済性、スペ
ースファクター等の点で尚好適といえる。第1図、第3
図では木発明をレンズ縮小投影露光装置に適用した場合
を示したが、木発明が他のミラー投影露光装置、接1’
i!l!露光装置、又、光露光装置以外のX線露光装置
、EB露光装置等にも適用できるのは明白である。In the first and second embodiments, a part of the alignment optical system and a part of the photoresist removal optical system are used together, but the two may be provided completely separately. In this case, as shown in FIG. 4, a collapsible mirror 20 may be provided on the alignment mark of the wafer 16 to irradiate the wafer 16 with photoresist removal light. In addition, with the recent miniaturization of ultra-LSI,
Various places are researching the use of high-output excimer lasers in the far ultraviolet region for transfer exposure;
The excimer laser light source 11 in FIG. 3 is used as a light source for substrate pattern baking exposure, and a collapsible mirror is provided in the baking exposure optical system. It may be introduced into an optical system for resist removal, and in this case, it is more preferable in terms of economy, space factor, etc. Figures 1 and 3
The figure shows a case in which the invention is applied to a lens reduction projection exposure apparatus, but the invention can also be applied to other mirror projection exposure apparatuses, contact 1'
i! l! It is obvious that the present invention can be applied to exposure apparatuses, and also to X-ray exposure apparatuses, EB exposure apparatuses, etc. other than optical exposure apparatuses.
本実施例では位置合わせマーク付近のフォトレジストを
除去するのにフォトレジスト除去用光としてエキシマレ
ーザ光を用いたがこの光は他の短波長電磁波に置き換え
ても同様の効果が選られる。又電子線、イオンビームを
照射してもよく、他のエツチング手段を用いてフォトレ
ジストを除去するようにしてもかわまない。In this embodiment, excimer laser light was used as the photoresist removal light to remove the photoresist near the alignment mark, but the same effect can be obtained even if this light is replaced with other short wavelength electromagnetic waves. Further, the photoresist may be removed by irradiation with an electron beam or an ion beam, or by using other etching means.
以上、本発明を用いる事により位置合わせ時に光を位置
合わせ用マークに照射しても、マークのフォトレジスト
による位置検出誤差は生じず、位置検出用の回折散乱光
の光量も下がらず、正確な位置合わせ状態で露光する事
が可能になった。As described above, by using the present invention, even if light is irradiated onto the alignment mark during alignment, position detection errors due to the photoresist of the mark will not occur, the amount of diffracted scattered light for position detection will not decrease, and accurate It is now possible to perform exposure while positioning.
第1図は本発明の一実施例を示す露光装置の位置合わせ
光学系の該略図、第2図は開口部材12の形状を示す図
、第3図は本発明の他の実施例を示す露光装置の位置合
わせ光学系の該略図、第4図は本発明の更に他の実施例
を示す露光装置の位置合わせ光学系の部分語略図である
。
図中;
l:アルゴンイオンレーザ光源
3:ポリゴンミラー
8:可倒ミラー
10−1.10−2:フォトディアクタ+1:KrFエ
キシマレーザ光源
12:開口部材
14:レヂクル
14a−1,14a−2ニ
レチクル位置合わせ用マーク
15:投影光学系
16:ウェハ
16a−1,16a−2:
ウエハ上位置合わせ用マーク
である。FIG. 1 is a schematic diagram of a positioning optical system of an exposure apparatus showing one embodiment of the present invention, FIG. 2 is a diagram showing the shape of an aperture member 12, and FIG. 3 is an exposure diagram showing another embodiment of the present invention. FIG. 4 is a partial schematic diagram of the alignment optical system of an exposure apparatus showing still another embodiment of the present invention. In the figure: l: Argon ion laser light source 3: Polygon mirror 8: Foldable mirror 10-1, 10-2: Photodiactor +1: KrF excimer laser light source 12: Aperture member 14: Reticule 14a-1, 14a-2 Ni reticle Alignment mark 15: Projection optical system 16: Wafer 16a-1, 16a-2: On-wafer alignment mark.
Claims (7)
定領域を除去する光照射手段を有する事を特徴とする露
光装置。(1) An exposure device for exposing a photoreceptor, characterized by having a light irradiation means for removing a specific area of the photoreceptor.
物体上にあり、前記除去される感光体は該マーク及びそ
の周辺に存在する事を特徴とする特許請求の範囲第1項
に記載の露光装置。(2) The photoreceptor is located on an object having a mark for detecting its position, and the photoreceptor to be removed is present in and around the mark. exposure equipment.
する特許請求の範囲第2項に記載の露光装置。(3) The exposure apparatus according to claim 2, wherein the light irradiation means includes a far ultraviolet light source.
特徴とする特許請求の範囲第3項に記載の露光装置。(4) The exposure apparatus according to claim 3, wherein the far-ultraviolet light source is an excimer laser light source.
光する装置で、前記マーク及びその周辺に光を照射し該
マークからの光信号を受光する位置合わせ用光学系、照
射することで前記感光体を除去できる光を発する光源、
前記光源からの光を前記位置合わせ用光学系の一部ない
し全部に導入する手段、を有する事を特徴とする露光装
置。(5) A device that exposes an object having a photoreceptor and a mark for position detection, which includes an optical system for positioning that irradiates the mark and its surroundings with light and receives an optical signal from the mark; a light source that emits light capable of removing the photoreceptor;
An exposure apparatus comprising means for introducing light from the light source into part or all of the alignment optical system.
許請求の範囲第5項に記載の露光装置。(6) The exposure apparatus according to claim 5, wherein the light source also serves as an exposure light source.
近の感光体を除去し、前記マークを用いて前記物体の位
置合わせを行って、前記物体を露光する事を特徴とする
露光方法。(7) An exposure method characterized by removing a photoreceptor near an alignment mark on an object having a photoreceptor, aligning the object using the mark, and exposing the object.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61067584A JPS62222636A (en) | 1986-03-25 | 1986-03-25 | Exposure unit and exposure method |
US07/795,258 US5231471A (en) | 1986-03-25 | 1991-11-19 | Alignment and exposure apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61067584A JPS62222636A (en) | 1986-03-25 | 1986-03-25 | Exposure unit and exposure method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62222636A true JPS62222636A (en) | 1987-09-30 |
Family
ID=13349111
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61067584A Pending JPS62222636A (en) | 1986-03-25 | 1986-03-25 | Exposure unit and exposure method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62222636A (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5218175A (en) * | 1975-08-01 | 1977-02-10 | Hitachi Ltd | Circuit pattern formation method and its device |
JPS62190839A (en) * | 1986-02-18 | 1987-08-21 | Fujitsu Ltd | Exposing method |
-
1986
- 1986-03-25 JP JP61067584A patent/JPS62222636A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5218175A (en) * | 1975-08-01 | 1977-02-10 | Hitachi Ltd | Circuit pattern formation method and its device |
JPS62190839A (en) * | 1986-02-18 | 1987-08-21 | Fujitsu Ltd | Exposing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5229872A (en) | Exposure device including an electrically aligned electronic mask for micropatterning | |
US5160957A (en) | Alignment and exposure apparatus | |
US5148214A (en) | Alignment and exposure apparatus | |
US4952060A (en) | Alignment method and a projection exposure apparatus using the same | |
US5262822A (en) | Exposure method and apparatus | |
US5231471A (en) | Alignment and exposure apparatus | |
JPH09199406A (en) | Position detecting device and manufacture of semiconductor element using thereof | |
JP3466893B2 (en) | Positioning apparatus and projection exposure apparatus using the same | |
JP3428705B2 (en) | Position detecting device and method of manufacturing semiconductor device using the same | |
US6163368A (en) | Method and apparatus for performing a double shift print on a substrate | |
KR0179297B1 (en) | Semiconductor exposure equipment | |
JPS62222636A (en) | Exposure unit and exposure method | |
JPS5990929A (en) | Focusing method of projected exposing apparatus | |
JPH04342111A (en) | Method and apparatus for projection exposure | |
US4682037A (en) | Projection exposure apparatus having an alignment light of a wavelength other than that of the exposure light | |
KR0143149B1 (en) | How to focus on photo plate | |
JP3139023B2 (en) | Electron beam apparatus and focus adjustment method for electron beam apparatus | |
JPH0777188B2 (en) | Processing equipment | |
JP2626076B2 (en) | Position detection device | |
JPS63220519A (en) | Aligner | |
JP2637412B2 (en) | Positioning method | |
JPH0744138B2 (en) | Alignment device | |
JPH06325994A (en) | Pattern forming method, pattern forming device and mask | |
JPH05198496A (en) | Device and method for removing thin film | |
JPS6340316A (en) | Device for manufacturing semiconductor |