JPS6218630B2 - - Google Patents
Info
- Publication number
- JPS6218630B2 JPS6218630B2 JP13002878A JP13002878A JPS6218630B2 JP S6218630 B2 JPS6218630 B2 JP S6218630B2 JP 13002878 A JP13002878 A JP 13002878A JP 13002878 A JP13002878 A JP 13002878A JP S6218630 B2 JPS6218630 B2 JP S6218630B2
- Authority
- JP
- Japan
- Prior art keywords
- calcium
- magnesium
- alkali metal
- ions
- metal chloride
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 239000013522 chelant Substances 0.000 claims description 17
- 238000000034 method Methods 0.000 claims description 16
- 239000012267 brine Substances 0.000 claims description 15
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims description 15
- 239000007787 solid Substances 0.000 claims description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 13
- 150000003839 salts Chemical class 0.000 claims description 11
- 238000005868 electrolysis reaction Methods 0.000 claims description 10
- 229910001424 calcium ion Inorganic materials 0.000 claims description 9
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 claims description 8
- 239000003014 ion exchange membrane Substances 0.000 claims description 8
- 229910001425 magnesium ion Inorganic materials 0.000 claims description 8
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 claims description 7
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 claims 3
- 239000003456 ion exchange resin Substances 0.000 claims 3
- 229920003303 ion-exchange polymer Polymers 0.000 claims 3
- 229910001514 alkali metal chloride Inorganic materials 0.000 description 22
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 18
- 239000011575 calcium Substances 0.000 description 18
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 17
- 239000011777 magnesium Substances 0.000 description 17
- 229910052749 magnesium Inorganic materials 0.000 description 17
- 229910052791 calcium Inorganic materials 0.000 description 16
- 229920005989 resin Polymers 0.000 description 14
- 239000011347 resin Substances 0.000 description 14
- 239000012528 membrane Substances 0.000 description 11
- 238000005341 cation exchange Methods 0.000 description 9
- 150000003841 chloride salts Chemical class 0.000 description 9
- 239000000243 solution Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000003518 caustics Substances 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000004576 sand Substances 0.000 description 4
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229910001413 alkali metal ion Inorganic materials 0.000 description 3
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 description 3
- 239000000920 calcium hydroxide Substances 0.000 description 3
- 235000011116 calcium hydroxide Nutrition 0.000 description 3
- 229910001861 calcium hydroxide Inorganic materials 0.000 description 3
- -1 hydroxide ions Chemical class 0.000 description 3
- 150000002500 ions Chemical class 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 229910000497 Amalgam Inorganic materials 0.000 description 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000012670 alkaline solution Substances 0.000 description 2
- 239000008151 electrolyte solution Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 2
- 239000000347 magnesium hydroxide Substances 0.000 description 2
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 2
- 239000012466 permeate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 239000012266 salt solution Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- KZBUYRJDOAKODT-UHFFFAOYSA-N Chlorine Chemical compound ClCl KZBUYRJDOAKODT-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 229910000019 calcium carbonate Inorganic materials 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229920001429 chelating resin Polymers 0.000 description 1
- 238000005352 clarification Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 239000012527 feed solution Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 235000011121 sodium hydroxide Nutrition 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Landscapes
- Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
Description
【発明の詳細な説明】
本発明は塩化アルカリ金属塩の電解に使用され
る塩水の精製方法に関する。
更に詳しくは、塩化アルカリ金属塩のイオン交
換膜法電解に使用される塩水中のカルシウム及び
マグネシウムイオンの合量を低減せしめることを
特徴とする塩水の精製方法に関する。
一般に塩化アルカリ金属塩を原料として用いる
通常の電解工業において、その中に含まれる不純
物、例えばカルシウム、マグネシウム等は電解液
として供される前にあらかじめ除去精製されるこ
とは知られている。
従来公知の工業的に実施されている塩化アルカ
リ金属塩水溶液の精製方法としては、苛性アルカ
リ又は消石灰と炭酸アルカリとを加えて処理する
ことにより、カルシウムを炭酸カルシウム、マグ
ネシウムを水酸化マグネシウムとして沈澱除去す
る方法が広く採用されている。この方法は塩化ア
ルカリ金属塩水の不純物が固体沈澱として沈澱分
離することであるが、沈降分離による分離には限
度があり、清澄液中への固形分の混入は完全には
避けられず、一般には沈降分離後の清澄液は更に
濾過された後、電解液として電解槽に供給されて
いる。
しかし乍ら、以上述べた沈降分離に加え、濾過
操作を行つて得た精製塩化アルカリ金属塩水中に
は、なおカルシウム及びマグネシウムが合量で2
〜20ppmの濃度で含有されている。
又、従来の水銀法及び隔膜法による塩化アルカ
リ金属塩水の電解では、これ等の濃度範囲で含有
するカルシウム、マグネシウム及び固形分は特に
問題となる濃度ではなかつた。その理由は水銀法
にあつては、カルシウムイオンは水銀電極で放電
し、アマルガムとなり、このアマルガムは解汞さ
れて放出されてしまうので、電流効率を若干低く
するだけで、電解槽の運転に支障をきたすもので
はなかつた。
一方、アスベスト隔膜法にあつては、隔膜が多
孔質であり、その微細孔を通して陽極液である塩
化アルカリ金属塩水が全量陰極側に圧送されるの
で、隔膜内部に水酸化カルシウム及びマグネシウ
ムは沈着し難いので特に問題とはならなかつた。
これらに対し、イオン交換膜による塩化アルカ
リ金属塩水の電解においては、従来の精製法で精
製された塩水を用いた場合、電解電圧が上昇する
と共に、電流効率が著しく低下及びイオン交換膜
の破損の現象がみられる。
ここで言うイオン交換膜による塩化アルカリ金
属塩水の電解方法とは、陽極と陰極の間を陽イオ
ン交換膜で陽極室と陰極室とに区分し、陽極室に
は塩化アルカリ金属塩水溶液を、陰極室には苛性
アルカリ水溶液を満たし、両極間に電圧をかける
ことにより陽極室から塩素ガスを、陰極室からは
水素ガスおよび生成した苛性アルカリ溶液を取得
する電解法である。
このイオン交換膜による塩化アルカリ金属塩水
の電解方法では、塩化アルカリ金属塩水中のアル
カリ金属イオンが陽イオン交換膜を電気的に透過
して陰極室に運ばれるのであるが、その際、塩化
アルカリ金属塩水中に含まれるアルカリ金属イオ
ン以外の陽イオンも陽イオン交換膜を透過する。
塩化アルカリ金属塩水で満たされた陽極室と、
苛性アルカリ水溶液で満たされた陰極室を区分す
る陽イオン交換膜の内部は、外部の両溶液との平
衡状態に有り、かなり高濃度の水酸イオンを有す
るため、アルカリ金属イオン等は容易に透過する
が、カルシウムイオン及び/又はマグネシウムイ
オンのように水酸イオンと溶解度の小さい塩を作
るイオン種は透過の際、イオン交換膜内部の水酸
イオンと難溶性塩を形成し、膜内に微細な沈澱を
生成し、それに起因して経時的に電解電圧の上昇
や、電流効率の低下の現象がみられる。特に、電
流効率の低下の現象が顕著であり、そのまゝ運転
を継続すると、イオン交換膜内部の組織が破壊さ
れて膜が破損することもある。
本発明者等はこれ等の問題を解決すべく種々研
究、検討を重ねた結果、陽イオン交換膜法電解槽
に供給する塩化アルカリ金属塩水中のカルシウム
及び/又はマグネシウムの合量を0.08ppm以下に
保持することにより、該陽イオン交換膜の内部に
水酸化カルシウム及び/又は水酸化マグネシウム
の沈澱の生成が見られないことを発見した。
この知見に基き、塩化アルカリ金属塩水中のカ
ルシウム及び/又はマグネシウムの合量を
0.08ppm以下に保持する方法を種々研究、検討し
た結果、従来のサンドフイルターで濾過した塩化
アルカリ金属塩水をキレート樹脂を充填した塔を
通過させて処理しても、塩化アルカリ金属塩水中
のカルシウム及び/又はマグネシウムの合量を
0.08ppm以下に保持することが困難であることが
分つた。即ち、塩化アルカリ金属塩水中に含まれ
ているカルシウム及び/又はマグネシウムが溶存
状態であるときには、キレート樹脂に吸着される
が、浮遊固形物の状態で存在するときはキレート
樹脂に吸着されず、そのままキレート樹脂塔を通
過するためであることが分つた。また、固形浮遊
物の成分の大部分が、カルシウム分及び/又はマ
グネシウム分であることも分つた。
即ち、塩化アルカリ金属塩水中のカルシウム及
び/又はマグネシウムの合量を0.08ppm以下に保
持するためには、従来のサンドフイルターよりも
精密な濾過器を用いて塩化アルカリ金属塩水中の
固形浮遊物の濃度を3ppm以下にして、キレート
樹脂塔に供給することにより、キレート樹脂塔出
口の塩化アルカリ金属塩水中のカルシウム及び/
又はマグネシウムの合量を0.08ppm以下に保持で
きることを見出した。
この理由については、未だ明確ではないが以下
のように考えられる。塩化アルカリ金属塩溶液中
に存在するカルシウム及び/又はマグネシウム
は、ほぼ飽和濃度に近い量まで各々のイオンとし
て溶解しており、残余のカルシウム及び/又はマ
グネシウムは例えば炭酸塩、水酸化物などの形態
で微細な固形物として存在しているものであり、
かくの如き塩化アルカリ金属塩溶液がキレート樹
脂塔に供給されると、溶液中のカルシウムイオ
ン、マグネシウムイオンはキレート樹脂に吸着さ
れ、溶液中のカルシウムイオン、マグネシウムイ
オンの濃度が減少してくるが、カルシウム、マグ
ネシウムを含む固形物から、該溶液の飽和濃度に
近くなるまでカルシウム、マグネシウムが溶出し
て各々イオンとなり、これらはまたキレート樹脂
に吸着される。このようなプロセスがキレート樹
脂塔出口まで続くことにより、溶液中のカルシウ
ム、マグネシウムが吸着除去されることになるも
のと考えられる。しかしながら、溶液中の固形物
が大量にあると、キレート樹脂塔出口までの間に
全部が溶出しきれず、固形物が残留し、溶液中の
カルシウム、マグネシウムイオン濃度が高く保持
されることになる。このことは、キレート樹脂塔
の操作条件(例えば、温度、供給溶液の空間速度
(hr-1)、塔の高さ等)をコントロールすれば、入
口側の固形物濃度の如何にかかわらず出口側のカ
ルシウムイオン、マグネシウムイオンの合量を
0.08ppm以下にすることは可能であろうが、本発
明者等は、通常のキレート樹脂塔の操作条件のも
とでは、キレート樹脂塔入口部分での固形物濃度
を3ppm以下にすればよいことを見出したもので
ある。
一方、キレート樹脂塔に供給する塩水中の固形
物濃度を3ppm以下にするための精密濾過器とし
ては、活性炭又はα―セルローズ等の濾過助剤を
用いるリーフフイルター又はカートリツジフイル
ター等が適当である。
また、サンドフイルターであつても濾速を小さ
くして固形物が漏洩しないようにすれば使用する
ことができる。
実施例
食塩の陽イオン交換膜法電解において、清澄槽
出口食塩水を従来のサンドフイルター、あるいは
活性炭プレコートのリーフフイルターで濾過し、
その液をキレート樹脂にSV=40hr-1で通過さ
せて精製した。この精製塩水を陽イオン交換膜電
解槽に供給して90日間電解したところ、膜内沈澱
に関して次表の結果を得た。
尚、陽イオン交換膜電解槽の運転条件は電流密
度:20A/dm2、電解槽温度:90℃、苛性ソーダ
濃度:40%、塩水分解率:50%であつた。
【表】DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for purifying brine used in the electrolysis of alkali metal chloride salts. More specifically, the present invention relates to a method for purifying brine, which is characterized by reducing the total amount of calcium and magnesium ions in the brine used for ion-exchange membrane electrolysis of alkali metal chlorides. It is known that in the usual electrolysis industry that generally uses alkali metal chloride salts as raw materials, impurities contained therein, such as calcium, magnesium, etc., are removed and purified before being used as an electrolytic solution. As a conventionally known industrial method for purifying aqueous alkali metal chloride solutions, calcium is precipitated and removed as calcium carbonate and magnesium as magnesium hydroxide by treatment with addition of caustic alkali or slaked lime and alkali carbonate. This method is widely used. In this method, impurities in alkali metal chloride salt water are precipitated and separated as solid precipitates, but there are limits to the separation by sedimentation, and the contamination of solids into the clarified liquid cannot be completely avoided. The clarified liquid after sedimentation separation is further filtered and then supplied to the electrolytic cell as an electrolytic solution. However, in addition to the sedimentation separation described above, the purified alkali metal chloride brine obtained by filtration still contains a total amount of calcium and magnesium of 2.
Contained at a concentration of ~20ppm. Furthermore, in the conventional electrolysis of alkali metal chloride salt water using the mercury method and the diaphragm method, the concentrations of calcium, magnesium and solids contained within these concentration ranges were not particularly problematic. The reason for this is that in the mercury method, calcium ions are discharged at the mercury electrode and become amalgam, and this amalgam is decomposed and released. It did not cause any problems. On the other hand, in the asbestos diaphragm method, the diaphragm is porous, and the anolyte (alkali metal chloride salt water) is pumped through the micropores to the cathode side, so calcium hydroxide and magnesium are not deposited inside the diaphragm. It was difficult, so it wasn't really a problem. On the other hand, in the electrolysis of alkali metal chloride salt water using an ion exchange membrane, when using salt water purified by conventional purification methods, the electrolytic voltage increases, the current efficiency decreases significantly, and the ion exchange membrane may be damaged. A phenomenon is observed. The electrolysis method of alkali metal chloride salt water using an ion exchange membrane mentioned here means that the space between the anode and the cathode is divided into an anode chamber and a cathode chamber, and the aqueous solution of alkali metal chloride is placed in the anode chamber and the cathode is This is an electrolytic method in which the chamber is filled with an aqueous caustic solution and a voltage is applied between the two electrodes to obtain chlorine gas from the anode chamber and hydrogen gas and the generated caustic alkaline solution from the cathode chamber. In this electrolysis method of alkali metal chloride brine using an ion exchange membrane, alkali metal ions in the alkali metal chloride brine electrically permeate the cation exchange membrane and are transported to the cathode chamber; Cations other than alkali metal ions contained in salt water also permeate through the cation exchange membrane. an anode chamber filled with alkali metal chloride brine;
The inside of the cation exchange membrane that divides the cathode chamber filled with aqueous caustic alkaline solution is in equilibrium with both external solutions and contains a fairly high concentration of hydroxide ions, so alkali metal ions, etc. can easily pass through. However, ion species that form salts with low solubility with hydroxide ions, such as calcium ions and/or magnesium ions, form sparingly soluble salts with hydroxide ions inside the ion exchange membrane during permeation, causing fine particles to form within the membrane. This causes a rise in electrolytic voltage and a decrease in current efficiency over time. In particular, the phenomenon of decrease in current efficiency is remarkable, and if operation continues as it is, the internal structure of the ion exchange membrane may be destroyed and the membrane may be damaged. As a result of various studies and examinations to solve these problems, the present inventors have determined that the total amount of calcium and/or magnesium in the alkali metal chloride brine supplied to the cation exchange membrane method electrolytic cell should be 0.08 ppm or less. It has been discovered that by maintaining the cation exchange membrane at a temperature of 100 mL, no precipitation of calcium hydroxide and/or magnesium hydroxide is observed inside the cation exchange membrane. Based on this knowledge, the total amount of calcium and/or magnesium in the alkali metal chloride brine
As a result of various studies and examinations on methods to maintain the concentration below 0.08 ppm, we found that even if the alkali metal chloride brine filtered with a conventional sand filter is processed by passing it through a tower filled with chelate resin, calcium and /or total amount of magnesium
It was found that it was difficult to maintain the concentration below 0.08 ppm. That is, when the calcium and/or magnesium contained in the alkali metal chloride brine is in a dissolved state, it is adsorbed on the chelate resin, but when it is present in the form of suspended solids, it is not adsorbed on the chelate resin and remains as it is. It turned out that this was due to passing through the chelate resin tower. It was also found that most of the components of the solid suspension were calcium and/or magnesium. That is, in order to maintain the total amount of calcium and/or magnesium in the alkali metal chloride brine to 0.08 ppm or less, a filter that is more precise than the conventional sand filter is used to remove solid suspended matter in the alkali metal chloride brine. By supplying the chelate resin tower with a concentration of 3 ppm or less, calcium and/or
It has also been found that the total amount of magnesium can be maintained at 0.08 ppm or less. The reason for this is not yet clear, but it is thought to be as follows. Calcium and/or magnesium present in the alkali metal chloride salt solution is dissolved as each ion to an amount close to saturation concentration, and the remaining calcium and/or magnesium is in the form of carbonate, hydroxide, etc. It exists as a fine solid substance in
When such an alkali metal chloride salt solution is supplied to a chelate resin tower, the calcium ions and magnesium ions in the solution are adsorbed by the chelate resin, and the concentration of calcium ions and magnesium ions in the solution decreases. Calcium and magnesium are eluted from the solid substance containing calcium and magnesium until the concentration approaches the saturation concentration of the solution and become ions, which are also adsorbed by the chelate resin. It is thought that by continuing such a process up to the outlet of the chelate resin tower, calcium and magnesium in the solution are adsorbed and removed. However, if there is a large amount of solid matter in the solution, not all of it will be eluted before the exit of the chelate resin tower, and the solid matter will remain, resulting in a high concentration of calcium and magnesium ions in the solution. This means that if the operating conditions of the chelate resin tower (e.g., temperature, space velocity (hr -1 ) of the feed solution, tower height, etc.) are controlled, the outlet side will be The total amount of calcium ions and magnesium ions in
Although it would be possible to reduce the solid content to 0.08 ppm or less, the present inventors believe that under normal operating conditions of the chelate resin tower, the solids concentration at the inlet of the chelate resin tower should be reduced to 3 ppm or less. This is what we discovered. On the other hand, a leaf filter or a cartridge filter using a filter aid such as activated carbon or α-cellulose is suitable as a precision filter to reduce the concentration of solids in the brine supplied to the chelate resin tower to 3 ppm or less. . Furthermore, even a sand filter can be used as long as the filtration rate is reduced to prevent solid matter from leaking. Example In the cation exchange membrane electrolysis of salt, the salt water at the outlet of the clarification tank is filtered using a conventional sand filter or a leaf filter pre-coated with activated carbon.
The liquid was purified by passing it through a chelating resin at SV=40 hr -1 . When this purified salt water was supplied to a cation exchange membrane electrolytic cell and electrolyzed for 90 days, the results shown in the following table regarding intramembrane precipitation were obtained. The operating conditions of the cation exchange membrane electrolytic cell were: current density: 20 A/dm 2 , electrolytic cell temperature: 90° C., caustic soda concentration: 40%, and salt water decomposition rate: 50%. 【table】
Claims (1)
過させて精製する方法において、該キレートイオ
ン交換樹脂層の入口における塩水中のカルシウム
イオン及びマグネシウムイオンの合量を0.4〜
7ppmとし、かつ、浮遊固形分濃度を3ppm以下
になるように供給し、該キレートイオン交換樹脂
層の出口における塩水中のカルシウムイオン及び
マグネシウムイオンの合量を0.08ppm以下にする
ことを特徴とするイオン交換膜法電解用塩水の精
製法。1. In a method of purifying salt water for electrolysis by passing it through a chelate ion exchange resin layer, the total amount of calcium ions and magnesium ions in the salt water at the inlet of the chelate ion exchange resin layer is 0.4 to 0.4.
7ppm and the suspended solids concentration is 3ppm or less, and the total amount of calcium ions and magnesium ions in the brine at the outlet of the chelate ion exchange resin layer is 0.08ppm or less. Ion-exchange membrane method A method for purifying salt water for electrolysis.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13002878A JPS5558384A (en) | 1978-10-24 | 1978-10-24 | Refining method of salt water for ion exchange membrane electrolysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13002878A JPS5558384A (en) | 1978-10-24 | 1978-10-24 | Refining method of salt water for ion exchange membrane electrolysis |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5558384A JPS5558384A (en) | 1980-05-01 |
JPS6218630B2 true JPS6218630B2 (en) | 1987-04-23 |
Family
ID=15024360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13002878A Granted JPS5558384A (en) | 1978-10-24 | 1978-10-24 | Refining method of salt water for ion exchange membrane electrolysis |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5558384A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230022584A (en) * | 2021-08-09 | 2023-02-16 | 팩컴코리아(주) | Pallet Alignment Device of Printed Matter |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58156393A (en) * | 1982-03-12 | 1983-09-17 | Mitsui Toatsu Chem Inc | Method of refining saline water |
CN103712935B (en) * | 2014-01-20 | 2015-09-23 | 山东省科学院海洋仪器仪表研究所 | A kind of assay method of content of nutritive salt in seawater |
-
1978
- 1978-10-24 JP JP13002878A patent/JPS5558384A/en active Granted
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230022584A (en) * | 2021-08-09 | 2023-02-16 | 팩컴코리아(주) | Pallet Alignment Device of Printed Matter |
Also Published As
Publication number | Publication date |
---|---|
JPS5558384A (en) | 1980-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7083875B2 (en) | Method for Producing Lithium Hydroxide Monohydrate from Boiled Water | |
US4155820A (en) | Purification of aqueous sodium chloride solution | |
KR100727699B1 (en) | Method for reducing metal ion concentration in brine solution | |
US4483754A (en) | Electrolysis of sodium chloride with the use of ion exchange membranes | |
KR850001577B1 (en) | Membrane cell brine feed | |
RU2751710C2 (en) | Method for producing high-purity lithium hydroxide monohydrate from materials containing lithium carbonate or lithium chloride | |
US4839003A (en) | Process for producing alkali hydroxide, chlorine and hydrogen by the electrolysis of an aqueous alkali chloride solution in a membrane cell | |
JPH033747B2 (en) | ||
US4274929A (en) | Chemical removal of silicon from waste brine stream for chlor-alkali cell | |
JP2007262443A (en) | Sodium chloride electrolisis method | |
JPS6218630B2 (en) | ||
US4073706A (en) | Brine treatment for trace metal removal | |
RU2020192C1 (en) | Method of gold refining | |
US4204921A (en) | Method for rejuvenating chlor-alkali cells | |
JP2012091981A (en) | Method for purifying sodium hydroxide | |
JPS6150884B2 (en) | ||
JPS6054886B2 (en) | Method for purifying aqueous alkali chloride solution | |
JPS6055442B2 (en) | Method for purifying salt water for electrolysis | |
US4946565A (en) | Process for the production of alkali metal chlorate | |
SU768760A1 (en) | Method of liquid purification | |
KR810001352B1 (en) | Purification of aqueous sodium chloride solution | |
JPS6345116A (en) | Purification of saline water for ion exchange membrane electrolysis | |
US4618403A (en) | Method of stabilizing metal-silica complexes in alkali metal halide brines | |
JP3651872B2 (en) | Method for removing sulfate and chlorate radicals in brine | |
JPS6126498B2 (en) |