JPS62150804A - Charged particle deflector for synchrotron orbit radiation system - Google Patents
Charged particle deflector for synchrotron orbit radiation systemInfo
- Publication number
- JPS62150804A JPS62150804A JP60294812A JP29481285A JPS62150804A JP S62150804 A JPS62150804 A JP S62150804A JP 60294812 A JP60294812 A JP 60294812A JP 29481285 A JP29481285 A JP 29481285A JP S62150804 A JPS62150804 A JP S62150804A
- Authority
- JP
- Japan
- Prior art keywords
- superconducting
- cryostats
- cryostat
- leads
- coils
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000002245 particle Substances 0.000 title claims abstract description 8
- 230000005855 radiation Effects 0.000 title claims description 4
- 230000002085 persistent effect Effects 0.000 claims description 13
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 239000003507 refrigerant Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- FGRBYDKOBBBPOI-UHFFFAOYSA-N 10,10-dioxo-2-[4-(N-phenylanilino)phenyl]thioxanthen-9-one Chemical compound O=C1c2ccccc2S(=O)(=O)c2ccc(cc12)-c1ccc(cc1)N(c1ccccc1)c1ccccc1 FGRBYDKOBBBPOI-UHFFFAOYSA-N 0.000 description 1
- 241000218691 Cupressaceae Species 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
Landscapes
- Particle Accelerators (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
この発明は、シンクロトロン軌道放射システムに用いる
荷電粒子偏向装置、詳しくは、偏向用電磁石・に超電導
電磁石を使用した際のシステムの経済的な構成、経済的
な運転を可能ならしめる偏向装置に関する。[Detailed Description of the Invention] [Field of Industrial Application] This invention is directed to a charged particle deflection device used in a synchrotron orbital radiation system, and more specifically, to an economical system when a superconducting electromagnet is used as a deflection electromagnet. The present invention relates to a deflection device that enables economical operation.
集積回路の高密度花が急速に進んでいる今日、超々LS
Iのリングラフィを目的として、シンクロトロン軌道放
射ストレージリング(以下ではこれをS ORIJソン
グ云う)の開発が望まれている。Nowadays, high-density integrated circuits are rapidly progressing, and ultra-super LS
It is desired to develop a synchrotron orbital radiation storage ring (hereinafter referred to as SORIJ song) for the purpose of phosphorography of I.
このS ORIJソングは、ビーム偏向用の電磁石が数
個必要であり、高磁場偏向の場合、超電導ダイポール電
磁石が採用される。第2図は、SORリングの一例であ
って、この場合、ビームの方向を90°偏向する超電導
電磁石Aの4台が用いられている。Bはビーム集束用四
極電磁石、Cはパータベータ、Dはインフレクタ−1E
は高周波加速空胴である。This S ORIJ song requires several electromagnets for beam deflection, and for high field deflection, superconducting dipole electromagnets are employed. FIG. 2 shows an example of an SOR ring, in which four superconducting electromagnets A that deflect the beam direction by 90 degrees are used. B is a quadrupole electromagnet for beam focusing, C is a perturbator, and D is an inflector-1E.
is a high frequency acceleration cavity.
さて、このように、1つのシステムにおいて同時運転す
る超電導電磁石を数台用いる場合、従来の技術に従えば
、電磁石の運転用電源も電磁石と同数を使用することに
なる。何故なら、永久電流モードで運転する電磁石は、
通常、第3図に示すように、1つのクライオスタット1
内に1つの超電導コイル2を収納し、このコイルに1つ
の永久電流スイッチ3と1組の電流リード線4及び1台
の電源5をつないで、励磁→永久電流モード→消磁の操
作を上記電源5によって行っているからである。Now, when several superconducting electromagnets that operate simultaneously in one system are used in this way, according to the conventional technology, the same number of power supplies for operating the electromagnets as the number of electromagnets are used. This is because electromagnets operating in persistent current mode are
Typically, one cryostat 1, as shown in Figure 3,
One superconducting coil 2 is housed inside, and one persistent current switch 3, one set of current lead wires 4, and one power supply 5 are connected to this coil, and the operation of excitation → persistent current mode → demagnetization is controlled by the above power supply. This is because it is done according to 5.
しかし、この方法によれば、電源、永久電流スイッチ、
電流リード線の使用数が増えるため、1システム当りの
製作コストが高まることを免れない。However, according to this method, the power supply, persistent current switch,
Since the number of current lead wires used increases, the production cost per system inevitably increases.
一方、第4図に示すように、各々がクライオスタット1
に収納されたコイル2の複数個を直列に接続し、1台の
電源5によって操作することは可能であり、この方法を
採ればlシステム当りの電源使用数を減らすことができ
る。しかし、この場合、コイル間の接続部に、常温下に
おかれる電流リード線4が入るので、その線を伝った外
部熱及びリード線自体に生じたジュール熱のクライオス
タット1内への侵入があり、クライオスタット内冷媒液
(一般に液体ヘリウム)の蒸発量が増える。On the other hand, as shown in FIG.
It is possible to connect a plurality of coils 2 housed in a system in series and operate them using one power supply 5, and by adopting this method, the number of power supplies used per system can be reduced. However, in this case, since the current lead wire 4, which is kept at room temperature, is inserted into the connection between the coils, external heat transmitted through the wire and Joule heat generated in the lead wire itself may enter the cryostat 1. , the amount of evaporation of the refrigerant liquid (generally liquid helium) inside the cryostat increases.
従って、システムのランニングコストが高まる。Therefore, the running cost of the system increases.
また、各コイル間に常温のリード線が入るため、永久電
流スイッチ3は、その数を減らすことができない。Further, since lead wires at room temperature are inserted between each coil, the number of persistent current switches 3 cannot be reduced.
この発明は、上記に鑑みてなされたもので、超電導電磁
石を用いた荷電粒子偏向装置の経済的な構成、経済的な
運転を可能ならしめることを目的としている。This invention was made in view of the above, and aims to enable an economical configuration and economical operation of a charged particle deflection device using a superconducting electromagnet.
この発明は、超電導コイルを個別ζこ収°納する第1ク
ライオスタットとは別個の第2クライオスタットを設け
、第1クライオスタットの全てを断熱管を介してこの第
2タライオスタツトに連通させることにより、超電導線
によって数台の電磁石を直列に接続することを可能にし
、それによって、前述の目的を達成するようにしている
。The present invention provides a second cryostat that is separate from the first cryostat that houses superconducting coils individually, and connects all of the first cryostat to the second cryostat via a heat-insulating pipe, thereby making it possible to connect the superconducting coils to the second cryostat. makes it possible to connect several electromagnets in series, thereby achieving the aforementioned objective.
即ち、第1図に示すように、超電導コイル2の各々は、
それと同数のクライオスタット1内に別々に収納し、ま
た、各クライオスタット1は、これと別個ζこ設けた第
2タライオスタツト6に断熱管7を介して連通させ、コ
イル2の各々を第2クライオスタットを経由して断熱管
7に通す超電導線8により直列に結線すると共に、両端
のコイルの片側の引出線には断熱管7の内部を通って第
2クライオスタット6に至る対の超電!線9を接続する
。また、この対の超電導線9を第2クライオスタット内
においてそのクライオスタット内に外部から臨ませた対
の電流リード線4に接続し、かつ、対の超電導線9,9
間には1つの永久電流スイッチ3をつないで、上記対の
電流リード線4を1台の電源5に接続するのである。1
0は、冷媒イ夜を示している。That is, as shown in FIG. 1, each of the superconducting coils 2 is
Each cryostat 1 is housed separately in the same number of cryostats 1, and each cryostat 1 is communicated with a second cryostat 6 provided separately through a heat insulating tube 7, and each of the coils 2 is connected through the second cryostat 6. The superconducting wires 8 are connected in series through the insulated tube 7, and the lead wires on one side of the coils at both ends have a pair of superconducting wires that pass through the inside of the insulated tube 7 and reach the second cryostat 6. Connect line 9. In addition, this pair of superconducting wires 9 is connected in the second cryostat to a pair of current lead wires 4 facing inside the cryostat from the outside, and the pair of superconducting wires 9, 9
One persistent current switch 3 is connected between them, and the pair of current lead wires 4 are connected to one power source 5. 1
0 indicates that the refrigerant is not present.
なお、断熱管7は、クライオスタットと同様に。Note that the heat insulating tube 7 is similar to the cryostat.
真空断熱層、熱反射層、液体窒素等を収納した冷却檜等
に外表面の覆われた断熱効果の高いものを使用する。Use a highly insulating material whose outer surface is covered with a vacuum insulation layer, a heat reflection layer, a cooling cypress containing liquid nitrogen, etc.
第2クライオスタットを設けて第1クライオスタットの
各々を断熱管により接続すれば、コイル間の連結線を常
mlこ晒さずに所要数のコイル(図は3個であるがこれ
に限定されない)を直列につなぐことができ、1台の電
源、1個の永久電流スイッチ、1組の電流リード線を用
いて全ての電磁石を永久電流モードで運転し得る。If a second cryostat is provided and each of the first cryostat is connected through a heat insulated tube, the required number of coils (three in the figure, but not limited to this) can be connected in series without exposing the connecting wire between the coils. All electromagnets can be operated in persistent current mode using one power supply, one persistent current switch, and one set of current leads.
以上述べたように、この発明によれば、超電導コイルを
個々に収納する第1クライオスタットとは別個に、1組
の電流リード線と1個の永久電流スイッチを収納する第
2クライオスタットを断熱管により第1クライオスタッ
トの各々に連通させて設け、第2クライオスタットを経
由する超電導線で所要数のコイルを直列に結線すると共
に両端の両磁石の片側の引出線を第2クライオスタット
内の対の電流リード線に対の超電導線を介して結び、か
つ、その対の超電導線間に永久電流スイッチを挿入する
構成としであるので、数台の超電導電磁石の同時運転に
要する電源、永久電流スイッチ、電流リード線が1台、
1個、1組で済み、経済的な荷電粒子偏向装置を構成で
きると云う効果が得られる。As described above, according to the present invention, the second cryostat, which houses one set of current lead wires and one persistent current switch, is installed in an insulated tube separately from the first cryostat, which houses superconducting coils individually. A required number of coils are connected in series with a superconducting wire that is connected to each of the first cryostat and passes through the second cryostat, and a lead wire on one side of both magnets at both ends is connected to a pair of current lead wires in the second cryostat. Since the configuration is such that the two superconducting magnets are connected via a pair of superconducting wires, and a persistent current switch is inserted between the pairs of superconducting wires, the power supply, persistent current switch, and current lead wire required for simultaneous operation of several superconducting electromagnets is required. 1 unit,
It is possible to construct an economical charged particle deflection device by requiring only one device or one set.
また、外部熱の侵入路となる上に、ジュール損を生じる
電流リード線が1組で済むため、第1及び第2クライオ
スタットと断熱管内に入れた冷媒液の蒸発量も大巾に低
減し、装置のランニングコスト面でも有利になると云う
効果も得られる。In addition, since only one set of current lead wires is required, which acts as a path for external heat to enter and causes Joule loss, the amount of evaporation of the refrigerant liquid placed in the first and second cryostats and the insulated tubes is greatly reduced. An advantageous effect can also be obtained in terms of running costs of the device.
第1図は、この発明の装置を示す線図、第2図はS O
RIJソング一例を示す平面線図、第3図及び第4図は
、従来の装置構成を示す線図である。
1・・・クライオスタット、2・・・超電導コイル、3
・・・永久電流スイッチ、4・・・電流リード線、5・
・・電磁石の電源、6・・・第2クライオスタット、7
・・・断熱管、8・・・コイル結線用超電導線、9・・
・対の超電導線、10・・・冷媒液
第1図
□73図
「−
:]−FIG. 1 is a diagram showing the apparatus of the present invention, and FIG. 2 is a diagram showing the apparatus of the present invention.
A plan view showing an example of a RIJ song, and FIGS. 3 and 4 are diagrams showing the configuration of a conventional device. 1... Cryostat, 2... Superconducting coil, 3
... Persistent current switch, 4... Current lead wire, 5.
...Electromagnet power supply, 6...Second cryostat, 7
...Insulated pipe, 8...Superconducting wire for coil connection, 9...
・Pair of superconducting wires, 10... Refrigerant liquid Figure 1 □ Figure 73 "-:]-
Claims (1)
導電磁石の各々がそれと同数の第1クライオスタットに
個別に収納され、第1クライオスタットの各々は、1組
の電流リード線と後記対の超電導線間につなぐ1個の永
久電流スイッチとを収納する1個の第2クライオスタッ
トに断熱管を介して連通せしめられ、かつ、上記電磁石
の各々は第2クライオスタットを経由して断熱管に通し
た超電導線により直列に結線され、さらに、両端の電磁
石の片側の引出線は、断熱管を通つて第2クライオスタ
ットに至る対の超電導線を介して1台の電源につながれ
る上記対の電流リード線に接続されているシンクロトロ
ン軌道放射システムの荷電粒子偏向装置。Each of several superconducting electromagnets for charged particle deflection placed in the middle of a particle trajectory is individually housed in the same number of first cryostats, and each of the first cryostat has one set of current lead wires and a pair of superconducting wires described below. The electromagnets are connected to a second cryostat containing a persistent current switch connected therebetween via an insulated tube, and each of the electromagnets is connected to a superconducting wire passed through the insulated tube via the second cryostat. Furthermore, the lead wires on one side of the electromagnets at both ends are connected to the above-mentioned pair of current lead wires, which are connected to one power source via a pair of superconducting wires that run through an insulated tube to the second cryostat. A charged particle deflection device for the synchrotron orbital radiation system.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60294812A JPS62150804A (en) | 1985-12-25 | 1985-12-25 | Charged particle deflector for synchrotron orbit radiation system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60294812A JPS62150804A (en) | 1985-12-25 | 1985-12-25 | Charged particle deflector for synchrotron orbit radiation system |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62150804A true JPS62150804A (en) | 1987-07-04 |
Family
ID=17812568
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60294812A Pending JPS62150804A (en) | 1985-12-25 | 1985-12-25 | Charged particle deflector for synchrotron orbit radiation system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62150804A (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0320830A2 (en) * | 1987-12-18 | 1989-06-21 | Asea Brown Boveri Aktiengesellschaft | Magnet system |
JP2007220907A (en) * | 2006-02-16 | 2007-08-30 | Japan Superconductor Technology Inc | Superconductive magnet equipment and its operation method |
WO2016083203A1 (en) * | 2014-11-28 | 2016-06-02 | Siemens Aktiengesellschaft | Superconducting device with coil devices and cooling device, and vehicle fitted therewith |
US9622335B2 (en) | 2012-09-28 | 2017-04-11 | Mevion Medical Systems, Inc. | Magnetic field regenerator |
US9661736B2 (en) | 2014-02-20 | 2017-05-23 | Mevion Medical Systems, Inc. | Scanning system for a particle therapy system |
US9681531B2 (en) | 2012-09-28 | 2017-06-13 | Mevion Medical Systems, Inc. | Control system for a particle accelerator |
US9706636B2 (en) | 2012-09-28 | 2017-07-11 | Mevion Medical Systems, Inc. | Adjusting energy of a particle beam |
US9730308B2 (en) | 2013-06-12 | 2017-08-08 | Mevion Medical Systems, Inc. | Particle accelerator that produces charged particles having variable energies |
US9925395B2 (en) | 2005-11-18 | 2018-03-27 | Mevion Medical Systems, Inc. | Inner gantry |
US9950194B2 (en) | 2014-09-09 | 2018-04-24 | Mevion Medical Systems, Inc. | Patient positioning system |
US9962560B2 (en) | 2013-12-20 | 2018-05-08 | Mevion Medical Systems, Inc. | Collimator and energy degrader |
US10155124B2 (en) | 2012-09-28 | 2018-12-18 | Mevion Medical Systems, Inc. | Controlling particle therapy |
US10254739B2 (en) | 2012-09-28 | 2019-04-09 | Mevion Medical Systems, Inc. | Coil positioning system |
US10258810B2 (en) | 2013-09-27 | 2019-04-16 | Mevion Medical Systems, Inc. | Particle beam scanning |
US10646728B2 (en) | 2015-11-10 | 2020-05-12 | Mevion Medical Systems, Inc. | Adaptive aperture |
US10653892B2 (en) | 2017-06-30 | 2020-05-19 | Mevion Medical Systems, Inc. | Configurable collimator controlled using linear motors |
USRE48047E1 (en) | 2004-07-21 | 2020-06-09 | Mevion Medical Systems, Inc. | Programmable radio frequency waveform generator for a synchrocyclotron |
US10675487B2 (en) | 2013-12-20 | 2020-06-09 | Mevion Medical Systems, Inc. | Energy degrader enabling high-speed energy switching |
USRE48317E1 (en) | 2007-11-30 | 2020-11-17 | Mevion Medical Systems, Inc. | Interrupted particle source |
US10925147B2 (en) | 2016-07-08 | 2021-02-16 | Mevion Medical Systems, Inc. | Treatment planning |
US11103730B2 (en) | 2017-02-23 | 2021-08-31 | Mevion Medical Systems, Inc. | Automated treatment in particle therapy |
US11291861B2 (en) | 2019-03-08 | 2022-04-05 | Mevion Medical Systems, Inc. | Delivery of radiation by column and generating a treatment plan therefor |
-
1985
- 1985-12-25 JP JP60294812A patent/JPS62150804A/en active Pending
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0320830A2 (en) * | 1987-12-18 | 1989-06-21 | Asea Brown Boveri Aktiengesellschaft | Magnet system |
EP0320830A3 (en) * | 1987-12-18 | 1989-08-30 | Asea Brown Boveri Aktiengesellschaft | Magnet system |
USRE48047E1 (en) | 2004-07-21 | 2020-06-09 | Mevion Medical Systems, Inc. | Programmable radio frequency waveform generator for a synchrocyclotron |
US10279199B2 (en) | 2005-11-18 | 2019-05-07 | Mevion Medical Systems, Inc. | Inner gantry |
US10722735B2 (en) | 2005-11-18 | 2020-07-28 | Mevion Medical Systems, Inc. | Inner gantry |
US9925395B2 (en) | 2005-11-18 | 2018-03-27 | Mevion Medical Systems, Inc. | Inner gantry |
JP2007220907A (en) * | 2006-02-16 | 2007-08-30 | Japan Superconductor Technology Inc | Superconductive magnet equipment and its operation method |
USRE48317E1 (en) | 2007-11-30 | 2020-11-17 | Mevion Medical Systems, Inc. | Interrupted particle source |
US9706636B2 (en) | 2012-09-28 | 2017-07-11 | Mevion Medical Systems, Inc. | Adjusting energy of a particle beam |
US9681531B2 (en) | 2012-09-28 | 2017-06-13 | Mevion Medical Systems, Inc. | Control system for a particle accelerator |
US9622335B2 (en) | 2012-09-28 | 2017-04-11 | Mevion Medical Systems, Inc. | Magnetic field regenerator |
US10368429B2 (en) | 2012-09-28 | 2019-07-30 | Mevion Medical Systems, Inc. | Magnetic field regenerator |
US10155124B2 (en) | 2012-09-28 | 2018-12-18 | Mevion Medical Systems, Inc. | Controlling particle therapy |
US10254739B2 (en) | 2012-09-28 | 2019-04-09 | Mevion Medical Systems, Inc. | Coil positioning system |
US9730308B2 (en) | 2013-06-12 | 2017-08-08 | Mevion Medical Systems, Inc. | Particle accelerator that produces charged particles having variable energies |
US10456591B2 (en) | 2013-09-27 | 2019-10-29 | Mevion Medical Systems, Inc. | Particle beam scanning |
US10258810B2 (en) | 2013-09-27 | 2019-04-16 | Mevion Medical Systems, Inc. | Particle beam scanning |
US9962560B2 (en) | 2013-12-20 | 2018-05-08 | Mevion Medical Systems, Inc. | Collimator and energy degrader |
US10675487B2 (en) | 2013-12-20 | 2020-06-09 | Mevion Medical Systems, Inc. | Energy degrader enabling high-speed energy switching |
US10434331B2 (en) | 2014-02-20 | 2019-10-08 | Mevion Medical Systems, Inc. | Scanning system |
US11717700B2 (en) | 2014-02-20 | 2023-08-08 | Mevion Medical Systems, Inc. | Scanning system |
US9661736B2 (en) | 2014-02-20 | 2017-05-23 | Mevion Medical Systems, Inc. | Scanning system for a particle therapy system |
US9950194B2 (en) | 2014-09-09 | 2018-04-24 | Mevion Medical Systems, Inc. | Patient positioning system |
WO2016083203A1 (en) * | 2014-11-28 | 2016-06-02 | Siemens Aktiengesellschaft | Superconducting device with coil devices and cooling device, and vehicle fitted therewith |
US10646728B2 (en) | 2015-11-10 | 2020-05-12 | Mevion Medical Systems, Inc. | Adaptive aperture |
US10786689B2 (en) | 2015-11-10 | 2020-09-29 | Mevion Medical Systems, Inc. | Adaptive aperture |
US11213697B2 (en) | 2015-11-10 | 2022-01-04 | Mevion Medical Systems, Inc. | Adaptive aperture |
US11786754B2 (en) | 2015-11-10 | 2023-10-17 | Mevion Medical Systems, Inc. | Adaptive aperture |
US10925147B2 (en) | 2016-07-08 | 2021-02-16 | Mevion Medical Systems, Inc. | Treatment planning |
US11103730B2 (en) | 2017-02-23 | 2021-08-31 | Mevion Medical Systems, Inc. | Automated treatment in particle therapy |
US10653892B2 (en) | 2017-06-30 | 2020-05-19 | Mevion Medical Systems, Inc. | Configurable collimator controlled using linear motors |
US11291861B2 (en) | 2019-03-08 | 2022-04-05 | Mevion Medical Systems, Inc. | Delivery of radiation by column and generating a treatment plan therefor |
US11311746B2 (en) | 2019-03-08 | 2022-04-26 | Mevion Medical Systems, Inc. | Collimator and energy degrader for a particle therapy system |
US11717703B2 (en) | 2019-03-08 | 2023-08-08 | Mevion Medical Systems, Inc. | Delivery of radiation by column and generating a treatment plan therefor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS62150804A (en) | Charged particle deflector for synchrotron orbit radiation system | |
US11116996B2 (en) | High-intensity external ion injector | |
US8791656B1 (en) | Active return system | |
US7656258B1 (en) | Magnet structure for particle acceleration | |
CN101361156B (en) | Charged particle radiation therapy | |
US20120142538A1 (en) | Superconducting Coil | |
JPH08330096A (en) | Flat plasma generator using fluctuating magnetic pole | |
JPS63200500A (en) | Synchrotron radiation source | |
JPS63218200A (en) | Superconductive sor generation device | |
JP7102560B2 (en) | Particle beam transport device, rotating gantry and particle beam irradiation therapy system | |
Hubbard et al. | Heavy‐Ion Linear Accelerator | |
TW200810615A (en) | Magnet structure for particle acceleration | |
JPH06242273A (en) | Neutral particle injector | |
Olsen et al. | The histrap proposal: Heavy-ion storage ring for atomic physics | |
Lee | Prospects for Polarization at RHIC and SSC | |
JPH0243866Y2 (en) | ||
JPH04122000A (en) | Electronic funds ring | |
JPS61158699A (en) | Ion cycrotron range frequency heating with limited impurities production for plasma | |
Krawczyk et al. | Design of a β= 0.175 2-Gap spoke Resonator | |
Prakash et al. | 2. ACCELERATOR AUGMENTATION PROGRAMME | |
Gough | NISOL secondary accelerator scoping study | |
Shu | Technical challenges of superconductivity and cryogenics in pursuing TESLA-TTF | |
Jones et al. | Superconducting magnet Patent | |
ANDERSON et al. | Heavy-Ion Linear Accelerator | |
JP2017162646A (en) | Superconducting cyclotron and superconducting electromagnet device |