JPS62142765A - Method for regulating film thickness during magnetron sputtering - Google Patents

Method for regulating film thickness during magnetron sputtering

Info

Publication number
JPS62142765A
JPS62142765A JP28493485A JP28493485A JPS62142765A JP S62142765 A JPS62142765 A JP S62142765A JP 28493485 A JP28493485 A JP 28493485A JP 28493485 A JP28493485 A JP 28493485A JP S62142765 A JPS62142765 A JP S62142765A
Authority
JP
Japan
Prior art keywords
target
magnet
film thickness
magnetron sputtering
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP28493485A
Other languages
Japanese (ja)
Other versions
JPH0726202B2 (en
Inventor
Toshiro Imai
今井 利郎
Atsushi Nakamura
篤 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP60284934A priority Critical patent/JPH0726202B2/en
Publication of JPS62142765A publication Critical patent/JPS62142765A/en
Publication of JPH0726202B2 publication Critical patent/JPH0726202B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To facilitate film thickness regulating operation by changing the intensity and distribution of a magnetic field formed in a space near a target with three or more magnet chips so as to regulate the thickness of a thin film formed on a substrate. CONSTITUTION:A magnetic field is formed in a space near a target 12 with a magnet 16 consisting of three or more magnet chips 18, 19, 20. The intensity and distribution of the magnetic field are changed by changing the distance between the magnetic poles of the magnet 16 and the target 12 and/or the magnetic force. Thus, the thickness distribution of a thin film formed on a substrate 13 is regulated.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、マグネトロンスパッタにおいて基板上に形
成される薄膜の膜厚分布を均一に調整する膜厚分布調整
方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (A) Field of Industrial Application This invention relates to a method for adjusting the thickness distribution of a thin film formed on a substrate in magnetron sputtering to uniformly adjust the thickness distribution.

(ロ)従来の技術 従来、マグネトロンスパッタにおいては、同一の磁力を
有するl又は2の磁石片を組合わせた磁石により、アル
ミニウム(A!り仮等よりなるターゲット近傍に磁場を
形成していた。
(b) Prior Art Conventionally, in magnetron sputtering, a magnetic field was formed near a target made of aluminum (A!) using a magnet made of a combination of one or two magnet pieces having the same magnetic force.

例えば、プレーナマグネトロンスバフタ装置においては
、第5図に示すように、磁石支持板37上中央に、角棒
状の永久磁石よりなる磁石片38を−の磁極が上面とな
るように取着けし、さらに前記支持板37周縁上には、
前記磁石片38を囲むような枠状の、磁石片38と同じ
高さの永久磁石よりなる磁石片39が、磁石片38と反
対の磁極を上面として取付たちのが知られている。
For example, in a planar magnetron Bafter device, as shown in FIG. 5, a magnet piece 38 made of a square rod-shaped permanent magnet is attached to the center of the magnet support plate 37 with the negative magnetic pole facing upward. Furthermore, on the periphery of the support plate 37,
It is known that a frame-shaped magnet piece 39 that surrounds the magnet piece 38 and is made of a permanent magnet and has the same height as the magnet piece 38 is attached with the magnetic pole opposite to the magnet piece 38 facing upward.

(ハ)発明が解決しようとする問題点 上記従来の磁石を用いてターゲット近傍空間に磁界を形
成するマグネトロンスパッタにおいては、ターゲットの
材質等の相違により、ターゲソ1−に対向して置かれる
基板上に形成される薄膜の膜厚分布が不均一となる場合
があったが、その場合には、ターゲットや基板の位置を
調整するごとにより、基板上に形成される薄膜の膜厚分
布を均一になるように調整していた。しかし、この調整
操作によっては、おおまかな膜厚調整しか行うことがて
きず、膜厚の不均一を完全に取除くことは困蓮である不
都合があった。
(c) Problems to be Solved by the Invention In the above-mentioned magnetron sputtering, which uses magnets to form a magnetic field in the space near the target, due to differences in the material of the target, etc., the substrate placed opposite the target saw 1- In some cases, the thickness distribution of the thin film formed on the substrate was uneven, but in that case, by adjusting the position of the target and substrate, the thickness distribution of the thin film formed on the substrate could be made uniform. I had adjusted it accordingly. However, this adjustment operation has the disadvantage that only a rough adjustment of the film thickness can be made, and it is difficult to completely eliminate non-uniformity of the film thickness.

また、11;1記クーゲノ1やJ、(板等は、真空容器
内に16′かhているため、上記、+1!]整ト■作は
手間がかかる不都合もあった。
In addition, there was also the inconvenience that 11; 1 Kugeno 1 and J (the board etc. were placed in the vacuum container for 16 hours, so the above +1!) production was time-consuming.

この発明は、上記不都合に鑑みなされたもので、膜厚調
整操作が容易で、且つ細かな膜IN、調Jβを可能にす
るマグネトロンスパッタの膜厚調整方法の1に供を目的
としている。
The present invention has been made in view of the above-mentioned disadvantages, and is aimed at providing a method for adjusting the film thickness of magnetron sputtering, which allows easy film thickness adjustment operation and enables fine film IN and fine Jβ.

(ニ)問題点を解決するだめの手段 上記不都合を解決するための手段として、この発明のマ
グネトロンスパ・7タにおける膜厚調整方法は、第1に
、ターゲット近傍空間に磁界を形成するだめの磁石を3
以上の磁石片より構成し、第2に、これら磁石片の極と
ターゲット間の距離及び/又は磁力をそれぞれ独立に可
変とし、前記ターゲット近傍空間に形成される磁界の分
布を変更可jiヒとしている。
(d) Means for solving the problem As a means for solving the above-mentioned disadvantages, the method for adjusting the film thickness in a magnetron sputter according to the present invention firstly includes a method for forming a magnetic field in the space near the target. 3 magnets
It is composed of the above magnet pieces, and secondly, the distance and/or magnetic force between the poles of these magnet pieces and the target can be independently varied, and the distribution of the magnetic field formed in the space near the target can be changed. There is.

(ホ)作用 ごの発明のマグネトロンスパッタにおける膜厚調整カン
去は、磁石を3以上の磁石片より構成し、各々の磁石片
とターゲ、1・間の距離・磁力を独立に可変とした結果
、ターゲット近傍空間に形成されるril界の分布を細
かく変更するごとが可11ピどなる。そして、ターゲッ
ト上に発生ずるプラズマの密度も細かく変更することが
可能となり、プラズマ中のアルゴンガス等の分子がクー
ゲット表面に衝突し、ターゲソI・表面から飛出ずアル
ミニウムなどの原子の数が制御できる結果、基板表面に
形成される薄膜の膜厚分布を細かく均一に3PJ整する
ことが可能である。
(e) Film thickness adjustment in magnetron sputtering according to the invention is achieved by configuring the magnet from three or more magnet pieces, and independently varying the distance and magnetic force between each magnet piece and the target. , each time the distribution of the ril field formed in the space near the target is changed finely, it becomes possible to make 11 steps. It is also possible to finely change the density of the plasma generated on the target, allowing molecules such as argon gas in the plasma to collide with the surface of the target, preventing them from flying out from the target surface, and controlling the number of atoms such as aluminum. As a result, it is possible to finely and uniformly adjust the thickness distribution of the thin film formed on the substrate surface by 3PJ.

また、ターゲットや基板の位置を調節する必要がないの
で、膜厚の調整操作を容易化できる。
Furthermore, since there is no need to adjust the positions of the target or the substrate, the film thickness adjustment operation can be facilitated.

(へ)実施例 この発明の一実施例を、第1し1乃至第4図に基づいて
、以下に説明する。
(F) Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 to 4.

第2図は、この発明の膜厚調整方法が適用されるプレー
ナマグネトロンスパッタ装置lの縦断面図である。2は
、基台4上にヘルジャ−3を載置して構成される真空容
器である。基台4には、下方より、図示しない1−L空
ポンプに接続されるパイプ5が挿通され、真空容器2内
の空気が排気され、高真空に保たれる。また、W台・1
中夫には、長方形成の開1]部6が開設されている。
FIG. 2 is a longitudinal sectional view of a planar magnetron sputtering apparatus l to which the film thickness adjustment method of the present invention is applied. 2 is a vacuum container constructed by placing a herger 3 on a base 4. A pipe 5 connected to a 1-L empty pump (not shown) is inserted into the base 4 from below, and the air inside the vacuum container 2 is exhausted to maintain a high vacuum. Also, W unit/1
In Nakao, there is a rectangular opening section 6.

前記開口部6は、フッ素樹脂等よりなるインシュレータ
7aを介して、カソード9上面により下方から閉塞され
る。カソード9は、下面を基台4下面にボルト7C17
Cで固着されるL字状のフッ素樹脂等よりなるインシュ
レータ7b、7bにより支持されている。このカソード
9は、1つの極か接地されている直流又は高周波電圧源
■の他の極に接続される。1111記力ソード9上面に
は、凹部10が設&Jられ、さらに、この四部10を密
閉するように、八ソー1−ングプレ−1−11によって
被蓋される。前記四部10内には、図示しない循環手段
により冷却水Wが循環される。前記ハフ:1−ングプレ
−1・11上には、アルミニウム、等よりなる〃 ゲノ
I・12が固定される。さらに、開口部6」二縁に沿っ
てシールF’ 8が設けられ、カソード9−L而及びハ
、=12ングプレ−1−11の周縁を遮蔽している。
The opening 6 is closed from below by the upper surface of the cathode 9 via an insulator 7a made of fluororesin or the like. Attach the bottom surface of the cathode 9 to the bottom surface of the base 4 with bolts 7C17.
It is supported by L-shaped insulators 7b, 7b made of fluororesin or the like fixed by C. This cathode 9 is connected to one pole or the other pole of a DC or high frequency voltage source 1 which is grounded. 1111 A recessed portion 10 is provided on the upper surface of the writing sword 9, and the four portions 10 are further covered with eight saw plates 1-11 so as to seal them. Cooling water W is circulated within the four parts 10 by a circulation means (not shown). On the Hough plate 1.11, a Geno I.12 made of aluminum or the like is fixed. Furthermore, a seal F'8 is provided along the two edges of the opening 6' to shield the periphery of the cathode 9-L and the plate 1-11.

このターゲノ1−12上方には、ターゲット12表面に
対向するように、図示しない支持手段によって、表面に
薄膜を形成すべき基板13が支持され、適当な手段によ
り接地又はバイアス電圧が加えられる。
Above the target 1-12, a substrate 13 on which a thin film is to be formed is supported by a support means (not shown) so as to face the surface of the target 12, and a ground or bias voltage is applied to the substrate 13 by an appropriate means.

カソード9下面には、磁石16がボルト14.14によ
ってカソード9下面に固着される磁石押さえ部材15.
15により取付けられる。磁石16は、第1図に示すよ
うに、支持板17上の中央には磁極の内の1極、例えば
N極を上面にし、永久磁石よりなる磁石片18a、18
bが並べて固着される。一方、支持板17周縁上には、
前記磁石片18a、18′上面の磁性とは反対の[伍、
この場合にはS極を上面にして、永久磁石よりなる磁石
片19a、19b、20a、20b、20C120dが
枠状に配され、取付けられる。1lfi石片18aと1
8b、1.9aと19b、20a20b、20cと20
dは、磁力及びその高さ、すなわら磁極とタルゲット間
の距離の異なるものを含ませるごとができる。あるいは
、各磁石片のそれぞれの支詩板17に対する高さを調整
する機構を設けることができる。
On the lower surface of the cathode 9, a magnet 16 is fixed to the lower surface of the cathode 9 by a bolt 14.14.
It is attached by 15. As shown in FIG. 1, the magnet 16 has magnet pieces 18a and 18 made of permanent magnets in the center on the support plate 17 with one of the magnetic poles, for example, the N pole facing upward.
b are lined up and fixed. On the other hand, on the periphery of the support plate 17,
The magnetic properties of the upper surfaces of the magnet pieces 18a and 18' are opposite
In this case, magnet pieces 19a, 19b, 20a, 20b, and 20C120d made of permanent magnets are arranged and attached in a frame shape with the S pole facing upward. 1lfi stone piece 18a and 1
8b, 1.9a and 19b, 20a20b, 20c and 20
d can include different magnetic forces and their heights, that is, different distances between the magnetic poles and the target. Alternatively, a mechanism for adjusting the height of each magnet piece with respect to each support plate 17 can be provided.

次に、この実施例に使用されるプレーナマグネトロンス
パッタ装置ス lの使用例を説明する。
Next, an example of the use of the planar magnetron sputtering apparatus Sl used in this embodiment will be explained.

先ず、ペルジャー3を上方に上げて、バッキングプレー
1−11上にターゲノ1−12を、図示しない支持手段
に基板13 (被膜が必要な面を下方に向ける)をそれ
ぞれセントする。
First, the Pelger 3 is raised upward, and the target material 1-12 is placed on the backing plate 1-11, and the substrate 13 (with the surface requiring a coating facing downward) is placed on a support means (not shown).

次いで、・ペルジャー3を基台4上に降ろし、真空容器
2を密閉し、パイプ5より真空容器2内の空気を排気し
、高真空状態が得られたならば、図示しない注入手段に
よりアルゴンガス等を少量、真空容器2内に注入する。
Next, the Pelger 3 is lowered onto the base 4, the vacuum container 2 is sealed, and the air inside the vacuum container 2 is exhausted from the pipe 5. When a high vacuum state is obtained, argon gas is injected by an injection means (not shown). Inject a small amount of the same into the vacuum container 2.

そして、カソード9と基板13には、電圧源■の直流又
は高周波電圧(例えば5KV)が加えられる。
Then, a DC or high frequency voltage (for example, 5 KV) from a voltage source (2) is applied to the cathode 9 and the substrate 13.

以下、アルゴンガスを例にとって説明を続けると、アル
ゴンガスの分子は、カソード9と基板13間に生した電
界によりアルゴン陽イオン(以下Ar” と記す)と電
子e−に電離される。A r、 +はタ〜ゲノ1−12
表面に衝突し、ターゲット12表面のAl原子を−L方
に飛出させる。また、前記Ar’及び電子e−は、ター
ゲット12近傍に形成される((1石16の磁場に捉え
られ、ナイクロイト運動をし、このサイクロイド運動す
るAr’及び電子e−がアルゴン分子に衝突して電離さ
せ、Ar’ と電子e−が増殖される結果、密度の高い
プラズマがターゲット12近傍に発生する。このプラズ
マ中よりA r +がターゲット12表面に衝突し、さ
らに多くのAl原子が上方に飛ばされる。
Continuing the explanation below using argon gas as an example, molecules of argon gas are ionized into argon cations (hereinafter referred to as "Ar") and electrons e- by the electric field generated between the cathode 9 and the substrate 13.Ar , + is tageno 1-12
It collides with the surface and causes Al atoms on the surface of the target 12 to fly out in the -L direction. Furthermore, the Ar' and electrons e- are formed near the target 12 ((caught by the magnetic field of the single stone 16 and undergo nycroid motion, and the cycloidally moving Ar' and electrons e- collide with argon molecules. As a result, a high-density plasma is generated near the target 12. Ar + from this plasma collides with the surface of the target 12, and more Al atoms are released upward. be blown away.

このように、ターゲット12表面より飛出したAl原子
が、基板13表面に捉えられて堆積し、Affの薄膜が
形成されるが、ターゲット12の材質等の微妙な相違に
より、基板13表面に形成される薄膜の膜厚分布が均一
とならない場合には、ボルト14.14を緩めて磁石1
6を取外し、磁石16を構成する磁石片18a、18b
、19a、19b、20a、20 b、 20 c、 
20 dの内、必要なものを予め用意されている磁力又
は高さの異なる磁石片と交換した後、再度、カソード9
下面に取付ける。
In this way, Al atoms flying out from the surface of the target 12 are captured and deposited on the surface of the substrate 13, forming a thin film of Aff, but due to subtle differences in the material of the target 12, etc. If the thickness distribution of the thin film to be applied is not uniform, loosen the bolts 14 and 14 and remove the magnet 1.
6 is removed, and the magnet pieces 18a and 18b that constitute the magnet 16 are removed.
, 19a, 19b, 20a, 20 b, 20 c,
After replacing the necessary items in 20 d with previously prepared magnet pieces of different magnetic force or height, connect the cathode 9 again.
Attach to the bottom surface.

一最に、ターゲット12上の磁場の強い部分と対向する
基板13表面に一形成される薄膜の膜厚は大きくなるた
め、基板13表面の薄膜の膜厚の小さい部分に対向する
ターゲット12の部分の下方に位置する1又は2以上の
磁石片を、磁力の強いもの又は高さが高いものと交換し
、ターゲット12の当該部分の薄膜の膜厚が大きい部分
が生じた場合には、上記操作と逆の操作を行う。
First, since the thickness of the thin film formed on the surface of the substrate 13 facing the part of the target 12 with a strong magnetic field increases, the part of the target 12 facing the part of the surface of the substrate 13 with a small thickness of the thin film increases. If the one or more magnet pieces located below are replaced with ones with stronger magnetic force or ones with a higher height, and the thickness of the thin film in that part of the target 12 is large, perform the above procedure. and perform the opposite operation.

薄膜の形成された基板13は、真空容器2内に空気を導
入し、大気圧とした後、ヘルジャ−3を上方に上げて、
外部に取出される。
The substrate 13 on which the thin film has been formed is prepared by introducing air into the vacuum container 2 to bring it to atmospheric pressure, and then raising the herger 3 upwards.
taken outside.

なお、この実施例に示す装置は、単品制作用の比較的節
易なプレーナマグネトロンスパッタ装置であるが、多数
の2.(板を処理するために、基板を真空容器に搬入、
搬出するための+C送手段を備え、自動化されたプレー
ナマグネトロンスパッタ装置にも、この発明の膜厚調整
方法は適用できるものである。
Although the apparatus shown in this embodiment is a relatively simple planar magnetron sputtering apparatus for single-item production, it has many 2. (To process the board, carry the board into a vacuum container,
The film thickness adjustment method of the present invention can also be applied to an automated planar magnetron sputtering apparatus equipped with a +C conveying means for carrying out the film.

第3図及び第4図は、この発明の第2の実施例に使用さ
れる磁石26の外観斜視図及び縦断面図をそれぞれ示し
ている。この磁石26は、支詩板27上に電磁石片28
.28.29.29.30、・・・・・・、30を前記
第1の実施例と同様に配され、固着される。これら電磁
石片28.28.29.29.30、・・・・・・、3
0は、それぞれ同じ高さのコア28a、28a、29a
、29a、30a1・・・・・・、30aの側部に巻線
28b、28b、29b、29b、30b1・・・・・
・、30bをそれぞれ巻着している。各巻線28b、2
8b、29b、29b、30b1・・・・・・、30b
の始端及び終端は、図示しない電圧源に接続され、各々
その流れる電流が個別に制御・調整される。
FIGS. 3 and 4 show an external perspective view and a vertical cross-sectional view, respectively, of a magnet 26 used in a second embodiment of the present invention. This magnet 26 has an electromagnet piece 28 on the support plate 27.
.. 28, 29, 29, 30, . . . , 30 are arranged and fixed in the same manner as in the first embodiment. These electromagnetic pieces 28.28.29.29.30,...,3
0 are cores 28a, 28a, and 29a of the same height, respectively.
, 29a, 30a1..., windings 28b, 28b, 29b, 29b, 30b1... on the side of 30a.
・, 30b are wrapped around each other. Each winding 28b, 2
8b, 29b, 29b, 30b1..., 30b
The starting end and the ending end of each are connected to a voltage source (not shown), and the current flowing through each of them is individually controlled and adjusted.

・この磁石26は、第1の実施例で使用したプレーナマ
グネトロンスパッタ装置lのカソード9底面に取付けて
使用される。基板13表面に形成される薄膜の膜厚分布
の調整を行うには、各巻線28b、28b、29b、2
9b、30b、・・・・・・、30bに流れる電流を調
整し、ターゲツト12近傍空間に形成される磁界の強度
・分布を変えることにより行われる。
- This magnet 26 is used by being attached to the bottom surface of the cathode 9 of the planar magnetron sputtering apparatus l used in the first embodiment. To adjust the film thickness distribution of the thin film formed on the surface of the substrate 13, each winding 28b, 28b, 29b, 2
This is done by adjusting the current flowing through the targets 9b, 30b, . . . , 30b and changing the strength and distribution of the magnetic field formed in the space near the target 12.

なお、この磁石26は、真空容器2外部からカソード9
底面に取付けする代わりに、真空容器2内に設け、電流
導入端子を介して各電磁石片の巻線28b、28b、2
9b、29b、3Qb、・・・・・・、30bに電流を
流せるように構成してもよい。
Note that this magnet 26 is connected to the cathode 9 from outside the vacuum container 2.
Instead of being attached to the bottom surface, it is installed inside the vacuum vessel 2, and the windings 28b, 28b, 2 of each electromagnet piece are connected via current introduction terminals.
9b, 29b, 3Qb, . . . , 30b may be configured to allow current to flow therethrough.

また、上記第1及び第2の実施例においては、プレーナ
マグネトロンスパッタ装置にこの発明の膜厚調整方法を
適用したものを示しているが、5−Gunスパッタ装置
や同軸マグネトロンスパッタ装置等の他のマグネトロン
スパッタ装置についても応用可能なものである。
Furthermore, in the above first and second embodiments, the film thickness adjustment method of the present invention is applied to a planar magnetron sputtering device, but other devices such as a 5-gun sputtering device or a coaxial magnetron sputtering device can be used. It is also applicable to magnetron sputtering equipment.

(ト)発明の効果 この発明のマグネトロンスパッタにおける膜厚調整方法
は、ターゲ・7ト近傍空間に磁界を形成するための磁石
を3以上の磁石片より構成すると共に、各磁石片のその
磁極と前記ターゲット間の距qt及び/又は前記各磁石
片の磁力を変化させ、前記ターゲット近傍空間に生じる
磁界の分布を変更し、前記ターゲラ1−に対向して位置
する基板上に形成される薄膜の膜厚分布を調整するもの
であるから、クーゲット材質等により生じる前記膜厚分
布の不均一をターゲット近傍空間に生じる磁界を細かく
変更することによって防止できる利点を有すると共に、
真空容器内のターゲット(カソード)と基板間の距離を
変更することなく、前記膜厚分布を容易に調整できる利
点を有する。
(G) Effects of the Invention In the film thickness adjustment method in magnetron sputtering of the present invention, a magnet for forming a magnetic field in a space near a target is composed of three or more magnet pieces, and the magnetic pole of each magnet piece is By changing the distance qt between the targets and/or the magnetic force of each of the magnet pieces, the distribution of the magnetic field generated in the space near the target is changed, and the thin film formed on the substrate facing the target laser 1- is Since the film thickness distribution is adjusted, it has the advantage that non-uniformity of the film thickness distribution caused by the Kugett material etc. can be prevented by finely changing the magnetic field generated in the space near the target.
It has the advantage that the film thickness distribution can be easily adjusted without changing the distance between the target (cathode) and the substrate in the vacuum container.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、この発明の第1の実施例に使用される磁石の
外観斜視図、第2図は、この発明の第1及び第2の実施
例に共通して使用されるプレーナマグネトロンスパッタ
装置の縦断面図、第3図はこの発明の第2の実施例に使
用される磁石の外観斜視図、第4図は、同磁石の縦断面
図、第5図は、従来の磁石の外観斜視図である。 12:ターゲット、  13:基板1 .16・26:磁石、 18a・18b・19a・19b20a・20b20c
・20d28・2829・29・30・・・・・・30
 : if1石片。 第1図 第5図 あ
FIG. 1 is an external perspective view of a magnet used in the first embodiment of the present invention, and FIG. 2 is a planar magnetron sputtering apparatus commonly used in the first and second embodiments of the present invention. 3 is an external perspective view of a magnet used in the second embodiment of the present invention, FIG. 4 is a vertical sectional view of the same magnet, and FIG. 5 is an external perspective view of a conventional magnet. It is a diagram. 12: Target, 13: Substrate 1. 16/26: Magnet, 18a/18b/19a/19b20a/20b20c
・20d28・2829・29・30・・・・・・30
: if1 stone piece. Figure 1 Figure 5 A

Claims (1)

【特許請求の範囲】[Claims] (1)ターゲット近傍空間に磁界を形成するための磁石
を3以上の磁石片により構成すると共に、その磁極と前
記ターゲット間の距離及び/またはその磁力をそれぞれ
変化させ、前記ターゲット近傍空間に形成される磁界の
分布を変更し、前記ターゲットに対向して位置する基板
上に形成される薄膜の膜厚分布を調整するマグネトロン
スパッタにおける膜厚調整方法。
(1) A magnet for forming a magnetic field in the space near the target is composed of three or more magnet pieces, and the distance between the magnetic pole and the target and/or the magnetic force is changed respectively, so that the magnetic field is formed in the space near the target. A method for adjusting film thickness in magnetron sputtering, which adjusts a film thickness distribution of a thin film formed on a substrate facing the target by changing the distribution of a magnetic field.
JP60284934A 1985-12-17 1985-12-17 Film thickness adjustment method in magnetron sputtering Expired - Lifetime JPH0726202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60284934A JPH0726202B2 (en) 1985-12-17 1985-12-17 Film thickness adjustment method in magnetron sputtering

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60284934A JPH0726202B2 (en) 1985-12-17 1985-12-17 Film thickness adjustment method in magnetron sputtering

Publications (2)

Publication Number Publication Date
JPS62142765A true JPS62142765A (en) 1987-06-26
JPH0726202B2 JPH0726202B2 (en) 1995-03-22

Family

ID=17684950

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60284934A Expired - Lifetime JPH0726202B2 (en) 1985-12-17 1985-12-17 Film thickness adjustment method in magnetron sputtering

Country Status (1)

Country Link
JP (1) JPH0726202B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288766A (en) * 1988-09-26 1990-03-28 Hitachi Ltd Electrode, device, and method for sputtering
WO2006082863A1 (en) * 2005-02-02 2006-08-10 Hitachi Metals, Ltd. Magnetic circuit device for magnetron sputtering and its manufacturing method
JP2012077360A (en) * 2010-10-04 2012-04-19 Ulvac Japan Ltd Cathode unit and film deposition system
CN115287614A (en) * 2022-07-22 2022-11-04 宣城开盛新能源科技有限公司 Method for improving TCO film thickness uniformity of CIGS chip and film coating device
CN118777952A (en) * 2024-09-12 2024-10-15 广东汇成真空科技股份有限公司 Magnetic field measurement system and method for magnetron sputtering coating composite current collector

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4551490B2 (en) 2008-08-18 2010-09-29 キヤノンアネルバ株式会社 Magnet unit and magnetron sputtering system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583975A (en) * 1981-06-29 1983-01-10 Hitachi Ltd Method and device for forming film by sputtering
JPS5881969A (en) * 1981-11-06 1983-05-17 Kokusai Electric Co Ltd Sputter source of magnetron sputtering
JPS5887270A (en) * 1981-11-18 1983-05-25 Hitachi Ltd Structural body of sputtering target of planar magnetron type
JPS5920469A (en) * 1982-07-26 1984-02-02 Hitachi Ltd Planar magnetron type sputtering device
JPS59137965U (en) * 1983-03-03 1984-09-14 日本真空技術株式会社 Magnetron type spatuta cathode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS583975A (en) * 1981-06-29 1983-01-10 Hitachi Ltd Method and device for forming film by sputtering
JPS5881969A (en) * 1981-11-06 1983-05-17 Kokusai Electric Co Ltd Sputter source of magnetron sputtering
JPS5887270A (en) * 1981-11-18 1983-05-25 Hitachi Ltd Structural body of sputtering target of planar magnetron type
JPS5920469A (en) * 1982-07-26 1984-02-02 Hitachi Ltd Planar magnetron type sputtering device
JPS59137965U (en) * 1983-03-03 1984-09-14 日本真空技術株式会社 Magnetron type spatuta cathode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0288766A (en) * 1988-09-26 1990-03-28 Hitachi Ltd Electrode, device, and method for sputtering
WO2006082863A1 (en) * 2005-02-02 2006-08-10 Hitachi Metals, Ltd. Magnetic circuit device for magnetron sputtering and its manufacturing method
JP4924835B2 (en) * 2005-02-02 2012-04-25 日立金属株式会社 Magnetic circuit device for magnetron sputtering and manufacturing method thereof
TWI400349B (en) * 2005-02-02 2013-07-01 Hitachi Metals Ltd Magnetic loop device for magnetron sputtering
JP2012077360A (en) * 2010-10-04 2012-04-19 Ulvac Japan Ltd Cathode unit and film deposition system
CN115287614A (en) * 2022-07-22 2022-11-04 宣城开盛新能源科技有限公司 Method for improving TCO film thickness uniformity of CIGS chip and film coating device
CN118777952A (en) * 2024-09-12 2024-10-15 广东汇成真空科技股份有限公司 Magnetic field measurement system and method for magnetron sputtering coating composite current collector

Also Published As

Publication number Publication date
JPH0726202B2 (en) 1995-03-22

Similar Documents

Publication Publication Date Title
US4911814A (en) Thin film forming apparatus and ion source utilizing sputtering with microwave plasma
EP0148504B1 (en) Method and apparatus for sputtering
EP0275021B1 (en) Sputtering process and an apparatus for carrying out the same
US6143140A (en) Method and apparatus to improve the side wall and bottom coverage in IMP process by using magnetic field
JPH07188917A (en) Collimation device
US6372098B1 (en) High target utilization magnet array and associated methods
KR20010042128A (en) Method and apparatus for deposition of biaxially textured coatings
US6683425B1 (en) Null-field magnetron apparatus with essentially flat target
JPS62142765A (en) Method for regulating film thickness during magnetron sputtering
EP0544831B1 (en) Sputtering apparatus and sputtering method of improving ion flux distribution uniformity on a substrate
JPH06220632A (en) Device for generating plasma by cathode sputtering and microwave irradiation
JP2002531914A (en) Enhanced plasma mode, method and system for plasma immersion ion implantation
US6620298B1 (en) Magnetron sputtering method and apparatus
CN116034450A (en) System and method for improved magnetron electromagnetic assembly
JPH02185967A (en) Method and device for bias sputtering
JPH01139762A (en) Sputtering apparatus
JPS62142764A (en) Method for regulating film thickness during magnetron sputtering
JP2789251B2 (en) Sputtering equipment using dipole ring type magnetic circuit
JPS61179864A (en) Sputtering device
JP2789252B2 (en) Sputtering equipment using dipole ring type magnetic circuit
EP2766506B1 (en) Plasma processing apparatus
JP2006169610A (en) Sputtering system
JPH03138363A (en) Plasma beam sputtering device
JP2570594Y2 (en) Thin film forming equipment
JPS6187867A (en) Sputtering device